Introduction to particle physics Lecture 9: Gauge invariance

Frank Krauss

IPPP Durham

U Durham, Epiphany term 2010

Outline

- Symmetries
- 2 Classical gauge invariance
- Phase invariance
- 4 Generalised phase invariance

Symmetries in classical physics

Invariance and conservation laws

- From classical physics it is known that invariance of a system under certain transformations is related to the conservation of corresponding quantities.
- Examples:

Invariance under		Conserved quantity
rotations	\iff	angular momentum
time translations	\iff	energy
space translations	\iff	momentum

• Formalised by Emmy Noether (thus: Noether's theorem)

Invariance and conservation laws

- The same ideas work also in quantum physics: Invariances give rise to conservation laws.
- There, however, internal symmetries also play a role.
 In fact, they are used to construct interactions in theories.
- Example in particle physics:
 - Invariance under phase transformations of the fields

$$\psi(x, t) \rightarrow \psi'(x, t) = \exp(i\theta)\psi(x, t) \iff |\psi|^2 = |\psi'|^2$$

yields conserved charges like, e.g., the electrical charge.

 Note: global changes in phase cannot be observed (because typically squares are taken), but phase differences are observable.

(In Quanutm Mechanics: Aharonov-Bohm effect.)

 The photon field couples to this charge and is thus related to the invariance under such phase transitions (later more). (Will come to that later.)

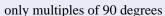
Mathematical formulation

(Not examinable)

- Ideas of symmetry are formalised in group theory.
- Definition of groups:
 - Consider sets of elements $S = \{a, b, ...\}$ with operation ":": $a \cdot b$.
 - Such sets are called groups, if $a \cdot b \in \mathcal{S}$ (closure) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativity) $\exists 1 \in \mathcal{S}: \ a \cdot 1 = 1 \cdot a = a \ \forall a \in \mathcal{S}$ (neutral element) $\forall a \in \mathcal{S}: \ \exists a^{-1} \in \mathcal{S}$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$ (inverse element).
- Examples: S = integer numbers, $\cdot = +$, rotations with arbitrary angles, the set $\{1,2,3,\ldots,p-1\}$ under multiplication modulo p, if p is a prime number, \ldots

Discrete vs. continuous symmetries

- Consider two slabs with quadratic and round cross section.
- The quadratic one has a discrete symmetry w.r.t. rotation along its axis, while the round one enjoys a continuous symmetry.





all angles

More physical examples: parity vs. angular momenutm

Classical gauge invariance

Fields and potentials in electrodynamics

Remember Maxwells equation:

$$\begin{array}{rclcrcl} \underline{\nabla} \cdot \underline{E} & = & 4\pi\rho & \underline{\nabla} \cdot \underline{B} & = & 0 \\ \underline{\nabla} \times \underline{E} + \frac{\partial \underline{B}}{\partial t} & = & 0 & \underline{\nabla} \times \underline{B} - \frac{\partial \underline{E}}{\partial t} & = & 4\pi \underline{j} \,. \end{array}$$

- Implicit: conservation of current, $\dot{\rho} + \nabla \cdot \dot{j} = 0$.
- Can introduce potentials Φ and A such that

$$\underline{E} = -\underline{\nabla}\Phi - \frac{\partial \underline{A}}{\partial t}$$
 and $\underline{B} = \underline{\nabla} \times \underline{A}$.

(Can read them off from homogenous equations, i.e. equations of the form l.h.s.=0.)

• Gauge invariance: The electromagnetic fields will not change under

$$\Phi \implies \Phi' = \Phi + \frac{\partial \Lambda}{\partial t} \text{ and } \underline{A} \implies \underline{A}' = \underline{A} - \underline{\nabla} \Lambda$$

(This is the gauge transformation of classical electrodynamics with an arbitrary scalar function Λ .)

Lorentz force

Lorentz-force reads:

$$\underline{F} = e \left[\underline{E} + \frac{\mathrm{d}\underline{x}}{\mathrm{d}t} \times \underline{B} \right] = e \left[-\underline{\nabla} \Phi - \frac{\partial \underline{A}}{\partial t} + \frac{\mathrm{d}\underline{x}}{\mathrm{d}t} \times \underline{\nabla} \times \underline{A} \right]$$
$$= e \left[-\underline{\nabla} \Phi - \frac{\mathrm{d}\underline{A}}{\mathrm{d}t} + \underline{\nabla} \cdot \left(\frac{\mathrm{d}\underline{x}}{\mathrm{d}t} \cdot \underline{A} \right) \right].$$

