Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:44:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 5h 16m 38s left ) -> ETA: Wed Nov 29 03:00 XS = 4625.92 pb +- ( 4625.92 pb = 100 % ) Event 2 ( 1s elapsed / 2h 39m 8s left ) -> ETA: Wed Nov 29 00:23 XS = 3083.95 pb +- ( 2125.46 pb = 68 % ) Event 3 ( 1s elapsed / 1h 46m 38s left ) -> ETA: Tue Nov 28 23:30 XS = 4415.65 pb +- ( 2424.94 pb = 54 % ) Event 4 ( 1s elapsed / 1h 21m 13s left ) -> ETA: Tue Nov 28 23:05 XS = 4797.25 pb +- ( 2256 pb = 47 % ) Event 5 ( 1s elapsed / 1h 5m 18s left ) -> ETA: Tue Nov 28 22:49 XS = 2840.48 pb +- ( 1224.09 pb = 43 % ) Event 6 ( 1s elapsed / 55m 14s left ) -> ETA: Tue Nov 28 22:39 XS = 3349.8 pb +- ( 1306.19 pb = 38 % ) Event 7 ( 1s elapsed / 47m 20s left ) -> ETA: Tue Nov 28 22:31 XS = 3841.87 pb +- ( 1374.93 pb = 35 % ) Event 8 ( 1s elapsed / 41m 37s left ) -> ETA: Tue Nov 28 22:25 XS = 3866.44 pb +- ( 1292.47 pb = 33 % ) Event 9 ( 2s elapsed / 37m 11s left ) -> ETA: Tue Nov 28 22:21 XS = 3885.77 pb +- ( 1223.24 pb = 31 % ) Event 10 ( 2s elapsed / 33m 27s left ) -> ETA: Tue Nov 28 22:17 XS = 3948.96 pb +- ( 1177.35 pb = 29 % ) Event 20 ( 2s elapsed / 17m 37s left ) -> ETA: Tue Nov 28 22:01 XS = 3373.07 pb +- ( 715.744 pb = 21 % ) Event 30 ( 2s elapsed / 12m 11s left ) -> ETA: Tue Nov 28 21:56 XS = 3304.23 pb +- ( 572.635 pb = 17 % ) Event 40 ( 2s elapsed / 9m 25s left ) -> ETA: Tue Nov 28 21:53 XS = 3472.54 pb +- ( 519.479 pb = 14 % ) Event 50 ( 2s elapsed / 7m 45s left ) -> ETA: Tue Nov 28 21:52 XS = 3704.97 pb +- ( 493.642 pb = 13 % ) Event 60 ( 2s elapsed / 6m 37s left ) -> ETA: Tue Nov 28 21:50 XS = 3787.3 pb +- ( 459.905 pb = 12 % ) Event 70 ( 2s elapsed / 5m 54s left ) -> ETA: Tue Nov 28 21:50 XS = 3815.99 pb +- ( 428.743 pb = 11 % ) Event 80 ( 2s elapsed / 5m 22s left ) -> ETA: Tue Nov 28 21:49 XS = 3849.21 pb +- ( 404.267 pb = 10 % ) Event 90 ( 2s elapsed / 4m 57s left ) -> ETA: Tue Nov 28 21:49 XS = 3839.7 pb +- ( 380.237 pb = 9 % ) Event 100 ( 2s elapsed / 4m 36s left ) -> ETA: Tue Nov 28 21:48 XS = 3726.29 pb +- ( 350.735 pb = 9 % ) Event 200 ( 3s elapsed / 3m left ) -> ETA: Tue Nov 28 21:47 XS = 3690.19 pb +- ( 245.688 pb = 6 % ) Event 300 ( 4s elapsed / 2m 26s left ) -> ETA: Tue Nov 28 21:46 XS = 3811.08 pb +- ( 206.72 pb = 5 % ) Event 400 ( 5s elapsed / 2m 6s left ) -> ETA: Tue Nov 28 21:46 XS = 3916.71 pb +- ( 183.638 pb = 4 % ) Event 500 ( 6s elapsed / 1m 55s left ) -> ETA: Tue Nov 28 21:46 XS = 3813.17 pb +- ( 160.194 pb = 4 % ) Event 600 ( 6s elapsed / 1m 47s left ) -> ETA: Tue Nov 28 21:46 XS = 3895.12 pb +- ( 149.162 pb = 3 % ) Event 700 ( 7s elapsed / 1m 41s left ) -> ETA: Tue Nov 28 21:46 XS = 3923.66 pb +- ( 139.038 pb = 3 % ) Event 800 ( 8s elapsed / 1m 35s left ) -> ETA: Tue Nov 28 21:46 XS = 3989.7 pb +- ( 132.092 pb = 3 % ) Event 900 ( 9s elapsed / 1m 31s left ) -> ETA: Tue Nov 28 21:45 XS = 4015.89 pb +- ( 125.296 pb = 3 % ) Event 1000 ( 9s elapsed / 1m 27s left ) -> ETA: Tue Nov 28 21:45 XS = 4016.55 pb +- ( 118.884 pb = 2 % ) Event 2000 ( 17s elapsed / 1m 9s left ) -> ETA: Tue Nov 28 21:45 XS = 3942.23 pb +- ( 82.6134 pb = 2 % ) Event 3000 ( 25s elapsed / 58s left ) -> ETA: Tue Nov 28 21:45 XS = 3889.04 pb +- ( 66.605 pb = 1 % ) Event 4000 ( 33s elapsed / 50s left ) -> ETA: Tue Nov 28 21:45 XS = 3847.15 pb +- ( 57.1019 pb = 1 % ) Event 5000 ( 42s elapsed / 42s left ) -> ETA: Tue Nov 28 21:45 XS = 3826.42 pb +- ( 50.8166 pb = 1 % ) Event 6000 ( 50s elapsed / 33s left ) -> ETA: Tue Nov 28 21:45 XS = 3833.03 pb +- ( 46.4637 pb = 1 % ) Event 7000 ( 57s elapsed / 24s left ) -> ETA: Tue Nov 28 21:45 XS = 3835.04 pb +- ( 43.038 pb = 1 % ) Event 8000 ( 1m 5s elapsed / 16s left ) -> ETA: Tue Nov 28 21:45 XS = 3854.13 pb +- ( 40.4452 pb = 1 % ) Event 9000 ( 1m 13s elapsed / 8s left ) -> ETA: Tue Nov 28 21:45 XS = 3859.37 pb +- ( 38.1804 pb = 0 % ) Event 10000 ( 79 s total ) = 1.08407e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Zrecoil/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3846.63 0 % 36.1096 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 20s on Tue Nov 28 21:45:38 2023 (User: 1m 19s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:46:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 46m 38s left ) -> ETA: Wed Nov 29 02:32 XS = 4625.92 pb +- ( 4625.92 pb = 100 % ) Event 2 ( 1s elapsed / 2h 24m 8s left ) -> ETA: Wed Nov 29 00:10 XS = 3408.57 pb +- ( 2342.32 pb = 68 % ) Event 3 ( 1s elapsed / 1h 37m 11s left ) -> ETA: Tue Nov 28 23:23 XS = 1832.91 pb +- ( 1037.68 pb = 56 % ) Event 4 ( 1s elapsed / 1h 12m 53s left ) -> ETA: Tue Nov 28 22:59 XS = 2123.37 pb +- ( 1034.8 pb = 48 % ) Event 5 ( 1s elapsed / 58m 38s left ) -> ETA: Tue Nov 28 22:44 XS = 2569.96 pb +- ( 1111.63 pb = 43 % ) Event 6 ( 1s elapsed / 48m 51s left ) -> ETA: Tue Nov 28 22:35 XS = 2815.78 pb +- ( 1106.47 pb = 39 % ) Event 7 ( 1s elapsed / 42m 6s left ) -> ETA: Tue Nov 28 22:28 XS = 2906.03 pb +- ( 1054.71 pb = 36 % ) Event 8 ( 1s elapsed / 37m 3s left ) -> ETA: Tue Nov 28 22:23 XS = 2564.87 pb +- ( 874.503 pb = 34 % ) Event 9 ( 1s elapsed / 33m 18s left ) -> ETA: Tue Nov 28 22:19 XS = 2534.2 pb +- ( 814.554 pb = 32 % ) Event 10 ( 1s elapsed / 30m 8s left ) -> ETA: Tue Nov 28 22:16 XS = 2549.72 pb +- ( 776.963 pb = 30 % ) Event 20 ( 1s elapsed / 15m 48s left ) -> ETA: Tue Nov 28 22:02 XS = 2840.48 pb +- ( 607.988 pb = 21 % ) Event 30 ( 2s elapsed / 11m 7s left ) -> ETA: Tue Nov 28 21:57 XS = 2908.51 pb +- ( 507.37 pb = 17 % ) Event 40 ( 2s elapsed / 8m 37s left ) -> ETA: Tue Nov 28 21:54 XS = 3113.6 pb +- ( 468.6 pb = 15 % ) Event 50 ( 2s elapsed / 7m 13s left ) -> ETA: Tue Nov 28 21:53 XS = 3212.44 pb +- ( 431.613 pb = 13 % ) Event 60 ( 2s elapsed / 6m 11s left ) -> ETA: Tue Nov 28 21:52 XS = 3396.65 pb +- ( 415.234 pb = 12 % ) Event 70 ( 2s elapsed / 5m 29s left ) -> ETA: Tue Nov 28 21:51 XS = 3424.02 pb +- ( 387.3 pb = 11 % ) Event 80 ( 2s elapsed / 4m 56s left ) -> ETA: Tue Nov 28 21:51 XS = 3563.29 pb +- ( 376.089 pb = 10 % ) Event 90 ( 2s elapsed / 4m 31s left ) -> ETA: Tue Nov 28 21:50 XS = 3703.09 pb +- ( 367.577 pb = 9 % ) Event 100 ( 2s elapsed / 4m 11s left ) -> ETA: Tue Nov 28 21:50 XS = 3778.46 pb +- ( 355.325 pb = 9 % ) Event 200 ( 3s elapsed / 2m 41s left ) -> ETA: Tue Nov 28 21:49 XS = 3711.34 pb +- ( 247.006 pb = 6 % ) Event 300 ( 4s elapsed / 2m 11s left ) -> ETA: Tue Nov 28 21:48 XS = 3641.09 pb +- ( 198.084 pb = 5 % ) Event 400 ( 4s elapsed / 1m 58s left ) -> ETA: Tue Nov 28 21:48 XS = 3624.11 pb +- ( 