Sxmme'l'ries
in_particle Ehxsics

® Symmetries: Spins and their addition
e The eightfold way revisited
e Discrete symmetries:
Charge conjugation, parity and time reversal



S ymmetries

Spin-1/2 systems

Some generalities
e S/Din— 1/2 systems are often studied in physics.

Examp/e: electron and its spin, isospin, .

e Spin—sfa'l'isﬁcs theorem suggests that such systems
are fermionic in nature.

e Inferesﬁng in the context of this lecture:
Basic building blocks of matter (quarks & leptons)
are spin-1/Z

S Simple representation:
‘ T> = |S: 1/2752: = 1/2> ; | l> L |8: 1/2752: = _1/2>



Symmetries
Adding two spin-1/2

Often, it is important to add spins
Examples: bound states of spin- /2 fermions, spin-
orbit coupling, etc.

If two spin—l/Z systems are added, the following

objects can emerge: | 11), |T1), |[I1), |ll)
Naively, they have spin 1. 0, or -l respectively.
But: Need to diS'I'inguish total spin s and its

projection onto the “measurement axis s

z

(here, z has been chosen for simplicity)



Symmetries
Adding two spin-1/2
e Then the truly relevant states are for s=1 (triplet)
[T =ls=1,5.=1),
(TL+ 1) =ls=1,5.=0),

L) =ls=1,5.=-1)

and for s=0 (singlet)

1
EKH — 1) =1[s=0,s, =0)

e Note: the +ri/9/e+s are symmetric, the singlet is
anti-symmetric. Catchy: 222 =3&1

1

V2



Symme‘l'ries
Clebsch-Gordan coefficients

e The coefficients in front of the new |s,s.) states

can be calculated (or looked up). They go under

the name of Clebsch-Gordan coefficients.

e F ormally speaking, they are defined as follows:

< 1 1 .

s,5.;8%, 55|s", 87

A S SZ>

indicating that two spin systems s' and s° are
added to form a new spin system with total spin
s. Obviously, it is not only the total spin of each
system that counts here but also its orientation
This is typically indicated through a “magnetic™
quantum number, m, replacing s in the literature.



Symme’l'ries
Clebsch-Gordan coefficients

Specia/ cases:

e For s=0.
1 1..2 _2(.1 .2 (_1)81_m1
(s7,m~;8*,m*|s",8%0,0) = 051 20,1 _m2
’ ’ \/ 280 + 1
® Clebsch-Gordan tables for two cases: |NNGINENE
(a square-root over each coefficient is implied) g

my Mz | Cogfigents



Symme'l'ries
F rom spin _to isospin

Who carries isospin?

e Remember Heisenberg's proposal:
p and n are just two manifestations of the same
particle. the nucleon Identify them with the
isospin-up and isospin-down states of the nucleon:

p)=11/2,1/2), |n) =|1/2,-1/2)

e Catch: /sospin conserved in strong interactions!

e Will dwell on that a bit: Play with pions, nucleons

and Delta’s.
( Note: Multiplicity in each multiplet: ZI+1)



Symme'l'ries
F rom spin _to isospin

Dynamical implications: Dound states (deuteron)

e Add two nucleons: can have isosing/e'l' and isofriple'l‘.
1
0,0) = —|pn —n
0,0) ﬁlp p)

1
1,1) = , 11,0) = —lpn+np), |1L,—1)=|nn
1,1) = |pp), |1,0) ﬂ\p p), | ) = |nn)
e No pp. nh-bound states ™ deuteron = isosinglet Il

e Consider processes (+ their isospin amplitudes, below)

p+p—d+rt p+rn—-d+7° n4+n

b4 VN N

|17 1> = |17 1> (|170> = |070>) S |170> |17_1> T |17 _1>

=l

2



Symme'l'ries
F rom spin _to isospin

Who carries isospin?

e Nucleons in isospin notation:

1 1 1 1
|p>_ §7§>7 ‘TL>— 57_§>
e Plions in isospin notation:
|7T+> — ‘17 1> 9 |7TO> — ‘17()) 9 |7T_> a |17 _1>

e Delta’s in isospin notation:

3 3 3 1
A HUSSSF S Ay N2
| > 272>7 ‘ > 272>7
3 1 3 3
AGE |2 = oty S T
‘ > 27 2>7 | > 27 2>



Symme'l'ries
Isospin _and scattering amplitudes

Use isospin for /oion—nuc/eon scattering am/o/i'fudes

e Elastic processes
(@) nt+p—7a+p (b)) T +p—o7w +p
(c) @™ +p— 7 +p (d) 7t +n—7" +n
() T’ +n—7"+n (f) @™ +n—7" +n

@ ChCll" ge exchange Pt" ocesses
(9) 7" +n—7"+p (h) T 4+p—7"+n
(@) " +n—a +p (j) T +p—7 +n



Symme'l'ries
Isospin _and scattering amplitudes

Use isospin for Pion—nuc/eon scattering amp/i'fua'es

e Remember: pions and nucleons are isopin—l and 1/2.
The total isospin is either 1/2 or 3/2 and thus, there
are only two independent amplitudes. M3z and M

e Use Clebsch-Gordan coefficients:

3 3 1 |3 1 2 (1 1
ﬂ++:_,_> b L3 1 [
#5529 TAn=m122/ V3202
213 1 11 1
U PI I A I ot __,__>+__,__>
3122 WER DV, 32\ 2 V31|12 2
e | TS = 3 3>
e Bl L (- . i)
TTPE R 2> 348 2> i 2




Symme'l'ries
Isospin _and scattering amplitudes

Use isospin for /oion—nuc/eon scattering amp/i'fudes

e Then Reactions (a) and (f) are pure 3/Z

O T VI VY
(f) @™ +n—7 +n

e Other reactions are mixtures (coefficients given by

the Clebsch-Gordans). eg

() 7" +p—=7 +p M,=1/3Ms+ 2/3M;
§) 7~ +p—a’+n M, =+2/3Ms—2/3M;




Symme'l'ries
Isospin _and scattering amplitudes

Use isospin for Pion—nuc/eon scattering amp/i'fua'es

e [herefore, the cross sections behave like

Og:0c:0j = 9\./\/13|2 . (M3 + 2./\/[1|2 : 2| Mg — ./\/l1\2

e At a cm energy of 1232 MeV there is a dramatic
bump in the pion-nucleon scattering cross section,
first discovered by Fermi in 1751, There the pion
and nucleon form a short-lived resonance state, the
A which we know to carry | = 3/2



S ymmetries

/sospin and scattering amplitudes

At cm. energies around
the A-mass, one can
expect that Mg > M- |

and therefore, there
Oq:0c:0;~9:1:2

Experimentally, it is
simpler to combine (c)

and (j). leading to

Otot (T + p)

=43
Tot (T~ + D)




S ymmetries

Isospin _and G-parity

Pions and isospin: G-parity

How does this work for the mesons (the pions) ?

Pions = bound states of a quark and an antiquark
o) naively: “Just add the isospins like the spins“.

But: Rules of spin addition not sufficient. How to
“bar’ « spin? Problem: want to preserve some

)

symmetries like Charge conjugation under “barring).

G-parity (a group-theory construct) demands:
Glr) = —|r), Glnx) = (=1)"|nr)

conserved quantum number in strong interactions.



S ymmetries

Isospin and G-parity

Pions and isospin: G-parity
e Altogether: The pion (isospin=1) multiplet reads
1 .

