Fundamental Symmetries — Example Sheet 5

- 5.1 Show that if a transformation $\Phi \to \Phi + \alpha \partial \Phi / \partial \alpha$ is *not* a symmetry of the Lagrangian, then the Noether current is no longer conserved, but rather $\partial_{\mu} J^{\mu} = \partial \mathcal{L} / \partial \alpha$. Use this result to show that for a massive Dirac fermion the conservation of the chiral current is softly broken by the mass term: $\partial^{\mu} j^{5}_{\mu} = -2m\bar{\psi}\gamma^{5}\psi$.
- 5.2 Construct the canonical stress-energy tensor $T_{\mu\nu}$ for a scalar field theory with Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{1}{2} m^2 \varphi^2 - \frac{\lambda}{4!} \varphi^4,$$

and check that it is both symmetric and conserved. Show that by adding to $T_{\mu\nu}$ a term proportional to $(\partial_{\mu}\partial_{\nu} - \eta_{\mu\nu}\partial^2)\varphi^2$ it is possible to construct an 'improved' stress-energy tensor $\Theta_{\mu\nu}$ which is conserved, symmetric and traceless when the scalar field is massless.

5.3 Consider the Lagrangian

$$\mathcal{L} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + ig\bar{\psi}(\sigma + i\gamma^{5}\pi)\psi + \frac{1}{2}(\partial_{\mu}\sigma)^{2} + \frac{1}{2}(\partial_{\mu}\pi)^{2} - V(\sigma^{2} + \pi^{2}),$$

where σ and π are real scalar fields. Find the field equations. Show that the Lagrangian is invariant under the chiral symmetry

$$\delta \psi = i \beta \gamma^5 \psi, \qquad \delta \sigma = 2\beta \pi, \qquad \delta \pi = -2\beta \sigma,$$

and calculate the corresponding chiral current J^5_{μ} . Confirm that on using the field equations $\partial^{\mu}J^5_{\mu} = 0$. What is the spectrum of this theory when (a) $V(\sigma^2 + \pi^2) = \frac{1}{2}m^2(\sigma^2 + \pi^2)$, or (b) $V(\sigma^2 + \pi^2) = \lambda(\sigma^2 + \pi^2 - m^2)^2$?

5.4 Consider a compact semi-simple Lie algebra. Show that the value $c^{(2)}$ of the quadratic Casimir operator $C^{(2)} \equiv \sum_{ab} g_{ab}T_aT_b$ in a hermitian representation is real and positive, and that if h_i are the (real) eigenvalues of the elements H_i of a Cartan subalgebra, then $h_i^2 \leq c^{(2)}$.

Show that for any compact semi-simple Lie algebra with Cartan subalgebra $\{H_i\}$ and step operators $\{E_{\pm\alpha}\}$ that in Cartan-Weyl normalization the quadratic Casimir operator may be written as

$$C^{(2)} = H.H + \sum_{\alpha>0} (\alpha.H + 2E_{-\alpha}E_{\alpha}).$$

Deduce that for a given representation, if h_i are the eigenvalues of H_i for the state of greatest weight, $c^{(2)} = h.(h + \rho)$, where $\rho_i \equiv \sum_{\alpha>0} \alpha_i$ is called the 'Weyl vector'.

[This result generalizes the j(j+1) result in su(2).]