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Symmetries in classical physics

Invariance and conservation laws
@ From classical physics it is known that invariance of a system under
certain transformations is related to the conservation of
corresponding quantities.

@ Examples:
Invariance under Conserved quantity
rotations <= angular momentum

time translations <= energy
space translations <= momentum

@ Formalised by Emmy Noether (thus: Noether's theorem)




Symmetries Classical gauge invariance ! C Generalised phase in:

Invariance and conservation laws

@ The same ideas work also in quantum physics:
Invariances give rise to conservation laws.

@ There, however, internal symmetries also play a role.
In fact, they are used to construct interactions in theories.

@ Example in particle physics:

@ Invariance under phase transformations of the fields
B(x, t) = P (x, t) = exp(i0)P(x, t) <= [¢|* =[]

yields conserved charges like, e.g., the electrical charge.
o Note: global changes in phase cannot be observed (because typically

squares are taken), but phase differences are observable.

(In Quanutm Mechanics: Aharonov-Bohm effect.)

@ The photon field couples to this charge and is thus related to the

invariance under such phase transitions (later more). (il come to that later)




Symmetries

Mathematical formulation

(Not examinable)
@ |deas of symmetry are formalised in group theory.

@ Definition of groups:

wn

o Consider sets of elements S = {a, b, ...} with operation “": a- b.
o Such sets are called groups, if

a-be S (closure)

a-(b-c)=(a-b)-c (associativity)

Jd1€S8: a-1=1-a=aVac S (neutral element)

VacS: Ja' € Ssuchthat a-a ' =a ' -a=1 (inverse element).

@ Examples: S = integer numbers, - = +, rotations with arbitrary
angles, the set {1,2,3,..., p — 1} under multiplication modulo p, if
p is a prime number, ...




Symmetries

Discrete vs. continuous symmetries
@ Consider two slabs with quadratic and round cross section.

@ The quadratic one has a discrete symmetry w.r.t. rotation along its
axis, while the round one enjoys a continuous symmetry.

only multiples of 90 degrees all angles

@ More physical examples: parity vs. angular momenutm




Classical gauge invariance

Classical gauge invariance
Fields and potentials in electrodynamics
@ Remember Maxwells equation:
V-E = 4mp ‘B =0

VXxE+— = 0 V x B— . = 4rj.
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@ Implicit: conservation of current, p+V -j = 0.

@ Can introduce potentials ® and A such that

E = -Vo-2 and B = VxA.

(Can read them off from homogenous equations, i.e. equations of the form I.h.s.=0.)

@ Gauge invariance: The electromagnetic fields will not change under

A
® — ¢':¢+% and A = A =A-VA

(This is the gauge transformation of classical electrodynamics with an arbitrary scalar function A.)
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Symmetrie Classical gauge invariance hase invariance Generalised phase in

Lorentz force
@ Lorentz-force reads:

dx 0A dx
F=e|lE+—xB| = e|-Vo- +f><V><A
dt 8t
vo By (&4
dt dr
dAx DAx dx 9Ax dy 9Ax 9z 9Ax AAx AAx DAy DAy
To see this, use that = — == — = Uhe b vy vz
dt ot ot  Ox ot Oy ot Oz ot Ox 9y oz
[ DAy Ay DAz AAx ) [ DAL DA
and that (v X ¥V X A)x vy ( = = > + vz < - — | +w ( — >
. Ox dy . dx dz % x
Avy vy dvy
and that, since = = =0,v- (V- -A)=Y(-A4)
Ax Ax Ax

@ This can be used to construct a Lagrange function,
rederive E.o.M. with Euler-Lagrange method & confirm the force,
assess symmetries, construct a Hamilton function to handle the quan-
tum mechanical problem ....




Classical gauge invariance

Lagrange and Hamilton function

@ Therefore: Lagrange function is given by

2
m [ dx dx
- = _ ;A
L 2(dt> e<¢+dt )

and the Hamilton function reads

1 2
H:%(B—eA) +ed.

@ Can use this to generalise for all situations:
To treat interactions of a particle with a field, replace the
momentum with the generalised one,
p— M= = eA.

@ | will argue that this can be enforced by a gauge principle.
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Phase invariance

Phase

Invariance

Phase invariance in Quantum Mechanics

"]

Consider a system in a state |1(t)), alternatively described by a
wave function ¥(t, x) = (x|¥(t)).

Remember that probabilities are related to ((t)[1(t)) or |w(t, x)|*.

@ Clearly, one can redefine

lo(t)) — |¢(QY==6_“ﬂ¢(ﬂ>
Y(t,x) — Y(t, x) = e "“Y(t, x).

without changing measurements related to (1(t)|1(t)) or |¢4(t, x)|?.

This phase invariance is a simple example of a continous symmetry,
described by a continous parameter, here the phase a.