7+ = |ud) , w0>=ﬁ|ua—dd>, 7Y = |da) .

e The unexpected minus-sign in the neutral pion
(compare with spin) is due to the G-parity acting
on the quarks and anti-quarks (the former have
positive, the latter negative G-parity)



The eightfold way. revisited
Some SU(3) relations

Why SU(3)?

e In isospin there are two quarks related by
symmetry, |u) =(1/2,1/2) and |d) =|1/2,—1/2)

e The group related to this is the spin group, or
SU(Z). s generators are the Pauli matrices,

[0 1 0 —i 0
123=\41 0 )°\Li o )Jo\Lo -1

e |he pions can be identified with o and the two

linear combinations (of definite charge)
1

O':|:=\/—§(O'1:

— ’iO'Q)



The eightfold way. revisited
Some SU(3) relations

Why SU(3)?
e For three states |u),|d),|s) similarly related through
a symmetry, one could think about the group SU(3).

e |ts generators are the Gell-Mann matrices.

e In SU(3), the mesons can be connected to suitable
linear combinations of the Gell-Mann matrices (see
next slide)

e Note: QCD’s gauge group is also SU(3). differentiate
between SU(3) of flavour (up. down strange) and
SU(3) of colour (red, green, blue). although group

+heory is the samel



The Gell-Mann matrices

1,23

A45.6

The eightfold way. revisited

Some SU(3) relations

0
1

0

-

-

1
0
0

-

0
0
0

o) V@D f—

e =)

-

-



The eightfold way. revisited
Some SU(3) relations

S inglet-octet mixing

e Note: In the meson sector, also a “sing/ev‘ meson . bit

contributes, with a wave function of the form

1 _ - _
Y1) = NG (lutt) + |dd) + |s5))

It could be redlised through a unit matrix

e Typically there is a mixing with octet wave
functions, most notably examples are the 1) — n' and
the W — @ mixing in the pseudoscalar and vector
multiplet. So, typically, there are nine mesons per

SU(3)-multiplet.



The eightfold way, revisited

T he pseudoscalar mesons

K%)= |ds) |K*) = |us e 6 -
=) = |du) |77) = |ud) @\Oﬁw 8 o
|K™) = |su) |K°) = |sd) @ \@\ =
70y — %ma _ ddy o et
) = Cf%%md& + 53) Si;l_g\ourdd 253)
) = Sil/l_e\uu—kdd—l—ss) | Ci)/s_e\ourdd 2535)



The eightfold way, revisited

The vector mesons

KO =lds) K =s) @@

R T AN
p7) =ldu) |p*) = |ud) o)

@ @@ @ $=0

[K*7) =|sa) |K™) = |sd) % \@ \S=_1
e G QRPN

0 1 A = N - - .
9= \/—5\”&% —dd) |w)= E|uu+ dd) |¢9) =|s3)



The eightfold way. revisited

An alternative look

Example for colour:

Basic equation: 3® 3 =8 @ 1

This should explain the
eight gluons and the

absence of the ninth
(the singlet) one.

Similar for the mesons,
just re/o/ace colour with
flavour.




Discrete symmetries:
Some examples

Charge conjugation, parity, time reversal

e In addition to continuous symmetries, which can
reflect properties of space-time (like, eg. under
rotations, boosts, etc.) or of dynamics (gauge
symmetries) there may also be discrete symmetries

e Most important examples:
@ Charge conjugation: ALL charges (electric, colour, etc)
are inverted. Opera'l'or for that:

@ Parity: Move from a left-handed coordinate system to a
right-handed one (mirror). Redlised through P

@ Time reversal: Invert time axis, operator: T’



Discrete symmetries:
Parity and time reversal

e The operators of the discrete symmetries related to
space time, P andT . are quite obvious when acting
on four-vectors:

1 0 0 0
~ | 0 0 > v ~ -
Pi=10 o _1 o , PHx¥ =zt = (t,—T)
0O O 0o -1
—1 0 0 O
- 0 1 0 O - ~ —
=1 o0 o0 1 0 | Tir"=2"=(-17)
O 0 0 1

e Note: Although at first it looks similar, the parity
operator is not the metricl (position of the indices)



Discrete symmetries:

Parity

Parity violation
e Until the 1950's people believed that parity

T PP
(symmetry under “mirroring”) was conserved, and
there have been many tests in e/ec:‘l'romagne'fic and
S'I'rong interactions but none in weak interactions.

e This led Lee and Yang to propose an experiment,
which was later that year carries out by CSWu.

e |n this experiment radioactive ®Co was carefu//y
a/igned such that its spin would point into the
direction of the positive z-axis.