170.788 pb = 4 % ) Event 500 ( 5s elapsed / 1m 46s left ) -> ETA: Tue Nov 28 21:48 XS = 3724.57 pb +- ( 156.714 pb = 4 % ) Event 600 ( 6s elapsed / 1m 38s left ) -> ETA: Tue Nov 28 21:48 XS = 3777 pb +- ( 144.938 pb = 3 % ) Event 700 ( 7s elapsed / 1m 33s left ) -> ETA: Tue Nov 28 21:47 XS = 3906.76 pb +- ( 138.48 pb = 3 % ) Event 800 ( 7s elapsed / 1m 28s left ) -> ETA: Tue Nov 28 21:47 XS = 3924.43 pb +- ( 130.08 pb = 3 % ) Event 900 ( 8s elapsed / 1m 25s left ) -> ETA: Tue Nov 28 21:47 XS = 3905.56 pb +- ( 122.09 pb = 3 % ) Event 1000 ( 9s elapsed / 1m 22s left ) -> ETA: Tue Nov 28 21:47 XS = 3940.79 pb +- ( 116.797 pb = 2 % ) Event 2000 ( 16s elapsed / 1m 6s left ) -> ETA: Tue Nov 28 21:47 XS = 3864.13 pb +- ( 81.0879 pb = 2 % ) Event 3000 ( 24s elapsed / 56s left ) -> ETA: Tue Nov 28 21:47 XS = 3821.87 pb +- ( 65.5317 pb = 1 % ) Event 4000 ( 31s elapsed / 47s left ) -> ETA: Tue Nov 28 21:47 XS = 3817.78 pb +- ( 56.6952 pb = 1 % ) Event 5000 ( 44s elapsed / 44s left ) -> ETA: Tue Nov 28 21:47 XS = 3813.26 pb +- ( 50.6535 pb = 1 % ) Event 6000 ( 1m 1s elapsed / 41s left ) -> ETA: Tue Nov 28 21:48 XS = 3811.15 pb +- ( 46.2162 pb = 1 % ) Event 7000 ( 1m 14s elapsed / 32s left ) -> ETA: Tue Nov 28 21:48 XS = 3819.08 pb +- ( 42.8709 pb = 1 % ) Event 8000 ( 1m 23s elapsed / 20s left ) -> ETA: Tue Nov 28 21:48 XS = 3827.65 pb +- ( 40.1859 pb = 1 % ) Event 9000 ( 1m 31s elapsed / 10s left ) -> ETA: Tue Nov 28 21:48 XS = 3824.98 pb +- ( 37.863 pb = 0 % ) Event 10000 ( 99 s total ) = 8.7476e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3838.76 0 % 36.0406 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 39s on Tue Nov 28 21:47:57 2023 (User: 1m 24s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:56:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 33m 18s left ) -> ETA: Wed Nov 29 00:29 XS = 4625.92 pb +- ( 4625.92 pb = 100 % ) Event 2 ( 1s elapsed / 1h 17m 3s left ) -> ETA: Tue Nov 28 23:13 XS = 3408.57 pb +- ( 2342.32 pb = 68 % ) Event 3 ( 1s elapsed / 51m 54s left ) -> ETA: Tue Nov 28 22:48 XS = 1832.91 pb +- ( 1037.68 pb = 56 % ) Event 4 ( 1s elapsed / 38m 55s left ) -> ETA: Tue Nov 28 22:35 XS = 2123.37 pb +- ( 1034.8 pb = 48 % ) Event 5 ( 1s elapsed / 31m 18s left ) -> ETA: Tue Nov 28 22:27 XS = 2569.96 pb +- ( 1111.63 pb = 43 % ) Event 6 ( 1s elapsed / 26m 4s left ) -> ETA: Tue Nov 28 22:22 XS = 2815.78 pb +- ( 1106.47 pb = 39 % ) Event 7 ( 1s elapsed / 22m 28s left ) -> ETA: Tue Nov 28 22:18 XS = 2906.03 pb +- ( 1054.71 pb = 36 % ) Event 8 ( 1s elapsed / 19m 45s left ) -> ETA: Tue Nov 28 22:16 XS = 2564.87 pb +- ( 874.503 pb = 34 % ) Event 9 ( 1s elapsed / 17m 39s left ) -> ETA: Tue Nov 28 22:14 XS = 2534.2 pb +- ( 814.554 pb = 32 % ) Event 10 ( 1s elapsed / 16m 3s left ) -> ETA: Tue Nov 28 22:12 XS = 2549.72 pb +- ( 776.963 pb = 30 % ) Event 20 ( 2s elapsed / 8m 20s left ) -> ETA: Tue Nov 28 22:04 XS = 2803.59 pb +- ( 600.449 pb = 21 % ) Event 30 ( 2s elapsed / 5m 49s left ) -> ETA: Tue Nov 28 22:02 XS = 3227.39 pb +- ( 560.034 pb = 17 % ) Event 40 ( 2s elapsed / 4m 29s left ) -> ETA: Tue Nov 28 22:00 XS = 3628.17 pb +- ( 541.331 pb = 14 % ) Event 50 ( 2s elapsed / 3m 45s left ) -> ETA: Tue Nov 28 22:00 XS = 3654.79 pb +- ( 487.374 pb = 13 % ) Event 60 ( 2s elapsed / 3m 16s left ) -> ETA: Tue Nov 28 21:59 XS = 3558.4 pb +- ( 433.809 pb = 12 % ) Event 70 ( 2s elapsed / 2m 56s left ) -> ETA: Tue Nov 28 21:59 XS = 3514.26 pb +- ( 396.896 pb = 11 % ) Event 80 ( 2s elapsed / 2m 39s left ) -> ETA: Tue Nov 28 21:59 XS = 3472.54 pb +- ( 367.08 pb = 10 % ) Event 90 ( 2s elapsed / 2m 26s left ) -> ETA: Tue Nov 28 21:58 XS = 3606.84 pb +- ( 358.617 pb = 9 % ) Event 100 ( 2s elapsed / 2m 15s left ) -> ETA: Tue Nov 28 21:58 XS = 3642.46 pb +- ( 343.342 pb = 9 % ) Event 200 ( 3s elapsed / 1m 20s left ) -> ETA: Tue Nov 28 21:57 XS = 3599.94 pb +- ( 240.054 pb = 6 % ) Event 300 ( 4s elapsed / 1m 4s left ) -> ETA: Tue Nov 28 21:57 XS = 3614 pb +- ( 196.703 pb = 5 % ) Event 400 ( 4s elapsed / 55s left ) -> ETA: Tue Nov 28 21:57 XS = 3586.98 pb +- ( 169.147 pb = 4 % ) Event 500 ( 5s elapsed / 49s left ) -> ETA: Tue Nov 28 21:57 XS = 3723.72 pb +- ( 156.68 pb = 4 % ) Event 600 ( 6s elapsed / 46s left ) -> ETA: Tue Nov 28 21:57 XS = 3746.41 pb +- ( 143.841 pb = 3 % ) Event 700 ( 7s elapsed / 44s left ) -> ETA: Tue Nov 28 21:57 XS = 3782.88 pb +- ( 134.38 pb = 3 % ) Event 800 ( 8s elapsed / 42s left ) -> ETA: Tue Nov 28 21:57 XS = 3833.26 pb +- ( 127.261 pb = 3 % ) Event 900 ( 8s elapsed / 40s left ) -> ETA: Tue Nov 28 21:57 XS = 3823.58 pb +- ( 119.699 pb = 3 % ) Event 1000 ( 9s elapsed / 39s left ) -> ETA: Tue Nov 28 21:57 XS = 3775.82 pb +- ( 112.231 pb = 2 % ) Event 2000 ( 17s elapsed / 26s left ) -> ETA: Tue Nov 28 21:57 XS = 3861.37 pb +- ( 81.0338 pb = 2 % ) Event 3000 ( 25s elapsed / 17s left ) -> ETA: Tue Nov 28 21:57 XS = 3902.16 pb +- ( 66.8144 pb = 1 % ) Event 4000 ( 33s elapsed / 8s left ) -> ETA: Tue Nov 28 21:57 XS = 3877.55 pb +- ( 57.5225 pb = 1 % ) Event 5000 ( 41 s total ) = 1.06012e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3854.75 0 % 51.1675 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 41s on Tue Nov 28 21:57:01 2023 (User: 40s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:59:11 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 20m 48s left ) -> ETA: Wed Nov 29 00:20 XS = 4625.92 pb +- ( 4625.92 pb = 100 % ) Event 2 ( 1s elapsed / 1h 10m 48s left ) -> ETA: Tue Nov 28 23:10 XS = 2815.78 pb +- ( 1945.28 pb = 69 % ) Event 3 ( 1s elapsed / 47m 11s left ) -> ETA: Tue Nov 28 22:46 XS = 3736.32 pb +- ( 2069.08 pb = 55 % ) Event 4 ( 1s elapsed / 35m 48s left ) -> ETA: Tue Nov 28 22:35 XS = 2089.13 pb +- ( 1018.55 pb = 48 % ) Event 5 ( 1s elapsed / 28m 48s left ) -> ETA: Tue Nov 28 22:28 XS = 2490.88 pb +- ( 1078.58 pb = 43 % ) Event 6 ( 1s elapsed / 23m 59s left ) -> ETA: Tue Nov 28 22:23 XS = 2775.55 pb +- ( 1091.29 pb = 39 % ) Event 7 ( 1s elapsed / 20m 41s left ) -> ETA: Tue Nov 28 22:19 XS = 2635.7 pb +- ( 960.397 pb = 36 % ) Event 8 ( 1s elapsed / 18m 12s left ) -> ETA: Tue Nov 28 22:17 XS = 2910.69 pb +- ( 987.307 pb = 33 % ) Event 9 ( 1s elapsed / 16m 16s left ) -> ETA: Tue Nov 28 22:15 XS = 3100.35 pb +- ( 988.001 pb = 31 % ) Event 10 ( 1s elapsed / 14m 43s left ) -> ETA: Tue Nov 28 22:13 XS = 3373.07 pb +- ( 1014.87 pb = 30 % ) Event 20 ( 1s elapsed / 7m 33s left ) -> ETA: Tue Nov 28 22:06 XS = 3444.83 pb +- ( 730.108 pb = 21 % ) Event 30 ( 1s elapsed / 5m 16s left ) -> ETA: Tue