Introduction to particle physics
 Lecture 4: Cross sections

Frank Krauss
IPPP Durham
U Durham, Epiphany term 2009

Outline

(1) Cross sections in classical physics
(2) Connection to observables

Cross sections in classical physics

Definition

- Consider a beam of particles, approaching a target at rest with velocity v_{∞}. Describe the target by a potential centered at the origo.
- Due to different impact parameters B, different particles of the beam are scattered at different angles χ.
- Define cross section $\mathrm{d} \sigma(\chi)=\mathrm{d} N(\chi) / n$ with
- $\mathrm{d} N(\chi)=$ number of particles scattered per unit time into the interval $[\chi, \chi+\mathrm{d} \chi]$ - physical units: s^{-1}.
- $n=$ number of particles passing per unit time through a unit area perpendiculr to the beam - physical units: $m^{-2} s^{-1}$

Rewriting the differential cross section $\mathrm{d} \sigma$

- Assume unique relation $\chi=\chi(B)$. (Fuffiled if χ decereseses with B increasing -a typical setup))
- Assume homogenous beams: $n=$ constant.
- Assume symmetry around beam axis.
- Then: $\mathrm{d} N(\chi)=2 \pi n B \mathrm{~d} B \Longrightarrow \mathrm{~d} \sigma=2 \pi B \mathrm{~d} B$.
- Can rewrite to expose dependence on scattering angle:

$$
\mathrm{d} \sigma=2 \pi B(\chi)\left|\frac{\mathrm{d} B}{\mathrm{~d} \chi}\right| \mathrm{d} \chi .
$$

- Use solid angle $\mathrm{d} \Omega=\sin \chi \mathrm{d} \chi \mathrm{d} \phi$:

$$
\mathrm{d} \sigma=\frac{B(\chi)}{\sin \chi}\left|\frac{\mathrm{d} B}{\mathrm{~d} \chi}\right| \mathrm{d} \Omega .
$$

Example: Scattering of a hard sphere with radius a

- Read off from sketch:

$$
\begin{aligned}
B & =a \sin \chi_{0} \\
& =a \sin \frac{\pi-\chi}{2}=a \cos \frac{\chi}{2}
\end{aligned}
$$

- Therefore:

$$
\begin{aligned}
\mathrm{d} \sigma & =2 \pi B\left|\frac{\mathrm{~d} B}{\mathrm{~d} \chi}\right| \mathrm{d} \chi=2 \pi a^{2} \cos \frac{\chi}{2}\left|\frac{1}{2} \sin \frac{\chi}{2}\right| \mathrm{d} \chi \\
& =\frac{\pi a^{2}}{2} \sin \chi \mathrm{~d} \chi=\frac{a^{2}}{4} \mathrm{~d} \Omega \Longrightarrow \sigma=a^{2} \pi .
\end{aligned}
$$

- Particle must "hit" the target.

Example: Scattering in a central potential $V=\alpha / r^{n}$

(Recap the corresponding lecture in classical mechanics! Details of derivation not examinable.)

- Consider now scattering in a central potential $V(r)=\alpha / r^{n}$.
- Obviously: Need to determine trajectories in dependence on B.
- Use energy and angular momentum conservation:

$$
E=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+V(r)=\frac{m \dot{r}^{2}}{2}+\frac{J^{2}}{2 m r^{2}}+V(r)
$$

where two-dimensional spherical coordinates r and ϕ and the angular momentum

$$
J=m r^{2} \dot{\theta}
$$

have been used.

- Therefore:

$$
\dot{r}=\frac{\mathrm{d} r}{\mathrm{~d} t}=\sqrt{\frac{2}{m}[E-V(r)]-\frac{J^{2}}{m^{2} r^{2}}}
$$

- Rewrite (with $\mathrm{d} t=\mathrm{d} r / r$ from above):

$$
\mathrm{d} \theta=\frac{J \mathrm{~d} t}{m r^{2}}=\frac{\frac{J}{r^{2}} \mathrm{~d} r}{\sqrt{2 m[E-V(r)]-\frac{J^{2}}{r^{2}}}} .
$$

- Use that energy in infinite distance is purely kinetic: $E=\frac{m v_{\infty}^{2}}{2}$ and angular momentum is given by $J=m v_{\infty} B$.
- Assume specific form of potential:
$V(r)=\alpha / r$ (typical for gravity/electromagnetism)

$$
\chi_{0}=\int \mathrm{d} \theta=\int \frac{\frac{B}{r^{2}} \mathrm{~d} r}{\sqrt{1-\frac{B^{2}}{r^{2}}-\frac{2 V(r)}{m v_{\infty}^{\infty}}}}=\cos ^{-1} \frac{\frac{\alpha}{m v_{\infty}^{2} B}}{\sqrt{1+\left(\frac{\alpha}{m v_{\infty}^{2} B}\right)^{2}}}
$$