Discrete symmetries:

Parity

Pari'fy violation

e Then the Cobdlt undergoes a B-decay. emitting an
electron and an anti-neutrino. Wu found that most
of the electrons would be emitted into the positive
z-direction.

e |f the process is “mirrored”, the spin of the nucleus
points a/ong the negative z-axis, but the electrons
would still be emitted into the positive z-direction.

e This different behaviour is called axial-vector and
vector for spin and momentum (and respective
similar quantities).



Discrete symmetries:

Parity

He/ici'l'y, chirality, and all that

e Note: Reflections turn lef+-handed coordinate systems
into riglﬂf—handec/ ones and vice versa, this affects
spins etc.

e More physical definition: Define handedness as spin
with respect to the axis of motion (technically
speaking, this is helicity). For massive particles this is
not Lorentz-invariant, but for massless ones it is.

e T herefore, helicity is a meaningful, fixed property of
massless Parﬁcles, called chirdlity.



Discrete symmetries:

Parity

He/ici'l'y, chirality, and all that

e In the Standard Model:
ALL NEUTRINOS ARE LEFT-HANDED

e This can be seen by considering pion decays into
muon + antineutrino. In the rest frame of the pion
the muon and neutrino come out back-to-back and
the spins have to add to 0 (since the pion has
spin-0).  Therefore, the handedness (spin-direction) of

the anti-neutrino equa/s the handedness of the muon.

e |n this experiment, up to now, muons with only one
helici'fy/ handedness have been found.



Discrete symmetries:
CP violation

Charge conjugation, parity, time reversal

e For a long time it was thought that ALL laws of
nature on the parﬁcle level are invariant under each
of these three symmetries.

e But: While this is true for QED and QCD, the
weak interactions proved to be maximally parity
violating (only left-handed neutrinos)!l In addition the
weak interactions show small violation of the
combined ('P operation. When this was discovered,
it came as a shock. Today we know that this is
due to the complex phases in the CKM matrix



Discrete symmetries:

CP violation

/V\ixing in the system of the neutral mesons

e A prime examp/e for C'P violation is in the system
of the neutral mesons, like the neutral kaons.

e In terms of flavour, there are two eigenstates,
|K°) = |d3) and |K°) = |sd). However experimentally,
two states with wildly different lifetime are
observed: |Kg) and |K1) . which predominantly
decay into two or three pions, respectively.

Therefore they have different CP eigenvalues.



Discrete symmetries:

CP violation

Mixing in the system of the neutral mesons (cont'd)

e These CP eigenstates are nearly perfect mixtures of
the flavour eigenstates.

|Ki>=%(u<0>: K)) CPIKL) = +|Ky)
1 _
Kor) = e e +elfte)

e £ is related to the amount of CP-violation in the
kaon system (the prob. for decays into the “wrong”

number of pions).



Discrete symmetries:

CP violation

Mixing in the system of the neutral mesons (cont'd)

e £ is related to the Hamiltonian of the kaon system:
K9 K
(Ko || ko )

e The off-diagonal elements are given by amplitudes

A

H-

for the transition between the two Kkaons:

d “wW - @ The am/o/i'l'ude is Propor'l'iona/ to a producl' of four
S CKM matrix elements of the form

k >k
tdVts %d%s

uet uct
- @ T his allows for complex values in the Hamiltonian

matrix & CP violation.

s W 4



Discrete symmetries:

The CPT-theorem

Charge conjugation, parity, time reversal

e Despi'l'e of CP violation, up to now, no violation of
the combined version of all three discrete symmetries
has been found. So CPT seems to be a true

symmetry of the world.

e Ulﬁmafely, this allows for causal structures of the
'I'heory as realised up to now.