Nov 28 22:04 XS = 3545.41 pb +- ( 611.955 pb = 17 % ) Event 40 ( 1s elapsed / 4m 6s left ) -> ETA: Tue Nov 28 22:03 XS = 3295.82 pb +- ( 494.513 pb = 15 % ) Event 50 ( 2s elapsed / 3m 24s left ) -> ETA: Tue Nov 28 22:02 XS = 3373.07 pb +- ( 451.967 pb = 13 % ) Event 60 ( 2s elapsed / 2m 58s left ) -> ETA: Tue Nov 28 22:02 XS = 3332.57 pb +- ( 407.843 pb = 12 % ) Event 70 ( 2s elapsed / 2m 36s left ) -> ETA: Tue Nov 28 22:01 XS = 3487.23 pb +- ( 394.025 pb = 11 % ) Event 80 ( 2s elapsed / 2m 21s left ) -> ETA: Tue Nov 28 22:01 XS = 3399.63 pb +- ( 359.821 pb = 10 % ) Event 90 ( 2s elapsed / 2m 9s left ) -> ETA: Tue Nov 28 22:01 XS = 3199.04 pb +- ( 320.295 pb = 10 % ) Event 100 ( 2s elapsed / 2m left ) -> ETA: Tue Nov 28 22:01 XS = 3284.12 pb +- ( 311.471 pb = 9 % ) Event 200 ( 3s elapsed / 1m 17s left ) -> ETA: Tue Nov 28 22:00 XS = 3472.54 pb +- ( 232.069 pb = 6 % ) Event 300 ( 4s elapsed / 1m 4s left ) -> ETA: Tue Nov 28 22:00 XS = 3656.17 pb +- ( 198.852 pb = 5 % ) Event 400 ( 4s elapsed / 55s left ) -> ETA: Tue Nov 28 22:00 XS = 3834.39 pb +- ( 180.038 pb = 4 % ) Event 500 ( 5s elapsed / 49s left ) -> ETA: Tue Nov 28 22:00 XS = 3833.03 pb +- ( 160.972 pb = 4 % ) Event 600 ( 6s elapsed / 45s left ) -> ETA: Tue Nov 28 22:00 XS = 3912.38 pb +- ( 149.778 pb = 3 % ) Event 700 ( 6s elapsed / 42s left ) -> ETA: Tue Nov 28 22:00 XS = 3854.28 pb +- ( 136.745 pb = 3 % ) Event 800 ( 7s elapsed / 40s left ) -> ETA: Tue Nov 28 21:59 XS = 3854.93 pb +- ( 127.932 pb = 3 % ) Event 900 ( 8s elapsed / 38s left ) -> ETA: Tue Nov 28 21:59 XS = 3856.46 pb +- ( 120.659 pb = 3 % ) Event 1000 ( 9s elapsed / 36s left ) -> ETA: Tue Nov 28 21:59 XS = 3888.26 pb +- ( 115.346 pb = 2 % ) Event 2000 ( 16s elapsed / 24s left ) -> ETA: Tue Nov 28 21:59 XS = 3859.3 pb +- ( 80.9933 pb = 2 % ) Event 3000 ( 23s elapsed / 15s left ) -> ETA: Tue Nov 28 21:59 XS = 3836.51 pb +- ( 65.7659 pb = 1 % ) Event 4000 ( 31s elapsed / 7s left ) -> ETA: Tue Nov 28 21:59 XS = 3858.03 pb +- ( 57.2526 pb = 1 % ) Event 5000 ( 37 s total ) = 1.17551e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3894.15 0 % 51.6548 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 37s on Tue Nov 28 21:59:49 2023 (User: 36s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:04:11 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 25m 48s left ) -> ETA: Wed Nov 29 00:30 XS = 4625.92 pb +- ( 4625.92 pb = 100 % ) Event 2 ( 1s elapsed / 1h 13m 18s left ) -> ETA: Tue Nov 28 23:17 XS = 3809.58 pb +- ( 2608.24 pb = 68 % ) Event 3 ( 1s elapsed / 49m 8s left ) -> ETA: Tue Nov 28 22:53 XS = 4857.22 pb +- ( 2652.62 pb = 54 % ) Event 4 ( 1s elapsed / 36m 50s left ) -> ETA: Tue Nov 28 22:41 XS = 6167.89 pb +- ( 2843.26 pb = 46 % ) Event 5 ( 1s elapsed / 29m 38s left ) -> ETA: Tue Nov 28 22:33 XS = 5222.81 pb +- ( 2174.43 pb = 41 % ) Event 6 ( 1s elapsed / 24m 49s left ) -> ETA: Tue Nov 28 22:29 XS = 4738.75 pb +- ( 1809.64 pb = 38 % ) Event 7 ( 1s elapsed / 21m 16s left ) -> ETA: Tue Nov 28 22:25 XS = 4722.29 pb +- ( 1667.04 pb = 35 % ) Event 8 ( 1s elapsed / 18m 43s left ) -> ETA: Tue Nov 28 22:22 XS = 4797.25 pb +- ( 1580.11 pb = 32 % ) Event 9 ( 1s elapsed / 16m 38s left ) -> ETA: Tue Nov 28 22:20 XS = 5298.78 pb +- ( 1630.18 pb = 30 % ) Event 10 ( 1s elapsed / 15m 3s left ) -> ETA: Tue Nov 28 22:19 XS = 4317.53 pb +- ( 1279.6 pb = 29 % ) Event 20 ( 1s elapsed / 7m 48s left ) -> ETA: Tue Nov 28 22:12 XS = 3679.71 pb +- ( 776.858 pb = 21 % ) Event 30 ( 1s elapsed / 5m 18s left ) -> ETA: Tue Nov 28 22:09 XS = 3997.71 pb +- ( 684.751 pb = 17 % ) Event 40 ( 1s elapsed / 4m 1s left ) -> ETA: Tue Nov 28 22:08 XS = 3973.18 pb +- ( 589.318 pb = 14 % ) Event 50 ( 1s elapsed / 3m 17s left ) -> ETA: Tue Nov 28 22:07 XS = 4027.54 pb +- ( 533.647 pb = 13 % ) Event 60 ( 2s elapsed / 2m 47s left ) -> ETA: Tue Nov 28 22:07 XS = 3989.5 pb +- ( 482.768 pb = 12 % ) Event 70 ( 2s elapsed / 2m 27s left ) -> ETA: Tue Nov 28 22:06 XS = 4062.19 pb +- ( 454.457 pb = 11 % ) Event 80 ( 2s elapsed / 2m 11s left ) -> ETA: Tue Nov 28 22:06 XS = 4185 pb +- ( 436.969 pb = 10 % ) Event 90 ( 2s elapsed / 1m 59s left ) -> ETA: Tue Nov 28 22:06 XS = 4163.33 pb +- ( 409.964 pb = 9 % ) Event 100 ( 2s elapsed / 1m 50s left ) -> ETA: Tue Nov 28 22:06 XS = 3997.71 pb +- ( 374.512 pb = 9 % ) Event 200 ( 2s elapsed / 1m 8s left ) -> ETA: Tue Nov 28 22:05 XS = 3760.91 pb +- ( 250.089 pb = 6 % ) Event 300 ( 3s elapsed / 52s left ) -> ETA: Tue Nov 28 22:05 XS = 4025.87 pb +- ( 217.551 pb = 5 % ) Event 400 ( 3s elapsed / 42s left ) -> ETA: Tue Nov 28 22:04 XS = 3986.63 pb +- ( 186.687 pb = 4 % ) Event 500 ( 4s elapsed / 37s left ) -> ETA: Tue Nov 28 22:04 XS = 4038.59 pb +- ( 168.995 pb = 4 % ) Event 600 ( 4s elapsed / 33s left ) -> ETA: Tue Nov 28 22:04 XS = 4062.07 pb +- ( 155.1 pb = 3 % ) Event 700 ( 5s elapsed / 31s left ) -> ETA: Tue Nov 28 22:04 XS = 4021.83 pb +- ( 142.27 pb = 3 % ) Event 800 ( 5s elapsed / 29s left ) -> ETA: Tue Nov 28 22:04 XS = 3898.44 pb +- ( 129.278 pb = 3 % ) Event 900 ( 6s elapsed / 27s left ) -> ETA: Tue Nov 28 22:04 XS = 3898.25 pb +- ( 121.877 pb = 3 % ) Event 1000 ( 6s elapsed / 25s left ) -> ETA: Tue Nov 28 22:04 XS = 3796.18 pb +- ( 112.796 pb = 2 % ) Event 2000 ( 10s elapsed / 16s left ) -> ETA: Tue Nov 28 22:04 XS = 3789.52 pb +- ( 79.6261 pb = 2 % ) Event 3000 ( 15s elapsed / 10s left ) -> ETA: Tue Nov 28 22:04 XS = 3806.45 pb +- ( 65.2849 pb = 1 % ) Event 4000 ( 20s elapsed / 5s left ) -> ETA: Tue Nov 28 22:04 XS = 3793.4 pb +- ( 56.3572 pb = 1 % ) Event 5000 ( 24 s total ) = 1.75396e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3806.89 0 % 50.5746 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 25s on Tue Nov 28 22:04:36 2023 (User: 24s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:06:33 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 40m 48s left ) -> ETA: Wed Nov 29 00:47 XS = 4625.92 pb +- ( 4625.92 pb = 100 % ) Event 2 ( 1s elapsed / 1h 20m 48s left ) -> ETA: Tue Nov 28 23:27 XS = 6476.29 pb +- ( 4317.53 pb = 66 % ) Event 3 ( 1s elapsed / 53m 51s left ) -> ETA: Tue Nov 28 23:00 XS = 4415.65 pb +- ( 2424.94 pb = 54 % ) Event 4 ( 1s elapsed / 40m 35s left ) -> ETA: Tue Nov 28 22:47 XS = 3925.02 pb +- ( 1868.26 pb = 47 % ) Event 5 ( 1s elapsed / 32m 28s left ) -> ETA: Tue Nov 28 22:39 XS = 4151.47 pb +- ( 1756.16 pb = 42 % ) Event 6 ( 1s elapsed / 27m 3s left ) -> ETA: Tue Nov 28 22:33 XS = 4857.22 pb +- ( 1851.48 pb = 38 % ) Event 7 ( 1s elapsed / 23m 18s left ) -> ETA: Tue Nov 