Fundamental Symmetries — Example Sheet 6

- 6.1 (Revision) Use the result of Q2.6 to construct explicitly the decompositions $\mathbf{2} \otimes \mathbf{2} = \mathbf{3} \oplus \mathbf{1}, \mathbf{3} \otimes \mathbf{2} = \mathbf{4} \oplus \mathbf{2}$, and $\mathbf{3} \otimes \mathbf{3} = \mathbf{5} \oplus \mathbf{3} \oplus \mathbf{1}$, where **N** is the representation of su(2) with **N** states, and thus spin $j = \frac{1}{2}(N-1)$.
- 6.2 Compute the structure constants f_{ijk} for su(3) by commuting the Gell-Mann matrices $\{\lambda_i\}$ (remembering to exploit the antisymmetry). Show that with this normalization $g_{ij} = 4f_{ikl}f_{jkl} = 12\delta_{ij}$.

Show by expanding the anticommutator in invariant tensors that

$$\{\lambda_i, \lambda_j\} = \frac{4}{3}\delta_{ij} + 2d_{ijk}\lambda_k.$$

Use this result to compute the nonzero components of the symmetric invariant tensor $d_{ijk} \equiv \frac{1}{4} \operatorname{tr} \{\lambda_i, \lambda_j\} \lambda_k$.

6.3 Show that for representations of su(3):

(i) There is at most one singlet state if the representation is irreducible;

(ii) If N(p,q) is the number of states in a representation **N** specified by (p,q), then (a) N(p,q) = N(q,p), (b) for triangular representations $N(p,0) = \frac{1}{2}(p+1)(p+2)$ and finally (c) $N(p,q) = \frac{1}{2}(p+1)(q+1)(p+q+2)$ [assuming the result is true for N(p-1,q-1) show that it is true for N(p,q), use (b) to start the induction];

(iii) Show that $\mathbf{N} = \mathbf{N}^*$ (i.e. the representation is real) when N is the cube of an integer, and thus that the representations $\mathbf{1}, \mathbf{8}, \mathbf{27}, \ldots$ are all real.

6.4 Label the states in the **3** representation of su(3) by $|u\rangle$, $|d\rangle$, $|s\rangle$ ('quarks'), corresponding to $I_3 = \frac{1}{2}, -\frac{1}{2}, 0$ respectively. Show using the commutation relations that $V_+U_-I_-|u\rangle = |u\rangle$ and thus that the phase conventions

$$I_{-}|u\rangle = |d\rangle, \qquad U_{-}|d\rangle = |s\rangle, \qquad V_{+}|s\rangle = |u\rangle,$$

are consistent. Use these results to generate all the states in the reducible representation $\mathbf{3} \otimes \mathbf{3}$, decomposing it as $\mathbf{6} \oplus \mathbf{3}^*$. [Take $|u\rangle|u\rangle$ as the state of greatest weight, and lower it with I_- and V_- , then find the state of greatest weight in the $\mathbf{3}^*$ by orthogonalisation.]

Show similarly that if the states in the $\mathbf{3}^*$ representation are labelled by $|\bar{u}\rangle$, $|\bar{d}\rangle$, $|\bar{s}\rangle$ ('antiquarks'), then $V_-U_+I_+|\bar{u}\rangle = -|\bar{u}\rangle$, and thus that a consistent phase convention is

 $I_+|\bar{u}\rangle = -|\bar{d}\rangle, \qquad U_+|\bar{d}\rangle = -|\bar{s}\rangle, \qquad V_-|\bar{s}\rangle = -|\bar{u}\rangle.$

Now generate all the states in the reducible representation $\mathbf{3} \otimes \mathbf{3}^* = \mathbf{8} \oplus \mathbf{1}$, noting that the isosinglet state is $\frac{1}{\sqrt{3}}(|u\rangle|\bar{u}\rangle + |d\rangle|\bar{d}\rangle + |s\rangle|\bar{s}\rangle)$ because it is annihilated by all the roots.

Finally compute the decomposition $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{10} \oplus \mathbf{8}_{\mathbf{S}} \oplus \mathbf{8}_{\mathbf{A}} \oplus \mathbf{1}$: here the singlet is totally antisymmetric in the exchange of any two quarks, while the two octets are respectively symmetric and antisymmetric in the exchange of the first two quarks.