- Solve for B and use that $\chi_{0}=\frac{\pi-\chi}{2}$:

$$
B^{2}=\frac{\alpha^{2}}{m^{2} v_{\infty}^{4}} \tan ^{2} \chi_{0}=\frac{\alpha^{2}}{m^{2} v_{\infty}^{4}} \cot ^{2} \frac{\chi}{2}
$$

- To express cross section $\mathrm{d} \sigma=2 \pi B\left|\frac{\mathrm{~d} B}{\mathrm{~d} \chi}\right| \mathrm{d} \chi$ use that

$$
\mathrm{d} B / \mathrm{d} \chi=-\frac{\alpha}{2 m v_{\infty}^{2}} \frac{1}{\sin ^{2} \frac{\chi}{2}} .
$$

- Rediscover Rutherford formula

$$
\mathrm{d} \sigma=\frac{\pi \alpha^{2}}{m^{2} v_{\infty}^{4}} \frac{\cos \frac{\chi}{2}}{\sin ^{3} \frac{\chi}{2}} \mathrm{~d} \chi=\frac{\alpha^{2}}{4 m^{2} v_{\infty}^{4}} \frac{\mathrm{~d} \Omega}{\sin ^{4} \frac{\chi}{2}}
$$

- Observation: for small angles $\chi \rightarrow 0$ differential cross section infinite total cross section diverges for Rutherford scattering
- This is a consequence of the infinite range of the potential!

Event rates, luminosity and cross sections

- Introduce (instantaneous) luminosity \mathcal{L}, the number of incident particles per unit area per unit time times the opacity of the target; units $[\mathcal{L}]=m^{-2} s^{-1}$
- Then the instantaneous number of events $\mathrm{d} N_{\text {ev }} / \mathrm{d} t$ reads

$$
\frac{\mathrm{d} N_{\mathrm{ev}}}{\mathrm{~d} t}=\sigma \mathcal{L}
$$

- Therefore the total number of events during a time T given by the integral over time of \mathcal{L}, the integrated luminosity - cross section σ depends on the particles and the reaction type only.
- Typically a year of beam in an accelerator experiment: $1 \mathrm{yr}=10^{7} \mathrm{~s}$.

Determining luminosity

- Consider a simple case: scattering off a fixed target.
Beam consisting of particles A, travelling with velocity v, uniformly distributed in area S with constant density n_{A} along beam axis.

- Therefore: number of particles in the beam per unit length is given by $\mathrm{d} N_{A}=n_{A} S \mathrm{~d} x$, and the incident flux (number of particles per unit time) on target is

$$
\Phi_{A}=\frac{\mathrm{d} N_{A}}{\mathrm{~d} t}=n_{A} S \frac{\mathrm{~d} x}{\mathrm{~d} t}=n_{A} S_{V}
$$

- Assume thin (only one scatter per particle) target with size I: Area density of particles in target able to participate in reaction

$$
\rho_{B}=n_{B} l
$$

- Define luminosity

$$
\mathcal{L}=\Phi_{A} \rho_{B}=n_{A} n_{B} S V l .
$$

Luminosity in collider experiments

- Consider now two quadratic beams each with area h^{2}, colliding under an angle θ, with densities n_{A} and n_{B} along their beam axes, and velocities $v_{A} \geq v_{B}$.
- Look at beam B as "target", and beam A remaining the "beam".

- Need only to evaluate N_{B} - can use flux Φ_{B} :

$$
n_{B}=\frac{\Phi_{B}}{h^{2} v_{B}}
$$

- Therefore density per area

$$
\rho_{B}=n_{B} \frac{h}{\sin \theta}=\frac{\Phi_{B}}{h v_{B} \sin \theta}
$$

and

$$
\mathcal{L}=\Phi_{A} \rho_{B}=\frac{\Phi_{A} \Phi_{B}}{\sin \theta h v_{B}} .
$$

Practicalities

- Hard to determine luminosity - geometry dependent and fluctuations with quality/homogeinity of the beams
- Therefore: Measure them with "standard candles", i.e. well understood processes with good theoretical accuracy in calculation of cross section σ.

Units

- Recap event rate for events of type $A B \rightarrow X$:

$$
\dot{N}_{A B \rightarrow X}=\frac{\mathrm{d} N_{A B \rightarrow X}}{\mathrm{~d} t}=\mathcal{L}_{A B} \sigma_{A B \rightarrow X}
$$

- Units: $\left[\dot{N}_{A B \rightarrow X}\right]=\mathrm{Hz}=1 / \mathrm{s}, \Longrightarrow[\mathcal{L}]=1 /\left(\left[\sigma_{A B \rightarrow X}\right] \cdot \mathrm{s}\right)$.

$$
\begin{aligned}
{[\sigma] } & =1 \text { barn }=(10 \mathrm{fm})^{2}=10^{-24} \mathrm{~cm}^{2} \\
& \approx(2 \mathrm{GeV})^{-2}=(2000 \mathrm{MeV})-2
\end{aligned}
$$

Summary

- Recapitulated cross sections in classical physics.
- Calculated example cross sections for two specific cases: hard shell and Coulomb-potential
- Connection to event rates and luminosity.