To see this, use that
$$\frac{dA_X}{dt} = \frac{\partial A_X}{\partial t} + \frac{\partial x}{\partial t} \frac{\partial A_X}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial A_X}{\partial y} + \frac{\partial z}{\partial t} \frac{\partial A_X}{\partial z} = \frac{\partial A_X}{\partial t} + v_X \frac{\partial A_X}{\partial x} + v_y \frac{\partial A_X}{\partial y} + v_z \frac{\partial A_X}{\partial z}$$
 and that $(\underline{v} \times \underline{\nabla} \times \underline{A})_X = v_y \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_X}{\partial y}\right) + v_z \left(\frac{\partial A_z}{\partial x} - \frac{\partial A_X}{\partial z}\right) + v_x \left(\frac{\partial A_X}{\partial x} - \frac{\partial A_X}{\partial x}\right)$ and that, since $\frac{\partial v_X}{\partial x} = \frac{\partial v_y}{\partial x} = \frac{\partial v_z}{\partial x} = 0, \underline{v} \cdot (\underline{\nabla} \cdot \underline{A}) = \underline{\nabla}(\underline{v} \cdot \underline{A})$

 This can be used to construct a Lagrange function, rederive E.o.M. with Euler-Lagrange method & confirm the force, assess symmetries, construct a Hamilton function to handle the quantum mechanical problem • Therefore: Lagrange function is given by

$$L = \frac{m}{2} \left(\frac{\mathrm{d}\underline{x}}{\mathrm{d}t} \right)^2 - e \left(\Phi + \frac{\mathrm{d}\underline{x}}{\mathrm{d}t} \cdot \underline{A} \right)$$

and the Hamilton function reads

$$H = \frac{1}{2m} \left(\underline{p} - e \underline{A} \right)^2 + e \Phi.$$

 Can use this to generalise for all situations:
 To treat interactions of a particle with a field, replace the momentum with the generalised one,

$$\underline{p} \to \underline{\Pi} = \underline{p} - e\underline{A}$$
.

• I will argue that this can be enforced by a gauge principle.

Phase invariance

Phase invariance in Quantum Mechanics

- Consider a system in a state $|\psi(t)\rangle$, alternatively described by a wave function $\psi(t, \underline{x}) = \langle \underline{x} | \psi(t) \rangle$.
- Remember that probabilities are related to $\langle \psi(t)|\psi(t)\rangle$ or $|\psi(t,\underline{x})|^2$.

Phase invariance

Clearly, one can redefine

$$|\psi(t)\rangle \longrightarrow |\psi(t)\rangle' = e^{-i\alpha}|\psi(t)\rangle$$

$$\psi(t,\underline{x}) \longrightarrow \psi(t,\underline{x})' = e^{-i\alpha}\psi(t,\underline{x}).$$

without changing measurements related to $\langle \psi(t)|\psi(t)\rangle$ or $|\psi(t,\underline{x})|^2$.

- This phase invariance is a simple example of a continous symmetry, described by a continous parameter, here the phase α .
- Symmetries are described by groups, represented by matrices. The group related to this symmetry is called U(1), the group of unitary matrices of dimension 1 (complex numbers with absolute value 1).

QED: Global phase invariance

(Details of equations not examinable)

- Lagrange formulation with fields:
 - generalised coordinates q(t) \longrightarrow fields $\phi(t, \underline{x})$.
 - Lagrange function $L(q, \dot{q}) \longrightarrow \text{Lagrangian density } \mathcal{L}(\phi(x_{\mu}), \partial_{\mu}(\phi))$ with $L = \int \mathrm{d}^{3}x \mathcal{L}$.
- Example: Free complex scalar field(s) ϕ and ϕ^* with mass m:

$$\mathcal{L} = (\partial_t \phi)(\partial_t \phi^*) - \underline{\nabla} \phi \cdot \underline{\nabla} \phi^* - m^2 \phi \phi^*.$$

• Lagrange function (and with it E.o.M.) invariant under transformation $\mathcal{G} \colon \mathcal{GL}(\phi, \phi^*) = \mathcal{L}(\phi, \phi^*)$

$$\mathcal{G}\phi = \phi' = e^{-i\alpha}\phi$$
 and $\mathcal{G}\phi^* = {\phi'}^* = e^{i\alpha}\phi^*$.

- This yields conserved charges ± 1 (group $\mathcal G$ again U(1)).
- Since the transformation acts the same way on all points in space-time, a symmetry transformation like this is called **global**.

Local phase transformations

- To measure phase differences: Must establish a specific $\theta = 0$.
- Different conventions related by global phase transformations.
 Clearly the choice, being unobservable, must not matter for physical observables:

The theory must be invariant under global phase transformations.

• What happens if the phase depends on space-time: $\theta \to \theta(t, \underline{x})$? (This is called a local phase transformation.)

