Introduction to particle physics Lecture 4: Cross sections

Frank Krauss

IPPP Durham

U Durham, Epiphany term 2009

▲ロト ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへの

F. Krauss

Outline

F. Krauss

Cross sections in classical physics

- Consider a beam of particles, approaching a target at rest with velocity v_∞. Describe the target by a potential centered at the origo.
- Due to different impact parameters *B*, different particles of the beam are scattered at different angles χ .
- Define cross section $d\sigma(\chi) = dN(\chi)/n$ with
 - dN(χ) = number of particles scattered per unit time into the interval [χ, χ + dχ] - physical units: s⁻¹.
 - n = number of particles passing per unit time through a unit area perpendiculr to the beam physical units: $m^{-2}s^{-1}$

IPPP

Rewriting the differential cross section $\mathrm{d}\sigma$

- Assume unique relation $\chi = \chi(B)$. (Fulfilled if χ decreases with B increasing a typical setup!)
- Assume homogenous beams: n = constant.
- Assume symmetry around beam axis.
- Then: $dN(\chi) = 2\pi nBdB \implies d\sigma = 2\pi BdB$.
- Can rewrite to expose dependence on scattering angle:

$$\mathrm{d}\sigma = 2\pi B(\chi) \left| \frac{\mathrm{d}B}{\mathrm{d}\chi} \right| \mathrm{d}\chi$$

• Use solid angle $d\Omega = \sin \chi d\chi d\phi$: $d\sigma = \frac{B(\chi)}{\sin \chi} \left| \frac{dB}{d\chi} \right| d\Omega.$

Example: Scattering of a hard sphere with radius a Read off from sketch: χ_0 В $B = a \sin \chi_0$ а $= a \sin \frac{\pi - \chi}{2} = a \cos \frac{\chi}{2}$ Therefore: $d\sigma = 2\pi B \left| \frac{dB}{d\chi} \right| d\chi = 2\pi a^2 \cos \frac{\chi}{2} \left| \frac{1}{2} \sin \frac{\chi}{2} \right| d\chi$ $= \frac{\pi a^2}{2} \sin \chi d\chi = \frac{a^2}{4} d\Omega \implies \sigma = a^2 \pi \,.$ • Particle must "hit" the target.

F. Krauss

Introduction to particle physics Lecture 4: Cross sections

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Scattering in a central potential $V = \alpha/r^n$

(Recap the corresponding lecture in classical mechanics! Details of derivation not examinable.)

- Consider now scattering in a central potential $V(r) = \alpha/r^n$.
- Obviously: Need to determine trajectories in dependence on B.
- Use energy and angular momentum conservation:

$$E = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) + V(r) = \frac{m\dot{r}^2}{2} + \frac{J^2}{2mr^2} + V(r),$$
(Scattering particles have mass m.)

where two-dimensional spherical coordinates r and ϕ and the angular momentum

$$J = mr^2\dot{\theta}$$

have been used.

• Therefore:

$$\dot{r} = \frac{\mathrm{d}r}{\mathrm{d}t} = \sqrt{\frac{2}{m}\left[E - V(r)\right] - \frac{J^2}{m^2 r^2}}$$

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● � � � � �

F. Krauss

• Rewrite (with $dt = dr/\dot{r}$ from above):

$$\mathrm{d}\theta = \frac{J\mathrm{d}t}{mr^2} = \frac{\frac{J}{r^2}\mathrm{d}r}{\sqrt{2m[E-V(r)] - \frac{J^2}{r^2}}}$$

- Use that energy in infinite distance is purely kinetic: $E = \frac{mv_{\infty}^2}{2}$ and angular momentum is given by $J = mv_{\infty}B$.
- Assume specific form of potential: $V(r) = \alpha/r$ (typical for gravity/electromagnetism)

$$\chi_0 = \int \mathrm{d}\theta = \int \frac{\frac{B}{r^2} \mathrm{d}r}{\sqrt{1 - \frac{B^2}{r^2} - \frac{2V(r)}{mv_{\infty}^2}}} = \cos^{-1} \frac{\frac{\alpha}{mv_{\infty}^2 B}}{\sqrt{1 + \left(\frac{\alpha}{mv_{\infty}^2 B}\right)^2}}$$

(Finite terms absorbed in definition of angle/orientation of coordinate system)

• Solve for *B* and use that $\chi_0 = \frac{\pi - \chi}{2}$:

$$B^2 = \frac{\alpha^2}{m^2 v_\infty^4} \tan^2 \chi_0 = \frac{\alpha^2}{m^2 v_\infty^4} \cot^2 \frac{\chi}{2} \,.$$