28 22:29 XS = 5528.54 pb +- ( 1926.51 pb = 34 % ) Event 8 ( 1s elapsed / 20m 23s left ) -> ETA: Tue Nov 28 22:26 XS = 5396.91 pb +- ( 1760.28 pb = 32 % ) Event 9 ( 1s elapsed / 18m 6s left ) -> ETA: Tue Nov 28 22:24 XS = 5396.91 pb +- ( 1657.65 pb = 30 % ) Event 10 ( 1s elapsed / 16m 23s left ) -> ETA: Tue Nov 28 22:22 XS = 4692.96 pb +- ( 1382.35 pb = 29 % ) Event 20 ( 2s elapsed / 8m 20s left ) -> ETA: Tue Nov 28 22:14 XS = 3355.59 pb +- ( 712.24 pb = 21 % ) Event 30 ( 2s elapsed / 5m 39s left ) -> ETA: Tue Nov 28 22:12 XS = 3722 pb +- ( 640.524 pb = 17 % ) Event 40 ( 2s elapsed / 4m 19s left ) -> ETA: Tue Nov 28 22:10 XS = 3538.95 pb +- ( 528.819 pb = 14 % ) Event 50 ( 2s elapsed / 3m 30s left ) -> ETA: Tue Nov 28 22:10 XS = 3679.71 pb +- ( 490.488 pb = 13 % ) Event 60 ( 2s elapsed / 2m 59s left ) -> ETA: Tue Nov 28 22:09 XS = 3513.36 pb +- ( 428.648 pb = 12 % ) Event 70 ( 2s elapsed / 2m 37s left ) -> ETA: Tue Nov 28 22:09 XS = 3471.21 pb +- ( 392.322 pb = 11 % ) Event 80 ( 2s elapsed / 2m 19s left ) -> ETA: Tue Nov 28 22:08 XS = 3514.95 pb +- ( 371.294 pb = 10 % ) Event 90 ( 2s elapsed / 2m 5s left ) -> ETA: Tue Nov 28 22:08 XS = 3507.01 pb +- ( 349.29 pb = 9 % ) Event 100 ( 2s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 22:08 XS = 3574.11 pb +- ( 337.296 pb = 9 % ) Event 200 ( 2s elapsed / 1m 6s left ) -> ETA: Tue Nov 28 22:07 XS = 3574.11 pb +- ( 238.438 pb = 6 % ) Event 300 ( 3s elapsed / 48s left ) -> ETA: Tue Nov 28 22:07 XS = 3765.28 pb +- ( 204.399 pb = 5 % ) Event 400 ( 3s elapsed / 40s left ) -> ETA: Tue Nov 28 22:07 XS = 3769.67 pb +- ( 177.199 pb = 4 % ) Event 500 ( 3s elapsed / 35s left ) -> ETA: Tue Nov 28 22:07 XS = 3814.07 pb +- ( 160.229 pb = 4 % ) Event 600 ( 4s elapsed / 31s left ) -> ETA: Tue Nov 28 22:07 XS = 3776.26 pb +- ( 144.911 pb = 3 % ) Event 700 ( 4s elapsed / 29s left ) -> ETA: Tue Nov 28 22:07 XS = 3828.24 pb +- ( 135.883 pb = 3 % ) Event 800 ( 5s elapsed / 27s left ) -> ETA: Tue Nov 28 22:07 XS = 3883.25 pb +- ( 128.808 pb = 3 % ) Event 900 ( 5s elapsed / 25s left ) -> ETA: Tue Nov 28 22:07 XS = 3895.12 pb +- ( 121.786 pb = 3 % ) Event 1000 ( 6s elapsed / 24s left ) -> ETA: Tue Nov 28 22:07 XS = 3833.03 pb +- ( 113.818 pb = 2 % ) Event 2000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:06 XS = 3790.63 pb +- ( 79.6478 pb = 2 % ) Event 3000 ( 15s elapsed / 10s left ) -> ETA: Tue Nov 28 22:06 XS = 3774.5 pb +- ( 64.7731 pb = 1 % ) Event 4000 ( 19s elapsed / 4s left ) -> ETA: Tue Nov 28 22:06 XS = 3793.63 pb +- ( 56.3603 pb = 1 % ) Event 5000 ( 23 s total ) = 1.90392e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3808.6 0 % 50.5957 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:06:56 2023 (User: 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:11:50 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 34m 8s left ) -> ETA: Wed Nov 29 00:46 XS = 1264.67 pb +- ( 1264.67 pb = 99 % ) Event 2 ( 1s elapsed / 1h 17m 28s left ) -> ETA: Tue Nov 28 23:29 XS = 1264.67 pb +- ( 859.173 pb = 67 % ) Event 3 ( 1s elapsed / 51m 38s left ) -> ETA: Tue Nov 28 23:03 XS = 1770.54 pb +- ( 946.391 pb = 53 % ) Event 4 ( 1s elapsed / 39m 8s left ) -> ETA: Tue Nov 28 22:51 XS = 1863.72 pb +- ( 850.668 pb = 45 % ) Event 5 ( 1s elapsed / 31m 18s left ) -> ETA: Tue Nov 28 22:43 XS = 2213.17 pb +- ( 879.424 pb = 39 % ) Event 6 ( 1s elapsed / 26m 13s left ) -> ETA: Tue Nov 28 22:38 XS = 1967.26 pb +- ( 721.788 pb = 36 % ) Event 7 ( 1s elapsed / 22m 28s left ) -> ETA: Tue Nov 28 22:34 XS = 2213.17 pb +- ( 737.723 pb = 33 % ) Event 8 ( 1s elapsed / 19m 45s left ) -> ETA: Tue Nov 28 22:31 XS = 2284.56 pb +- ( 707.231 pb = 30 % ) Event 9 ( 1s elapsed / 17m 39s left ) -> ETA: Tue Nov 28 22:29 XS = 2276.4 pb +- ( 663.552 pb = 29 % ) Event 10 ( 1s elapsed / 15m 53s left ) -> ETA: Tue Nov 28 22:27 XS = 2269.92 pb +- ( 627.072 pb = 27 % ) Event 20 ( 1s elapsed / 8m 15s left ) -> ETA: Tue Nov 28 22:20 XS = 2213.17 pb +- ( 431.282 pb = 19 % ) Event 30 ( 2s elapsed / 5m 41s left ) -> ETA: Tue Nov 28 22:17 XS = 1952.8 pb +- ( 315.924 pb = 16 % ) Event 40 ( 2s elapsed / 4m 24s left ) -> ETA: Tue Nov 28 22:16 XS = 1718.97 pb +- ( 244.576 pb = 14 % ) Event 50 ( 2s elapsed / 3m 37s left ) -> ETA: Tue Nov 28 22:15 XS = 1676.64 pb +- ( 213.887 pb = 12 % ) Event 60 ( 2s elapsed / 3m 4s left ) -> ETA: Tue Nov 28 22:14 XS = 1665.08 pb +- ( 193.997 pb = 11 % ) Event 70 ( 2s elapsed / 2m 41s left ) -> ETA: Tue Nov 28 22:14 XS = 1613.77 pb +- ( 174.646 pb = 10 % ) Event 80 ( 2s elapsed / 2m 25s left ) -> ETA: Tue Nov 28 22:14 XS = 1690.25 pb +- ( 170.183 pb = 10 % ) Event 90 ( 2s elapsed / 2m 11s left ) -> ETA: Tue Nov 28 22:14 XS = 1735.82 pb +- ( 164.234 pb = 9 % ) Event 100 ( 2s elapsed / 2m left ) -> ETA: Tue Nov 28 22:13 XS = 1806.67 pb +- ( 161.345 pb = 8 % ) Event 200 ( 3s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:13 XS = 1827.18 pb +- ( 115.157 pb = 6 % ) Event 300 ( 3s elapsed / 58s left ) -> ETA: Tue Nov 28 22:12 XS = 1876.89 pb +- ( 96.2258 pb = 5 % ) Event 400 ( 4s elapsed / 50s left ) -> ETA: Tue Nov 28 22:12 XS = 1918.24 pb +- ( 84.91 pb = 4 % ) Event 500 ( 5s elapsed / 45s left ) -> ETA: Tue Nov 28 22:12 XS = 1874.77 pb +- ( 74.4527 pb = 3 % ) Event 600 ( 5s elapsed / 42s left ) -> ETA: Tue Nov 28 22:12 XS = 1861.11 pb +- ( 67.534 pb = 3 % ) Event 700 ( 6s elapsed / 39s left ) -> ETA: Tue Nov 28 22:12 XS = 1881.83 pb +- ( 63.1253 pb = 3 % ) Event 800 ( 7s elapsed / 37s left ) -> ETA: Tue Nov 28 22:12 XS = 1851.54 pb +- ( 58.2226 pb = 3 % ) Event 900 ( 7s elapsed / 35s left ) -> ETA: Tue Nov 28 22:12 XS = 1855.04 pb +- ( 54.9821 pb = 2 % ) Event 1000 ( 8s elapsed / 34s left ) -> ETA: Tue Nov 28 22:12 XS = 1879.95 pb +- ( 52.7662 pb = 2 % ) Event 2000 ( 14s elapsed / 22s left ) -> ETA: Tue Nov 28 22:12 XS = 1922.41 pb +- ( 38.0357 pb = 1 % ) Event 3000 ( 21s elapsed / 14s left ) -> ETA: Tue Nov 28 22:12 XS = 1968.14 pb +- ( 31.6892 pb = 1 % ) Event 4000 ( 27s elapsed / 6s left ) -> ETA: Tue Nov 28 22:12 XS = 1940.63 pb +- ( 27.1138 pb = 1 % ) Event 5000 ( 33 s total ) = 1.32029e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1929.28 0 % 24.1291 1.25 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 33s on Tue Nov 28 22:12:24 2023 (User: 32s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:13:56 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 5h 8m 18s left ) -> ETA: Wed Nov 29 03:22 XS = 1264.67 pb +- ( 1264.67 pb = 99 % ) Event 2 ( 1s elapsed / 2h 35m 48s left ) -> ETA: Wed Nov 