Simple answer: Then the Lagrangian is not invariant any more.

$$\mathbf{G}(x)\mathcal{L}(\phi) \to \mathcal{L}'(\phi) \neq \mathcal{L}(\phi).$$

$$\begin{split} \mathcal{L}' &=& [\mathrm{e}^{-i\alpha}(-i\partial_t\alpha\cdot\phi+\partial_t\phi)][\mathrm{e}^{+i\alpha}(+i\partial_t\alpha\cdot\phi^*+\partial_t\phi^*)] \\ &-[\mathrm{e}^{-i\alpha}(-i\underline{\nabla}\alpha\cdot\phi+\underline{\nabla}\phi)]\cdot[\mathrm{e}^{+i\alpha}(+i\underline{\nabla}\alpha\cdot\phi^*+\underline{\nabla}\phi^*)] - m^2\phi\phi^* \\ &=& \mathcal{L}+(i\partial_t\alpha)\left(\phi^*\partial_t\phi-\phi\partial_t\phi^*\right)-(i\underline{\nabla}\alpha)\cdot\left(\phi^*\underline{\nabla}\phi-\phi\underline{\nabla}\phi^*\right)+\left[(\partial_t\alpha)^2-(\underline{\nabla}\alpha)^2\right]\phi\phi^* \,. \end{split}$$

Restoration of local phase invariance

 But: Can make the Lagrangian invariant by introducing another field, A.

$$\mathbf{G}(x)\mathcal{L}(\phi, \phi^*, A) \to \mathcal{L}(\phi', {\phi'}^*, A').$$

- Properties of this field:
 - Must be massless to allow for infinite range it must connect different phase conventions all over space.
 - It's a four vector, A^{μ} , identified with the photon field.
 - The photon field must also transform under $\mathbf{G}(x)$ such that the combination with changes due to the electron field are compensated.
- Couple it with the replacement (from Lorentz force) $p^{\mu} = (E, \underline{p}) \rightarrow \Pi^{\mu} = (p^{\mu} eA^{\mu}) = (E e\Phi, \underline{p} e\underline{A})$
- Summary of this construction:
 - Global phase invariance yields conserved charges.
 - Local phase invariance gives rise to the photon field, i.e. interactions.
- Final remark: A trivial mass term for the photon would look like $\mathcal{L}_m \propto m^2 A^2$ and it is not invariant under local phase transformations.

Symmetries

• Write the photon field as $A^{\mu} = (\Phi, \vec{A})$, where

$$ec{E} = -ec{
abla} \Phi - \partial_t ec{A}$$
 and $ec{B} = ec{
abla} imes ec{A}$

gives the relation to the electric and magnetic field.

• The potentials are invariant under the gauge transformation

$$\Phi \to \Phi' = \Phi + \partial_t \Lambda$$
 and $\vec{A} \to \vec{A}' = \vec{A} - \vec{\nabla} \Lambda$,

or, in four-vector notation $(\partial_{\mu}=(\partial_t,-\vec{
abla}))$

$$A_{\mu} \rightarrow A'_{\mu} = A_{\mu} + \partial_{\mu} \Lambda.$$

- ullet Invariance of the Lagrangian ${\cal L}=ec E^2-ec B^2$ follows trivially.
- Finally: The $\Lambda(x)$ here is more or less identical with the $\theta(x)$ of the local gauge transformation before.

Generalised gauge invariance

More complicated symmetries

• Obviously, this can be extended by making the state vector/wave function a vector with components labelled by $j \in [1, N]$, such that

$$|\psi(t,\underline{x})|^2 = \sum_j |\psi(t,\underline{x})_j|^2$$

ullet Generalised phase transformation assumes $extit{N} imes extit{N}$ -matrix character,

$$\begin{aligned} |\psi(t)\rangle_j &\longrightarrow &|\psi(t)\rangle_k' = \left[e^{-i\alpha}\right]_{kj} |\psi(t)\rangle_j \\ \psi(t,\underline{x})_j &\longrightarrow &\psi(t,\underline{x})_k' = \left[e^{-i\alpha}\right]_{ki} \psi(t,\underline{x})_j \,. \end{aligned}$$

ullet Can use base matrices (generators) T_{kj}^a such that

$$\left[e^{-ilpha}
ight]_{ki}=e^{-i\sum_{lpha}lpha^aT_{kj}^a}\,,\quad lpha^a\in\mathbf{R}\,.$$

Information about the allowed transformations contained in the form and properties of the $N \times N$ base matrices T^a_{kj}

Prominent examples SO(N), SU(N):

A "classical" example

- Seemingly, gauge invariance an elegant way to produce interactions.
- Added benefit: protects high-energy behaviour of QED.

(renormalisability)

- Extent this to other interactions, e.g. of nucleons with pions:
 - Pions transform nucleons into nucleons, put *p* and *n* into iso-doublet.

(isospin: like the spin-up and down states of a fermion)

- Then: Need gauge transformations acting on the nucleon field N = (p, n), mixing the states.
- G(x) must have 2×2 matrix form \Longrightarrow use Pauli matrices as basis: There are 3 Pauli matrices - each corresponds to a field: 3ρ 's!

Due to Gell-Mann-Nishijima formula: ho's carry isospin \Longrightarrow self-interactions!

• Can show that Lagrangian is invariant under global SU(2):

$$\mathbf{G}^{SU(2)}\mathcal{L}(N) \to \mathcal{L}(N').$$

• But: ρ 's not elementary and π 's are the "true" isospin force carriers.

Summary

 Introduced the concept of symmetries and their role in creating interactions.