Symmetries are described by groups, represented by matrices.
The group related to this symmetry is called U(1), the group of
unitary matrices of dimension 1 (complex numbers with absolute
value 1).




Phase invariance

QED: Global phase invariance

(Details of equations not examinable)

@ Lagrange formulation with fields:

o generalised coordinates q(t) — fields ¢(t, x).
o Lagrange function L(q, §) — Lagrangian density £(¢(x,), Ou(®)
with L = [ d*xL.

@ Example: Free complex scalar field(s) ¢ and ¢* with mass m:

L= (at¢)(at¢*) - V¢ -Vo* — m2¢¢* .

@ Lagrange function (and with it E.0.M.) invariant under

transformation G: GL(¢, ¢*) = L(, ¢*)
gqﬁ:qb/:efiad) and g¢*:¢/*:eia G

@ This yields conserved charges 1 (group G again U(1)).

@ Since the transformation acts the same way on all points in
space-time, a symmetry transformation like this is called global.




Phase invariance

Local phase transformations
@ To measure phase differences: Must establish a specific § = 0.

@ Different conventions related by global phase transformations.
Clearly the choice, being unobservable, must not matter for physical
observables:

The theory must be invariant under global phase transformations.

o What happens if the phase depends on space-time: 6 — 6(t, x)?
(This is called a local phase transformation.)
Simple answer: Then the Lagrangian is not invariant any more.

G(x)L(d) — L(¢) # L(9)-

£ = e (=it - ¢+ Br)leT ¥ (+idra - pF + Bro™)]

e/ =iV ¢+ V) [eT¥+iVa - ¢* + Vo) m2p*

[<1
&

= L+ (i0ta) (6% 0tp — 00:d™) — (i%a) - (¢* 2o
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Symmetries Classical gauge invarian: Phase invariance

Restoration of local phase invariance

@ But: Can make the Lagrangian invariant by introducing another
field, A.
G(x)L(¢, ¢*, A) — L(¢', ¢, A).
@ Properties of this field:
o Must be massless to allow for infinite range - it must connect
different phase conventions all over space.
o It's a four vector, A*, identified with the photon field.
o The photon field must also transform under G(x) such that the
combination with changes due to the electron field are compensated.
@ Couple it with the replacement (from Lorentz force)
pt = (E, p) — NH = (p" — eA") = (E — e®,p — eA)
@ Summary of this construction:
o Global phase invariance yields conserved charges.
o Local phase invariance gives rise to the photon field, i.e. interactions.
@ Final remark: A trivial mass term for the photon would look like
Lm o< m?A? and it is not invariant under local phase transformations.
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Phase invariance

Relation to gauge invariance in classical theory

@ Write the photon field as A* = (&, A), where
E:—§¢—8tﬁand B=VxA
gives the relation to the electric and magnetic field.
@ The potentials are invariant under the gauge transformation
®— ¢ =d+dNand A— A =A— VA,
or, in four-vector notation (9, = (9, —V))
Ay — A, = Au+ 9N
@ Invariance of the Lagrangian £ = E2 — B2 follows trivially.

@ Finally: The A(x) here is more or less identical with the 8(x) of the
local gauge transformation before.




Generalised phase invariance

Generalised gauge invariance

More complicated symmetries

@ Obviously, this can be extended by making the state vector/wave
function a vector with components labelled by j € [1, N], such that

l(t, x)> = Z l(t, x);|?

@ Generalised phase transformation assumes N x N-matrix character,

(), — ()i = [e77],; [o(t);
’(ﬁ(t, K)j — ’(ﬁ(t, 5);( = [eiia] Kj Q/J(t, K)j 0

o Can use base matrices (generators) Tj such that
[efia] _ ef’.Za a’ T o®cR
Kj ) :

Information about the allowed transformations contained in the form and properties of the N X N base matrices T’,‘;

@ Prominent examples SO(N), SU(N): 57




Symmetries sical gauge invariance h. Generalised phase invariance

A “classical” example
@ Seemingly, gauge invariance an elegant way to produce interactions.
@ Added benefit: protects high-energy behaviour of QED.

(renormalisability)

@ Extent this to other interactions, e.g. of nucleons with pions:
@ Pions transform nucleons into nucleons, put p and n into iso-doublet.

(isospin: like the spin-up and down states of a fermion)
o Then: Need gauge transformations acting on the nucleon field
N = (p, n), mixing the states.
G(x) must have 2 x 2 matrix form = use Pauli matrices as basis:
There are 3 Pauli matrices - each corresponds to a field: 3 p's!

[

Due to Gell-Mann-Nishijima formula: p’s carry isospin == self-interactions!
o Can show that Lagrangian is invariant under global SU(2):
GV L(N) — L(N').
o But: p's not elementary and 7's are the “true” isospin force carriers.
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Generalised phase invariance

Summary

@ Introduced the concept of symmetries and their role in creating
interactions.
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