29 00:49 XS = 1264.67 pb +- ( 859.173 pb = 67 % ) Event 3 ( 1s elapsed / 1h 43m 51s left ) -> ETA: Tue Nov 28 23:57 XS = 1770.54 pb +- ( 946.391 pb = 53 % ) Event 4 ( 1s elapsed / 1h 18m 43s left ) -> ETA: Tue Nov 28 23:32 XS = 1863.72 pb +- ( 850.668 pb = 45 % ) Event 5 ( 1s elapsed / 1h 2m 58s left ) -> ETA: Tue Nov 28 23:16 XS = 2213.17 pb +- ( 879.424 pb = 39 % ) Event 6 ( 1s elapsed / 52m 28s left ) -> ETA: Tue Nov 28 23:06 XS = 1967.26 pb +- ( 721.788 pb = 36 % ) Event 7 ( 1s elapsed / 45m 12s left ) -> ETA: Tue Nov 28 22:59 XS = 2213.17 pb +- ( 737.723 pb = 33 % ) Event 8 ( 1s elapsed / 39m 45s left ) -> ETA: Tue Nov 28 22:53 XS = 2284.56 pb +- ( 707.231 pb = 30 % ) Event 9 ( 1s elapsed / 35m 31s left ) -> ETA: Tue Nov 28 22:49 XS = 2276.4 pb +- ( 663.552 pb = 29 % ) Event 10 ( 1s elapsed / 31m 58s left ) -> ETA: Tue Nov 28 22:45 XS = 2269.92 pb +- ( 627.072 pb = 27 % ) Event 20 ( 2s elapsed / 16m 38s left ) -> ETA: Tue Nov 28 22:30 XS = 2213.17 pb +- ( 431.282 pb = 19 % ) Event 30 ( 2s elapsed / 11m 27s left ) -> ETA: Tue Nov 28 22:25 XS = 1952.8 pb +- ( 315.924 pb = 16 % ) Event 40 ( 2s elapsed / 8m 45s left ) -> ETA: Tue Nov 28 22:22 XS = 1718.97 pb +- ( 244.576 pb = 14 % ) Event 50 ( 2s elapsed / 7m 9s left ) -> ETA: Tue Nov 28 22:21 XS = 1676.64 pb +- ( 213.887 pb = 12 % ) Event 60 ( 2s elapsed / 6m 6s left ) -> ETA: Tue Nov 28 22:20 XS = 1665.08 pb +- ( 193.997 pb = 11 % ) Event 70 ( 2s elapsed / 5m 23s left ) -> ETA: Tue Nov 28 22:19 XS = 1613.77 pb +- ( 174.646 pb = 10 % ) Event 80 ( 2s elapsed / 4m 52s left ) -> ETA: Tue Nov 28 22:18 XS = 1690.25 pb +- ( 170.183 pb = 10 % ) Event 90 ( 2s elapsed / 4m 27s left ) -> ETA: Tue Nov 28 22:18 XS = 1735.82 pb +- ( 164.234 pb = 9 % ) Event 100 ( 2s elapsed / 4m 4s left ) -> ETA: Tue Nov 28 22:18 XS = 1806.67 pb +- ( 161.345 pb = 8 % ) Event 200 ( 3s elapsed / 2m 31s left ) -> ETA: Tue Nov 28 22:16 XS = 1827.18 pb +- ( 115.157 pb = 6 % ) Event 300 ( 3s elapsed / 2m 2s left ) -> ETA: Tue Nov 28 22:16 XS = 1876.89 pb +- ( 96.2258 pb = 5 % ) Event 400 ( 4s elapsed / 1m 47s left ) -> ETA: Tue Nov 28 22:15 XS = 1918.24 pb +- ( 84.91 pb = 4 % ) Event 500 ( 5s elapsed / 1m 39s left ) -> ETA: Tue Nov 28 22:15 XS = 1874.77 pb +- ( 74.4527 pb = 3 % ) Event 600 ( 6s elapsed / 1m 34s left ) -> ETA: Tue Nov 28 22:15 XS = 1861.11 pb +- ( 67.534 pb = 3 % ) Event 700 ( 6s elapsed / 1m 28s left ) -> ETA: Tue Nov 28 22:15 XS = 1881.83 pb +- ( 63.1253 pb = 3 % ) Event 800 ( 7s elapsed / 1m 24s left ) -> ETA: Tue Nov 28 22:15 XS = 1851.54 pb +- ( 58.2226 pb = 3 % ) Event 900 ( 8s elapsed / 1m 21s left ) -> ETA: Tue Nov 28 22:15 XS = 1855.04 pb +- ( 54.9821 pb = 2 % ) Event 1000 ( 8s elapsed / 1m 19s left ) -> ETA: Tue Nov 28 22:15 XS = 1879.95 pb +- ( 52.7662 pb = 2 % ) Event 2000 ( 15s elapsed / 1m left ) -> ETA: Tue Nov 28 22:15 XS = 1922.41 pb +- ( 38.0357 pb = 1 % ) Event 3000 ( 22s elapsed / 52s left ) -> ETA: Tue Nov 28 22:15 XS = 1968.14 pb +- ( 31.6892 pb = 1 % ) Event 4000 ( 29s elapsed / 43s left ) -> ETA: Tue Nov 28 22:15 XS = 1940.63 pb +- ( 27.1138 pb = 1 % ) Event 5000 ( 36s elapsed / 36s left ) -> ETA: Tue Nov 28 22:15 XS = 1929.28 pb +- ( 24.1291 pb = 1 % ) Event 6000 ( 42s elapsed / 28s left ) -> ETA: Tue Nov 28 22:15 XS = 1933.25 pb +- ( 22.0657 pb = 1 % ) Event 7000 ( 49s elapsed / 21s left ) -> ETA: Tue Nov 28 22:15 XS = 1919.61 pb +- ( 20.3046 pb = 1 % ) Event 8000 ( 56s elapsed / 14s left ) -> ETA: Tue Nov 28 22:15 XS = 1908.37 pb +- ( 18.8973 pb = 0 % ) Event 9000 ( 1m 1s elapsed / 6s left ) -> ETA: Tue Nov 28 22:15 XS = 1898.77 pb +- ( 17.7391 pb = 0 % ) Event 10000 ( 65 s total ) = 1.33519e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1902.61 0 % 16.8583 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 5s on Tue Nov 28 22:15:02 2023 (User: 1m 4s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:21:09 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 59m 58s left ) -> ETA: Wed Nov 29 03:21 XS = 1264.67 pb +- ( 1264.67 pb = 99 % ) Event 2 ( 1s elapsed / 2h 30m 48s left ) -> ETA: Wed Nov 29 00:51 XS = 2213.17 pb +- ( 1448.86 pb = 65 % ) Event 3 ( 1s elapsed / 1h 40m 31s left ) -> ETA: Wed Nov 29 00:01 XS = 2213.17 pb +- ( 1155.79 pb = 52 % ) Event 4 ( 1s elapsed / 1h 15m 23s left ) -> ETA: Tue Nov 28 23:36 XS = 1770.54 pb +- ( 812.377 pb = 45 % ) Event 5 ( 1s elapsed / 1h 18s left ) -> ETA: Tue Nov 28 23:21 XS = 2011.97 pb +- ( 809.565 pb = 40 % ) Event 6 ( 1s elapsed / 50m 14s left ) -> ETA: Tue Nov 28 23:11 XS = 2124.64 pb +- ( 771.758 pb = 36 % ) Event 7 ( 1s elapsed / 43m 18s left ) -> ETA: Tue Nov 28 23:04 XS = 2383.41 pb +- ( 785.339 pb = 32 % ) Event 8 ( 1s elapsed / 37m 53s left ) -> ETA: Tue Nov 28 22:59 XS = 2623.01 pb +- ( 792.768 pb = 30 % ) Event 9 ( 1s elapsed / 33m 40s left ) -> ETA: Tue Nov 28 22:54 XS = 2845.5 pb +- ( 795.669 pb = 27 % ) Event 10 ( 1s elapsed / 30m 18s left ) -> ETA: Tue Nov 28 22:51 XS = 2107.78 pb +- ( 588.855 pb = 27 % ) Event 20 ( 1s elapsed / 15m 23s left ) -> ETA: Tue Nov 28 22:36 XS = 2392.61 pb +- ( 460.143 pb = 19 % ) Event 30 ( 1s elapsed / 10m 28s left ) -> ETA: Tue Nov 28 22:31 XS = 2027.33 pb +- ( 326.252 pb = 16 % ) Event 40 ( 1s elapsed / 7m 58s left ) -> ETA: Tue Nov 28 22:29 XS = 2107.78 pb +- ( 291.771 pb = 13 % ) Event 50 ( 1s elapsed / 6m 26s left ) -> ETA: Tue Nov 28 22:27 XS = 2202.16 pb +- ( 270.606 pb = 12 % ) Event 60 ( 1s elapsed / 5m 26s left ) -> ETA: Tue Nov 28 22:26 XS = 2176.89 pb +- ( 244.549 pb = 11 % ) Event 70 ( 2s elapsed / 4m 43s left ) -> ETA: Tue Nov 28 22:25 XS = 2159.19 pb +- ( 224.796 pb = 10 % ) Event 80 ( 2s elapsed / 4m 11s left ) -> ETA: Tue Nov 28 22:25 XS = 2101.53 pb +- ( 205.488 pb = 9 % ) Event 90 ( 2s elapsed / 3m 45s left ) -> ETA: Tue Nov 28 22:24 XS = 2053.46 pb +- ( 189.94 pb = 9 % ) Event 100 ( 2s elapsed / 3m 24s left ) -> ETA: Tue Nov 28 22:24 XS = 2078.09 pb +- ( 182.003 pb = 8 % ) Event 200 ( 2s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 22:23 XS = 1996.09 pb +- ( 124.287 pb = 6 % ) Event 300 ( 2s elapsed / 1m 24s left ) -> ETA: Tue Nov 28 22:22 XS = 2042.93 pb +- ( 103.487 pb = 5 % ) Event 400 ( 2s elapsed / 1m 7s left ) -> ETA: Tue Nov 28 22:22 XS = 1982.68 pb +- ( 87.3546 pb = 4 % ) Event 500 ( 3s elapsed / 58s left ) -> ETA: Tue Nov 28 22:22 XS = 1962.9 pb +- ( 77.4595 pb = 3 % ) Event 600 ( 3s elapsed / 51s left ) -> ETA: Tue Nov 28 22:22 XS = 2038.22 pb +- ( 73.0192 pb = 3 % ) Event 700 ( 3s elapsed / 47s left ) -> ETA: Tue Nov 28 22:22 XS = 2026.45 