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Fundamental Symmetries — Example Sheet 1

1.1 Show that the groups listed below have the following dimensions (N ≥ 2):

GL(N, R) GL(N, C) SL(N, R) SL(N, C) O(N) SO(N) U(N) SU(N)
N2 2N2 N2-1 2(N2-1) 1

2
N(N -1) 1

2
N(N -1) N2 N2-1

1.2 Explain why the Kronecker delta δij is an invariant tensor under orthogonal group trans-
formations. Show also that the totally antisymmetric symbol εij...n is invariant under
special orthogonal group transformations. Consider the extension of these results to
pseudo groups, and use them to write down two invariants made from a length element
dxµ.

1.3 (a) Explain why gl(N, R) ∼= u(1)⊕ sl(N, R), gl(N, C) ∼= u(1)⊕ u(1)⊕ sl(N, C), u(N) ∼=
u(1) ⊕ su(N) and o(N) ∼= so(N).
(b) Use the results of ex.(1.1) to list all the special groups considered there with dimension
d = 1, with d = 2, etc. up to d = 10. Add product groups such as SU(2) ⊗ SU(2) to
your list. Suggest which of all these groups may have the same Lie algebras.

1.4 (a) Show by considering an explicit choice of generators that so(3) ∼= su(2).
(b) Consider the transformation M → M ′ = UMU−1, where M is a 2 × 2 traceless
hermitian matrix and U ∈ SU(2). Show by writing M = xiσi, where σi are the Pauli
matices, that for every U there is a matrix Rij ∈ SO(3) such that xi → x′

i = Rijxj.
Show further that this mapping is two-to-one, and thus that SO(3) ∼= SU(2)/Z2.

1.5 The real symplectic group Sp(2N) may be defined as elements of GL(2N, R) which leave
xiỹi−x̃iyi invariant for all vectors (x1, . . . , xN , x̃1, . . . , x̃N), (y1, . . . , yN , ỹ1, . . . , ỹN) ∈ R2N .

Show that if the matrix
(

AB

C D

)

∈ Sp(2N) then

AT C = CT A, BT D = DT B, AT D − CT B = 1,

and thus that Sp(2N) has dimension 2N 2 + N .

Find related conditions for the generators. Explain why for N = 1 Sp(2) ∼= SL(2, R)
while for N > 1 sp(2N) is a proper subalgebra of sl(2N, R).