- To express cross section $d\sigma = 2\pi B \left| \frac{dB}{d\chi} \right| d\chi$ use that $dB/d\chi = -\frac{\alpha}{2mv_{\infty}^2} \frac{1}{\sin^2 \frac{\chi}{2}}.$
- Rediscover Rutherford formula

$$\mathrm{d}\sigma = \frac{\pi\alpha^2}{m^2 v_\infty^4} \frac{\cos\frac{\chi}{2}}{\sin^3\frac{\chi}{2}} \,\mathrm{d}\chi = \frac{\alpha^2}{4m^2 v_\infty^4} \,\frac{\mathrm{d}\Omega}{\sin^4\frac{\chi}{2}}$$

- Observation: for small angles $\chi \to 0$ differential cross section infinite total cross section diverges for Rutherford scattering
- This is a consequence of the infinite range of the potential!

(Will need to "cut" for minimal scattering angle . . .)

Event rates, luminosity and cross sections

- Introduce (instantaneous) luminosity L, the number of incident particles per unit area per unit time times the opacity of the target; units [L] = m⁻²s⁻¹
- Then the instantaneous number of events $\mathrm{d}\textit{N}_{\mathrm{ev}}/\mathrm{d}t$ reads

$$\frac{\mathrm{d}N_{\mathrm{ev}}}{\mathrm{d}t} = \sigma\mathcal{L}$$

- Therefore the total number of events during a time *T* given by the integral over time of *L*, the **integrated luminosity** cross section *σ* depends on the particles and the reaction type only.
- Typically a year of beam in an accelerator experiment: $1 \text{ yr} = 10^7 \text{ s}$.

Determining luminosity

 Consider a simple case: scattering off a fixed target.
 Beam consisting of particles A, travelling with velocity v, uniformly distributed in area S with constant density n_A along beam axis.

• Therefore: number of particles in the beam per unit length is given by $dN_A = n_A S dx$, and the incident flux (number of particles per unit time) on target is

$$\Phi_A = \frac{\mathrm{d}N_A}{\mathrm{d}t} = n_A S \frac{\mathrm{d}x}{\mathrm{d}t} = n_A S v$$

• Assume thin (only one scatter per particle) target with size *l* : Area density of particles in target able to participate in reaction

 $\rho_B = n_B l$

Define luminosity

$$\mathcal{L} = \Phi_A \rho_B = n_A n_B S v l.$$

Luminosity in collider experiments

- Consider now two quadratic beams each with area h^2 , colliding under an angle θ , with densities n_A and n_B along their beam axes, and velocities $v_A \ge v_B$.
- Look at beam *B* as "target", and beam *A* remaining the "beam".
- Need only to evaluate N_B can use flux Φ_B :

$$n_B = \frac{\Phi_B}{h^2 v_B}$$

n_A

Therefore density per area

$$\rho_B = n_B \frac{h}{\sin \theta} = \frac{\Phi_B}{h v_B \sin \theta}$$

and

$$\mathcal{L} = \Phi_A \rho_B = \frac{\Phi_A \Phi_B}{\sin \theta h v_B}.$$

Practicalities

- Hard to determine luminosity geometry dependent and fluctuations with quality/homogeinity of the beams
- Therefore: Measure them with "standard candles", i.e. well understood processes with good theoretical accuracy in calculation of cross section σ .

Units

• Recap event rate for events of type
$$AB \rightarrow X$$
:
 $\dot{N}_{AB\rightarrow X} = \frac{\mathrm{d}N_{AB\rightarrow X}}{\mathrm{d}t} = \mathcal{L}_{AB}\sigma_{AB\rightarrow X}$
• Units: $[\dot{N}_{AB\rightarrow X}] = \mathrm{Hz} = 1/\mathrm{s}, \Longrightarrow [\mathcal{L}] = 1/([\sigma_{AB\rightarrow X}]\cdot\mathrm{s}).$
 $[\sigma] = 1 \mathrm{barn} = (10 \mathrm{ fm})^2 = 10^{-24} \mathrm{ cm}^2$
 $\approx (2 \mathrm{GeV})^{-2} = (2000 \mathrm{MeV}) - 2$

Summary

- Recapitulated cross sections in classical physics.
- Calculated example cross sections for two specific cases: hard shell and Coulomb-potential
- Connection to event rates and luminosity.