pb +- ( 67.2683 pb = 3 % ) Event 800 ( 3s elapsed / 44s left ) -> ETA: Tue Nov 28 22:21 XS = 2018.28 pb +- ( 62.7063 pb = 3 % ) Event 900 ( 4s elapsed / 41s left ) -> ETA: Tue Nov 28 22:21 XS = 2028.36 pb +- ( 59.3706 pb = 2 % ) Event 1000 ( 4s elapsed / 38s left ) -> ETA: Tue Nov 28 22:21 XS = 2026.71 pb +- ( 56.2842 pb = 2 % ) Event 2000 ( 6s elapsed / 27s left ) -> ETA: Tue Nov 28 22:21 XS = 1982.02 pb +- ( 39.0462 pb = 1 % ) Event 3000 ( 9s elapsed / 22s left ) -> ETA: Tue Nov 28 22:21 XS = 1992.2 pb +- ( 32.0205 pb = 1 % ) Event 4000 ( 12s elapsed / 18s left ) -> ETA: Tue Nov 28 22:21 XS = 1964.31 pb +- ( 27.3977 pb = 1 % ) Event 5000 ( 14s elapsed / 14s left ) -> ETA: Tue Nov 28 22:21 XS = 1956.82 pb +- ( 24.4249 pb = 1 % ) Event 6000 ( 17s elapsed / 11s left ) -> ETA: Tue Nov 28 22:21 XS = 1950.14 pb +- ( 22.2313 pb = 1 % ) Event 7000 ( 19s elapsed / 8s left ) -> ETA: Tue Nov 28 22:21 XS = 1954.6 pb +- ( 20.6226 pb = 1 % ) Event 8000 ( 22s elapsed / 5s left ) -> ETA: Tue Nov 28 22:21 XS = 1953.48 pb +- ( 19.2811 pb = 0 % ) Event 9000 ( 24s elapsed / 2s left ) -> ETA: Tue Nov 28 22:21 XS = 1939.86 pb +- ( 18.0695 pb = 0 % ) Event 10000 ( 27 s total ) = 3.22991e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_1em/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1925.75 0 % 17.0348 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 27s on Tue Nov 28 22:21:36 2023 (User: 26s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:22:27 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 36m 38s left ) -> ETA: Wed Nov 29 02:59 XS = 4625.92 pb +- ( 4625.92 pb = 100 % ) Event 2 ( 1s elapsed / 2h 19m 8s left ) -> ETA: Wed Nov 29 00:41 XS = 4047.68 pb +- ( 2765.09 pb = 68 % ) Event 3 ( 1s elapsed / 1h 32m 44s left ) -> ETA: Tue Nov 28 23:55 XS = 4415.65 pb +- ( 2424.94 pb = 54 % ) Event 4 ( 1s elapsed / 1h 9m 33s left ) -> ETA: Tue Nov 28 23:32 XS = 4981.76 pb +- ( 2336.65 pb = 46 % ) Event 5 ( 1s elapsed / 55m 38s left ) -> ETA: Tue Nov 28 23:18 XS = 5222.81 pb +- ( 2174.43 pb = 41 % ) Event 6 ( 1s elapsed / 46m 38s left ) -> ETA: Tue Nov 28 23:09 XS = 5887.53 pb +- ( 2207.83 pb = 37 % ) Event 7 ( 1s elapsed / 39m 58s left ) -> ETA: Tue Nov 28 23:02 XS = 4722.29 pb +- ( 1667.04 pb = 35 % ) Event 8 ( 1s elapsed / 35m 10s left ) -> ETA: Tue Nov 28 22:57 XS = 4710.03 pb +- ( 1553.57 pb = 32 % ) Event 9 ( 1s elapsed / 31m 16s left ) -> ETA: Tue Nov 28 22:53 XS = 4223.67 pb +- ( 1322.48 pb = 31 % ) Event 10 ( 1s elapsed / 28m 18s left ) -> ETA: Tue Nov 28 22:50 XS = 3901.38 pb +- ( 1164.05 pb = 29 % ) Event 20 ( 1s elapsed / 14m 23s left ) -> ETA: Tue Nov 28 22:36 XS = 4232.87 pb +- ( 885.368 pb = 20 % ) Event 30 ( 1s elapsed / 9m 48s left ) -> ETA: Tue Nov 28 22:32 XS = 3722 pb +- ( 640.524 pb = 17 % ) Event 40 ( 1s elapsed / 7m 28s left ) -> ETA: Tue Nov 28 22:29 XS = 3948.96 pb +- ( 585.969 pb = 14 % ) Event 50 ( 1s elapsed / 6m 2s left ) -> ETA: Tue Nov 28 22:28 XS = 4183.65 pb +- ( 552.83 pb = 13 % ) Event 60 ( 1s elapsed / 5m 4s left ) -> ETA: Tue Nov 28 22:27 XS = 4356.25 pb +- ( 523.782 pb = 12 % ) Event 70 ( 1s elapsed / 4m 22s left ) -> ETA: Tue Nov 28 22:26 XS = 4802.33 pb +- ( 530.281 pb = 11 % ) Event 80 ( 1s elapsed / 3m 51s left ) -> ETA: Tue Nov 28 22:26 XS = 4718.61 pb +- ( 488.051 pb = 10 % ) Event 90 ( 1s elapsed / 3m 29s left ) -> ETA: Tue Nov 28 22:25 XS = 4336.8 pb +- ( 425.744 pb = 9 % ) Event 100 ( 1s elapsed / 3m 12s left ) -> ETA: Tue Nov 28 22:25 XS = 4130.29 pb +- ( 386.035 pb = 9 % ) Event 200 ( 2s elapsed / 1m 50s left ) -> ETA: Tue Nov 28 22:24 XS = 3913.16 pb +- ( 259.524 pb = 6 % ) Event 300 ( 2s elapsed / 1m 22s left ) -> ETA: Tue Nov 28 22:23 XS = 3864.13 pb +- ( 209.404 pb = 5 % ) Event 400 ( 2s elapsed / 1m 7s left ) -> ETA: Tue Nov 28 22:23 XS = 3970.75 pb +- ( 185.995 pb = 4 % ) Event 500 ( 3s elapsed / 58s left ) -> ETA: Tue Nov 28 22:23 XS = 3899.5 pb +- ( 163.573 pb = 4 % ) Event 600 ( 3s elapsed / 52s left ) -> ETA: Tue Nov 28 22:23 XS = 3914.74 pb +- ( 149.862 pb = 3 % ) Event 700 ( 3s elapsed / 49s left ) -> ETA: Tue Nov 28 22:23 XS = 3845.12 pb +- ( 136.442 pb = 3 % ) Event 800 ( 4s elapsed / 46s left ) -> ETA: Tue Nov 28 22:23 XS = 3814.07 pb +- ( 126.667 pb = 3 % ) Event 900 ( 4s elapsed / 43s left ) -> ETA: Tue Nov 28 22:23 XS = 3828.1 pb +- ( 119.831 pb = 3 % ) Event 1000 ( 4s elapsed / 41s left ) -> ETA: Tue Nov 28 22:23 XS = 3778.91 pb +- ( 112.317 pb = 2 % ) Event 2000 ( 7s elapsed / 29s left ) -> ETA: Tue Nov 28 22:23 XS = 3860.45 pb +- ( 81.0158 pb = 2 % ) Event 3000 ( 10s elapsed / 24s left ) -> ETA: Tue Nov 28 22:23 XS = 3860.45 pb +- ( 66.1485 pb = 1 % ) Event 4000 ( 13s elapsed / 19s left ) -> ETA: Tue Nov 28 22:22 XS = 3881.97 pb +- ( 57.5836 pb = 1 % ) Event 5000 ( 16s elapsed / 16s left ) -> ETA: Tue Nov 28 22:22 XS = 3876.76 pb +- ( 51.4399 pb = 1 % ) Event 6000 ( 19s elapsed / 12s left ) -> ETA: Tue Nov 28 22:22 XS = 3863.63 pb +- ( 46.8096 pb = 1 % ) Event 7000 ( 22s elapsed / 9s left ) -> ETA: Tue Nov 28 22:22 XS = 3835.4 pb +- ( 43.0418 pb = 1 % ) Event 8000 ( 25s elapsed / 6s left ) -> ETA: Tue Nov 28 22:22 XS = 3861.74 pb +- ( 40.5197 pb = 1 % ) Event 9000 ( 27s elapsed / 3s left ) -> ETA: Tue Nov 28 22:22 XS = 3879.23 pb +- ( 38.3635 pb = 0 % ) Event 10000 ( 30 s total ) = 2.80884e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3864.8 0 % 36.2686 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 31s on Tue Nov 28 22:22:58 2023 (User: 30s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:25:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 36m 38s left ) -> ETA: Wed Nov 29 03:01 XS = 1264.67 pb +- ( 1264.67 pb = 99 % ) Event 2 ( 1s elapsed / 2h 19m 8s left ) -> ETA: Wed Nov 29 00:44 XS = 1106.58 pb +- ( 755.941 pb = 68 % ) Event 3 ( 1s elapsed / 1h 32m 44s left ) -> ETA: Tue Nov 28 23:58 XS = 1327.9 pb +- ( 725.192 pb = 54 % ) Event 4 ( 1s elapsed / 1h 9m 33s left ) -> ETA: Tue Nov 28 23:34 XS = 1539.6 pb +- ( 715.389 pb = 46 % ) Event 5 ( 1s elapsed / 55m 38s left ) -> ETA: Tue Nov 28 23:20 XS = 1580.83 pb +- ( 652.505 pb = 41 % ) Event 6 ( 1s elapsed / 46m 21s left ) -> ETA: Tue Nov 28 23:11 XS = 1770.54 pb +- ( 657.56 pb = 37 % ) Event 7 ( 1s elapsed / 39m 58s left ) -> ETA: Tue Nov 28 23:05 XS = 1877.84 pb +- ( 639.766 pb = 34 % ) Event 8 ( 1s elapsed / 34m 58s left ) -> ETA: Tue Nov 28 23:00 XS = 2082.98 pb +- ( 653.688 pb = 31 % ) Event 9 ( 1s elapsed / 31m 4s left ) -> ETA: Tue Nov 28 22:56 XS = 2153.35 pb +- ( 633.026 pb = 29 % ) Event 10 ( 