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(A) Higher spin and amplitude methods [8, 6, 7, 2]

The coupling of a photon of momentum q to a particle of spin S and mass m is given by the 3pt
amplitude

A+SASB
= Q

⟨AB⟩2S

m2S−1

m[1ξ]

⟨qp̂Aξ]
, A−SASB

= Q
[AB]2S

m2S−1

m⟨1ξ⟩
⟨qp̂Bξ]

, (1)

where ± are the photon helicities and the spin of particles A,B is encoded in the implicit index of
square and angle brackets |AI⟩, I = ±1/2.

1. The coupling of an electron and a positive helicity photon in QFT reads,

e
(
[B| , ⟨B|

)
γ0

(
0 σµ

σ̄µ 0

)(
|A⟩
|A]

)
⟨ξ|σµ|q]√
2⟨ξ q⟩

(2π)4δ4(pA + pB + q) .

Work the expression above into angle and square bracket products, then divide and multiply by
⟨qp̂Aξ] simplifying the numerator and using relations

⟨ξ|σµ|q]σµ = |ξ⟩[q| ⟨ξ|σµ|q]σ̄µ = |q]⟨ξ| q̂ξ̄ + ξ̂q̄ = ⟨qξ⟩[ξq]1

p̂i|i] = mi|i⟩ pµAqµ = 0 → p̂Aq̄ = −q̂p̄A pA + pB + q = 0

with mA = mB = m, mγ = m1 = 0 to recover the form in (1) with Q = e/
√
2.

2. Show that the product which arises in the s-channel on shell contribution (i.e. ((pA + p1)
2 =

(pC + p2)
2 = m2)) is gauge (i.e. ξ, ζ) independent and simplifies to

m[1ξ]

⟨1p̂Aξ]
m⟨2ζ⟩
⟨ζp̂C2]

=
⟨2p̂A1]2

m2⟨12⟩[12]

using relations given in exercise 1 above with substitutions q → p1, A → A and separately on the
other vertex q → p2, A → C, ξ → ζ.

3. In the lectures we derived the high energy behaviour of the s-channel contribution to Compton
scattering

A+− = Q2m
2tS

sm2S

unitarity demands, roughly, A(t → s) ≤ 16π (if you want it rigorous, here [8]). Obtain and discuss
an estimate for the scale E∗ =

√
s∗ = L−1

∗ at which the bound is saturated and we expect to see
the composite nature of higher spin for these particles (ℏc = 0.2 GeV fm, e2/(4π) = 1/137)

∆ (Baryon) a2 (Meson) 115
45 In (Nucleus)

mass(GeV) 1.2 1.3 107
spin 3/2 2 9/2
charge e e guess
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(B) Conserved magnitudes from Poincare symmetry [10, 9]

The infinitesimal effect on a scalar function (e.g. a scalar field and the Lagrangian) under translations
xµ → xµ + ϵµ, is δϵf(x) = ϵµ∂µf . Defining δϵL = ∂µF

µ we obtain an expression for the conserved
current of translations

ϵνJµ(ν) = δϵϕ
∂L
∂∂µϕ

− Fµ = ϵνTµν

with conserved magnitudes
∫
dx3J0

(µ) =
∫
dx3T 0

µ = Pµ i.e. total energy and momentum.

1. Obtain the currents for Lorentz invariance xµ → xµ + ωµνxν with ωµν = −ωνµ and express them
in terms of Tµν and xµ.

2. Interpret the conserved magnitudes, first for rotations, then for boosts.

(C) Running of non-abelian coupling [1]

The Feynman rules in the background and Feynman gauge are (all momenta coming into the vertex)

gfabc

 ηαγ(p− r − q)β

+ηβα(q − p+ r)γ

+ηγβ(r − q)α


α, a, p

β, b, q

γ, c, r

gfabc(p− q)γ

a, p

b, q

γ, c, r

while the gauge propagator is −iηµνδab/q
2 and that of the ghosts iδab/q

2.

