Fundamental Symmetries — Example Sheet 1

1.1 Show that the groups listed below have the following dimensions $(N \ge 2)$:

[GL(N,R)	GL(N,C)	SL(N,R)	SL(N,C)	O(N)	SO(N)	U(N)	SU(N)
	N^2	$2N^2$	N^{2} -1	$2(N^2-1)$	$\frac{1}{2}N(N-1)$	$\frac{1}{2}N(N-1)$	N^2	N^{2} -1

- 1.2 Explain why the Kronecker delta δ_{ij} is an invariant tensor under orthogonal group transformations. Show also that the totally antisymmetric symbol $\epsilon_{ij...n}$ is invariant under special orthogonal group transformations. Consider the extension of these results to pseudo groups, and use them to write down two invariants made from a length element dx_{μ} .
- (a) Explain why gl(N, R) ≅ u(1) ⊕ sl(N, R), gl(N, C) ≅ u(1) ⊕ u(1) ⊕ sl(N, C), u(N) ≅ u(1) ⊕ su(N) and o(N) ≅ so(N).
 (b) Use the results of ex.(1.1) to list all the special groups considered there with dimension d = 1, with d = 2, etc. up to d = 10. Add product groups such as SU(2) ⊗ SU(2) to your list. Suggest which of all these groups may have the same Lie algebras.
- 1.4 (a) Show by considering an explicit choice of generators that $so(3) \cong su(2)$. (b) Consider the transformation $M \to M' = UMU^{-1}$, where M is a 2 × 2 traceless hermitian matrix and $U \in SU(2)$. Show by writing $M = x_i \sigma_i$, where σ_i are the Pauli matices, that for every U there is a matrix $R_{ij} \in SO(3)$ such that $x_i \to x'_i = R_{ij}x_j$. Show further that this mapping is two-to-one, and thus that $SO(3) \cong SU(2)/Z_2$.
- 1.5 The real symplectic group Sp(2N) may be defined as elements of GL(2N, R) which leave $x_i \tilde{y}_i \tilde{x}_i y_i$ invariant for all vectors $(x_1, \ldots, x_N, \tilde{x}_1, \ldots, \tilde{x}_N), (y_1, \ldots, y_N, \tilde{y}_1, \ldots, \tilde{y}_N) \in \mathbb{R}^{2N}$. Show that if the matrix $\binom{AB}{CD} \in Sp(2N)$ then

$$A^T C = C^T A, \qquad B^T D = D^T B, \qquad A^T D - C^T B = 1,$$

and thus that Sp(2N) has dimension $2N^2 + N$.

Find related conditions for the generators. Explain why for N = 1 $Sp(2) \cong SL(2, R)$ while for N > 1 sp(2N) is a proper subalgebra of sl(2N, R).