1s elapsed / 27m 58s left ) -> ETA: Tue Nov 28 22:53 XS = 2058.76 pb +- ( 577.083 pb = 28 % ) Event 20 ( 1s elapsed / 14m 3s left ) -> ETA: Tue Nov 28 22:39 XS = 2360.71 pb +- ( 455.086 pb = 19 % ) Event 30 ( 1s elapsed / 9m 28s left ) -> ETA: Tue Nov 28 22:34 XS = 2194.88 pb +- ( 348.963 pb = 15 % ) Event 40 ( 1s elapsed / 7m 8s left ) -> ETA: Tue Nov 28 22:32 XS = 2120.4 pb +- ( 293.249 pb = 13 % ) Event 50 ( 1s elapsed / 5m 46s left ) -> ETA: Tue Nov 28 22:31 XS = 2039.79 pb +- ( 253.648 pb = 12 % ) Event 60 ( 1s elapsed / 4m 51s left ) -> ETA: Tue Nov 28 22:30 XS = 2027.33 pb +- ( 230.252 pb = 11 % ) Event 70 ( 1s elapsed / 4m 11s left ) -> ETA: Tue Nov 28 22:29 XS = 1986.18 pb +- ( 209.41 pb = 10 % ) Event 80 ( 1s elapsed / 3m 41s left ) -> ETA: Tue Nov 28 22:29 XS = 1967.26 pb +- ( 194.245 pb = 9 % ) Event 90 ( 1s elapsed / 3m 18s left ) -> ETA: Tue Nov 28 22:28 XS = 1967.26 pb +- ( 183.107 pb = 9 % ) Event 100 ( 1s elapsed / 3m left ) -> ETA: Tue Nov 28 22:28 XS = 2053.99 pb +- ( 180.209 pb = 8 % ) Event 200 ( 2s elapsed / 1m 38s left ) -> ETA: Tue Nov 28 22:26 XS = 2007.41 pb +- ( 124.889 pb = 6 % ) Event 300 ( 2s elapsed / 1m 11s left ) -> ETA: Tue Nov 28 22:26 XS = 1924.49 pb +- ( 98.33 pb = 5 % ) Event 400 ( 2s elapsed / 57s left ) -> ETA: Tue Nov 28 22:26 XS = 1889.58 pb +- ( 83.8137 pb = 4 % ) Event 500 ( 2s elapsed / 48s left ) -> ETA: Tue Nov 28 22:26 XS = 1917.82 pb +- ( 75.9275 pb = 3 % ) Event 600 ( 2s elapsed / 42s left ) -> ETA: Tue Nov 28 22:26 XS = 1980.46 pb +- ( 71.2498 pb = 3 % ) Event 700 ( 2s elapsed / 39s left ) -> ETA: Tue Nov 28 22:26 XS = 1922.11 pb +- ( 64.2899 pb = 3 % ) Event 800 ( 3s elapsed / 36s left ) -> ETA: Tue Nov 28 22:25 XS = 1923.45 pb +- ( 60.1727 pb = 3 % ) Event 900 ( 3s elapsed / 33s left ) -> ETA: Tue Nov 28 22:25 XS = 1938.07 pb +- ( 57.1015 pb = 2 % ) Event 1000 ( 3s elapsed / 31s left ) -> ETA: Tue Nov 28 22:25 XS = 1953.37 pb +- ( 54.5378 pb = 2 % ) Event 2000 ( 5s elapsed / 22s left ) -> ETA: Tue Nov 28 22:25 XS = 1974.72 pb +- ( 38.9231 pb = 1 % ) Event 3000 ( 7s elapsed / 17s left ) -> ETA: Tue Nov 28 22:25 XS = 1940.53 pb +- ( 31.3072 pb = 1 % ) Event 4000 ( 9s elapsed / 14s left ) -> ETA: Tue Nov 28 22:25 XS = 1934.48 pb +- ( 27.0399 pb = 1 % ) Event 5000 ( 11s elapsed / 11s left ) -> ETA: Tue Nov 28 22:25 XS = 1942.57 pb +- ( 24.272 pb = 1 % ) Event 6000 ( 13s elapsed / 9s left ) -> ETA: Tue Nov 28 22:25 XS = 1933.74 pb +- ( 22.0706 pb = 1 % ) Event 7000 ( 15s elapsed / 6s left ) -> ETA: Tue Nov 28 22:25 XS = 1924.79 pb +- ( 20.3519 pb = 1 % ) Event 8000 ( 17s elapsed / 4s left ) -> ETA: Tue Nov 28 22:25 XS = 1928.69 pb +- ( 19.0706 pb = 0 % ) Event 9000 ( 19s elapsed / 2s left ) -> ETA: Tue Nov 28 22:25 XS = 1930.6 pb +- ( 17.9953 pb = 0 % ) Event 10000 ( 21 s total ) = 4.18808e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1927.34 0 % 17.047 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 21s on Tue Nov 28 22:25:41 2023 (User: 21s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:27:00 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nlo_hessian_pdfas + NNPDF31_nlo_hessian_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 1 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 5h 9m 58s left ) -> ETA: Wed Nov 29 03:37 XS = 1264.67 pb +- ( 1264.67 pb = 99 % ) Event 2 ( 1s elapsed / 2h 35m 48s left ) -> ETA: Wed Nov 29 01:02 XS = 1770.54 pb +- ( 1180.36 pb = 66 % ) Event 3 ( 1s elapsed / 1h 44m 24s left ) -> ETA: Wed Nov 29 00:11 XS = 2414.37 pb +- ( 1246.77 pb = 51 % ) Event 4 ( 1s elapsed / 1h 18m 18s left ) -> ETA: Tue Nov 28 23:45 XS = 2950.89 pb +- ( 1258.26 pb = 42 % ) Event 5 ( 1s elapsed / 1h 2m 58s left ) -> ETA: Tue Nov 28 23:30 XS = 2950.89 pb +- ( 1115.33 pb = 37 % ) Event 6 ( 1s elapsed / 52m 44s left ) -> ETA: Tue Nov 28 23:19 XS = 2529.34 pb +- ( 894.255 pb = 35 % ) Event 7 ( 1s elapsed / 45m 26s left ) -> ETA: Tue Nov 28 23:12 XS = 2065.62 pb +- ( 695.292 pb = 33 % ) Event 8 ( 1s elapsed / 39m 45s left ) -> ETA: Tue Nov 28 23:06 XS = 2023.47 pb +- ( 637.52 pb = 31 % ) Event 9 ( 1s elapsed / 35m 42s left ) -> ETA: Tue Nov 28 23:02 XS = 2096.69 pb +- ( 618.743 pb = 29 % ) Event 10 ( 1s elapsed / 32m 18s left ) -> ETA: Tue Nov 28 22:59 XS = 2213.17 pb +- ( 613.823 pb = 27 % ) Event 20 ( 2s elapsed / 16m 38s left ) -> ETA: Tue Nov 28 22:43 XS = 2213.17 pb +- ( 431.282 pb = 19 % ) Event 30 ( 2s elapsed / 11m 31s left ) -> ETA: Tue Nov 28 22:38 XS = 2027.33 pb +- ( 326.252 pb = 16 % ) Event 40 ( 2s elapsed / 8m 50s left ) -> ETA: Tue Nov 28 22:35 XS = 1924.49 pb +- ( 269.925 pb = 14 % ) Event 50 ( 2s elapsed / 7m 17s left ) -> ETA: Tue Nov 28 22:34 XS = 1749.54 pb +- ( 222.068 pb = 12 % ) Event 60 ( 2s elapsed / 6m 16s left ) -> ETA: Tue Nov 28 22:33 XS = 1680.89 pb +- ( 195.627 pb = 11 % ) Event 70 ( 2s elapsed / 5m 31s left ) -> ETA: Tue Nov 28 22:32 XS = 1580.83 pb +- ( 171.466 pb = 10 % ) Event 80 ( 2s elapsed / 4m 56s left ) -> ETA: Tue Nov 28 22:31 XS = 1670.32 pb +- ( 168.408 pb = 10 % ) Event 90 ( 2s elapsed / 4m 28s left ) -> ETA: Tue Nov 28 22:31 XS = 1698.81 pb +- ( 161.146 pb = 9 % ) Event 100 ( 2s elapsed / 4m 7s left ) -> ETA: Tue Nov 28 22:31 XS = 1749.54 pb +- ( 156.871 pb = 8 % ) Event 200 ( 3s elapsed / 2m 29s left ) -> ETA: Tue Nov 28 22:29 XS = 1947.78 pb +- ( 121.704 pb = 6 % ) Event 300 ( 3s elapsed / 2m 1s left ) -> ETA: Tue Nov 28 22:29 XS = 1921.71 pb +- ( 98.2073 pb = 5 % ) Event 400 ( 4s elapsed / 1m 45s left ) -> ETA: Tue Nov 28 22:28 XS = 1848.16 pb +- ( 82.2194 pb = 4 % ) Event 500 ( 5s elapsed / 1m 35s left ) -> ETA: Tue Nov 28 22:28 XS = 1820.79 pb +- ( 72.5876 pb = 3 % ) Event 600 ( 5s elapsed / 1m 28s left ) -> ETA: Tue Nov 28 22:28 XS = 1798.71 pb +- ( 65.5601 pb = 3 % ) Event 700 ( 6s elapsed / 1m 22s left ) -> ETA: Tue Nov 28 22:28 XS = 1795.67 pb +- ( 60.6058 pb = 3 % ) Event 800 ( 6s elapsed / 1m 18s left ) -> ETA: Tue Nov 28 22:28 XS = 1787.52 pb +- ( 56.4656 pb = 3 % ) Event 900 ( 7s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:28 XS = 1803.81 pb +- ( 53.6587 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 11s left ) -> ETA: Tue Nov 28 22:28 XS = 1801.15 pb +- ( 50.8393 pb = 2 % ) Event 2000 ( 14s elapsed / 59s left ) -> ETA: Tue Nov 28 22:28 XS = 1839.66 pb +- ( 36.6981 pb = 1 % ) Event 3000 ( 21s elapsed / 49s left ) -> ETA: Tue Nov 28 22:28 XS = 1862.15 pb +- ( 30.2582 pb = 1 % ) Event 4000 ( 27s elapsed / 41s left ) -> ETA: Tue Nov 28 22:28 XS = 1898.67 pb +- ( 26.6685 pb = 1 % ) Event 