1. Consider the gauge propagator between two conserved currents and a self energy correction to it
the form Σµν = ΣT q

2ηµν +ΣLqµqν . Justify the dropping of ΣL in the following equation

gJµ

(
−iηµν

q2
+

−iηµρ

q2
(−iΣρσ)

−iησν

q2

)
gJν = gJµ

(
−iηµν

q2
+

−iηµν

q2
(−iΣT q

2)
−i

q2

)
gJν

2. Using Feynman parameters and the results∫
d4ℓ

(2π)4
ℓµℓν

(ℓ2 −∆)2
=

1

2

1

(4π)2
∆ dϵ

∫
d4ℓ

(2π)4
1

(ℓ2 −∆)2
=

i

(4π)2
dϵ

given dϵ ≡ ϵ−1 − log p2/µ2 with p the momentum in ∆, compute (Pµν = q2ηµν − qµqν)

−iΣghost = =
iCAdg

4
s

3(4π)2
δabPµνdϵ −iΣgauge = =

i10CAdg
2
s

3(4π)2
δabPµνdϵ

where CAdδab = facdfbcd, the gauge loop has a 1/2 symmetry factor and the ghost an extra minus
sign. Why do we get the precise combination in Pµν?

3. Put this result in the expression of 1 with the renormalised (A =
√
ZAR Z = 1+δZ), 2pt function

−iJµ
1

Zq2
g2 (1− ΣT ) Jµ = −iJµ

1

q2
g2 (1− ΣT − δZ) Jµ +O(g6) ≡ −iJµ

g2eff
q2

Jµ

Use δZ ∝ 1/ϵ to cancel the divergence. This being done, how does the effective coupling change
with energy (p)? You can think of QCD with CAd = Nc = 3 and compare with the β function to
check your result.

4. If you’re up for it add Nf Dirac fermions (quarks) to find −iΣψ = ig24CψδPµνdϵ/3(4π)
2.
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(D) Self-consistent gauge theories

Consider the matter content of the SM with variable representations

qL uR dR ℓL eR

U(1)Y Qq Qu Qd Qℓ −1

SU(2)L n 1 1 2 1

SU(3)c r r r 1 1

where n, r label the representations by their dimension, i.e. n = 2, 3, 4, r = 3, 6, 8 etc.

1. Revise anomaly cancellation (including gravity×hypercharge) in this theory to obtain the con-
straints:

Qu +Qd − nQq = 0 r(Qu +Qd − nQq)− 1− 2Qℓ = 0 (2− n) = 0

rCnQq + C2Qℓ = 0 r(Q3
u +Q3

d − nQ3
q)− 1− 2Q3

ℓ = 0

where Cn are Casimirs tr(T a(n)T
b
(n)) ≡ Cnδab.

2. Solve for hypecharges as a function of r to find

Qq Qu Qd Qℓ QeR

1

2r

1

2r
+

1

2

1

2r
− 1

2
−1

2
−1

3. Take the symmetric representation r = 6 built out of two symmetrised fundamentals and give the
electric charges of pions, protons and neutrons in this theory (Qem = QY + T3, with T3 = σ3/2 in
the SU(2) fundamental).

(E) Non-invertible symmetry and pion decay[5, 3, 4]

Consider the insertion of the charge operator at t = 0 for the conserved gauge-invariant non-invertible
symmetry found in [5] for the neutral pion action

S =

∫
t>0
d4x

(
1

2
∂µπ0∂

µπ0 +
cAπ0
4

FµνF̃
µν − 1

4e2
FµνF

µν

)
+

∫
t=0
d3x

(
π

N
J0
A +

N

4πbA
aiϵijk

[
ajk

2
− bAF

jk

N

])
+

∫
t<0
d4x

(
1

2
∂µπ0∂

µπ0 +
cAπ0
4

FµνF̃
µν − 1

4e2
FµνF

µν

)
where π0(t → 0+) = π0(t → 0−)− 2πfπ/N , bA = Nc(q

2
u− q2d), F̃

µν = εµνρσFρσ, aij = ∂iaj − ∂jai while
every other field is the same above and below t = 0.

1. Use the variational principle to compute the EoM for Aµ → Aµ + δAµ with care to account for
boundary terms and show that these read∫
t=0
d3x

[
δAµcA[π0(0

−)− π0(0
+)]F̃ 0µ +

1

2π
ϵijk∂

jakδAi
]
=

∫
t=0
d3xδAiϵ

ijk

[
cA

2πfπ
N

F jk − 1

4π
ajk
]

2. Combine the equation above with the EoM for a and show that consistency demands

cA =
Nc(q

2
u − q2d)

8π2fπ
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