5000 ( 33s elapsed / 33s left ) -> ETA: Tue Nov 28 22:28 XS = 1894.67 pb +- ( 23.8204 pb = 1 % ) Event 6000 ( 40s elapsed / 26s left ) -> ETA: Tue Nov 28 22:28 XS = 1921.68 pb +- ( 22.0104 pb = 1 % ) Event 7000 ( 46s elapsed / 19s left ) -> ETA: Tue Nov 28 22:28 XS = 1908.36 pb +- ( 20.2547 pb = 1 % ) Event 8000 ( 53s elapsed / 13s left ) -> ETA: Tue Nov 28 22:28 XS = 1908.77 pb +- ( 18.9438 pb = 0 % ) Event 9000 ( 59s elapsed / 6s left ) -> ETA: Tue Nov 28 22:28 XS = 1906.74 pb +- ( 17.844 pb = 0 % ) Event 10000 ( 63 s total ) = 1.35615e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_NNPDF/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1908.09 0 % 16.9348 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 4s on Tue Nov 28 22:28:05 2023 (User: 1m 3s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:31:35 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 26m 38s left ) -> ETA: Wed Nov 29 02:58 XS = 1264.67 pb +- ( 1264.67 pb = 99 % ) Event 2 ( 1s elapsed / 2h 13m 18s left ) -> ETA: Wed Nov 29 00:44 XS = 1264.67 pb +- ( 859.173 pb = 67 % ) Event 3 ( 1s elapsed / 1h 29m 25s left ) -> ETA: Wed Nov 29 00:01 XS = 1770.54 pb +- ( 946.391 pb = 53 % ) Event 4 ( 1s elapsed / 1h 7m 28s left ) -> ETA: Tue Nov 28 23:39 XS = 1863.72 pb +- ( 850.668 pb = 45 % ) Event 5 ( 1s elapsed / 53m 58s left ) -> ETA: Tue Nov 28 23:25 XS = 2213.17 pb +- ( 879.424 pb = 39 % ) Event 6 ( 1s elapsed / 45m 15s left ) -> ETA: Tue Nov 28 23:16 XS = 1967.26 pb +- ( 721.788 pb = 36 % ) Event 7 ( 1s elapsed / 38m 46s left ) -> ETA: Tue Nov 28 23:10 XS = 2213.17 pb +- ( 737.723 pb = 33 % ) Event 8 ( 1s elapsed / 34m 8s left ) -> ETA: Tue Nov 28 23:05 XS = 2284.56 pb +- ( 707.231 pb = 30 % ) Event 9 ( 1s elapsed / 30m 31s left ) -> ETA: Tue Nov 28 23:02 XS = 2276.4 pb +- ( 663.552 pb = 29 % ) Event 10 ( 1s elapsed / 27m 28s left ) -> ETA: Tue Nov 28 22:59 XS = 2269.92 pb +- ( 627.072 pb = 27 % ) Event 20 ( 1s elapsed / 14m 8s left ) -> ETA: Tue Nov 28 22:45 XS = 2213.17 pb +- ( 431.282 pb = 19 % ) Event 30 ( 1s elapsed / 9m 48s left ) -> ETA: Tue Nov 28 22:41 XS = 1952.8 pb +- ( 315.924 pb = 16 % ) Event 40 ( 1s elapsed / 7m 35s left ) -> ETA: Tue Nov 28 22:39 XS = 1718.97 pb +- ( 244.576 pb = 14 % ) Event 50 ( 1s elapsed / 6m 14s left ) -> ETA: Tue Nov 28 22:37 XS = 1676.64 pb +- ( 213.887 pb = 12 % ) Event 60 ( 1s elapsed / 5m 19s left ) -> ETA: Tue Nov 28 22:36 XS = 1665.08 pb +- ( 193.997 pb = 11 % ) Event 70 ( 1s elapsed / 4m 40s left ) -> ETA: Tue Nov 28 22:36 XS = 1613.77 pb +- ( 174.646 pb = 10 % ) Event 80 ( 2s elapsed / 4m 12s left ) -> ETA: Tue Nov 28 22:35 XS = 1690.25 pb +- ( 170.183 pb = 10 % ) Event 90 ( 2s elapsed / 3m 51s left ) -> ETA: Tue Nov 28 22:35 XS = 1735.82 pb +- ( 164.234 pb = 9 % ) Event 100 ( 2s elapsed / 3m 29s left ) -> ETA: Tue Nov 28 22:35 XS = 1806.67 pb +- ( 161.345 pb = 8 % ) Event 200 ( 2s elapsed / 2m 12s left ) -> ETA: Tue Nov 28 22:33 XS = 1897.68 pb +- ( 119.001 pb = 6 % ) Event 300 ( 3s elapsed / 1m 50s left ) -> ETA: Tue Nov 28 22:33 XS = 1930.09 pb +- ( 98.5761 pb = 5 % ) Event 400 ( 4s elapsed / 1m 39s left ) -> ETA: Tue Nov 28 22:33 XS = 1886.56 pb +- ( 83.6978 pb = 4 % ) Event 500 ( 4s elapsed / 1m 32s left ) -> ETA: Tue Nov 28 22:33 XS = 1894.03 pb +- ( 75.1137 pb = 3 % ) Event 600 ( 5s elapsed / 1m 25s left ) -> ETA: Tue Nov 28 22:33 XS = 1905.17 pb +- ( 68.9148 pb = 3 % ) Event 700 ( 6s elapsed / 1m 20s left ) -> ETA: Tue Nov 28 22:33 XS = 1951.77 pb +- ( 65.1424 pb = 3 % ) Event 800 ( 6s elapsed / 1m 16s left ) -> ETA: Tue Nov 28 22:32 XS = 1921.36 pb +- ( 60.1165 pb = 3 % ) Event 900 ( 7s elapsed / 1m 13s left ) -> ETA: Tue Nov 28 22:32 XS = 1916.62 pb +- ( 56.5571 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 9s left ) -> ETA: Tue Nov 28 22:32 XS = 1906.67 pb +- ( 53.4137 pb = 2 % ) Event 2000 ( 13s elapsed / 54s left ) -> ETA: Tue Nov 28 22:32 XS = 1900.12 pb +- ( 37.6552 pb = 1 % ) Event 3000 ( 19s elapsed / 44s left ) -> ETA: Tue Nov 28 22:32 XS = 1933.32 pb +- ( 31.2072 pb = 1 % ) Event 4000 ( 25s elapsed / 37s left ) -> ETA: Tue Nov 28 22:32 XS = 1942.97 pb +- ( 27.142 pb = 1 % ) Event 5000 ( 30s elapsed / 30s left ) -> ETA: Tue Nov 28 22:32 XS = 1956.65 pb +- ( 24.4231 pb = 1 % ) Event 6000 ( 36s elapsed / 24s left ) -> ETA: Tue Nov 28 22:32 XS = 1945.5 pb +- ( 22.1859 pb = 1 % ) Event 7000 ( 42s elapsed / 18s left ) -> ETA: Tue Nov 28 22:32 XS = 1931.39 pb +- ( 20.4119 pb = 1 % ) Event 8000 ( 47s elapsed / 11s left ) -> ETA: Tue Nov 28 22:32 XS = 1932.9 pb +- ( 19.1064 pb = 0 % ) Event 9000 ( 53s elapsed / 5s left ) -> ETA: Tue Nov 28 22:32 XS = 1936.75 pb +- ( 18.0445 pb = 0 % ) Event 10000 ( 58 s total ) = 1.49533e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_v2/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1932.65 0 % 17.0873 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 58s on Tue Nov 28 22:32:33 2023 (User: 57s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:41:55 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 31m 38s left ) -> ETA: Wed Nov 29 03:13 XS = 1264.67 pb +- ( 1264.67 pb = 99 % ) Event 2 ( 1s elapsed / 2h 16m 38s left ) -> ETA: Wed Nov 29 00:58 XS = 1106.58 pb +- ( 755.941 pb = 68 % ) Event 3 ( 1s elapsed / 1h 31m 5s left ) -> ETA: Wed Nov 29 00:13 XS = 1327.9 pb +- ( 725.192 pb = 54 % ) Event 4 ( 1s elapsed / 1h 8m 18s left ) -> ETA: Tue Nov 28 23:50 XS = 1539.6 pb +- ( 715.389 pb = 46 % ) Event 5 ( 1s elapsed / 54m 38s left ) -> ETA: Tue Nov 28 23:36 XS = 1580.83 pb +- ( 652.505 pb = 41 % ) Event 6 ( 1s elapsed / 45m 48s left ) -> ETA: Tue Nov 28 23:27 XS = 1770.54 pb +- ( 657.56 pb = 37 % ) Event 7 ( 1s elapsed / 39m 15s left ) -> ETA: Tue Nov 28 23:21 XS = 1877.84 pb +- ( 639.766 pb = 34 % ) Event 8 ( 1s elapsed / 34m 20s left ) -> ETA: Tue Nov 28 23:16 XS = 2082.98 pb +- ( 653.688 pb = 31 % ) Event 9 ( 1s elapsed / 30m 31s left ) -> ETA: Tue Nov 28 23:12 XS = 2153.35 pb +- ( 633.026 pb = 29 % ) Event 10 ( 1s elapsed / 27m 28s left ) -> ETA: Tue Nov 28 23:09 XS = 2058.76 pb +- ( 577.083 pb = 28 % ) Event 20 ( 1s elapsed / 13m 58s left ) -> ETA: Tue Nov 28 22:55 XS = 2360.71 pb +- ( 455.086 pb = 19 % ) Event 30 ( 1s elapsed / 9m 24s left ) -> ETA: Tue Nov 28 22:51 XS = 2194.88 pb +- ( 348.963 pb = 15 % ) Event 40 ( 1s elapsed / 7m 10s left ) -> ETA: Tue Nov 28 22:49 XS = 2120.4 pb +- ( 293.249 pb = 13 % ) Event 50 ( 1s elapsed / 5m 48s left ) -> ETA: Tue Nov 28 22:47 XS = 2039.79 pb +- ( 253.648 pb = 12 % ) Event 60 ( 1s elapsed / 4m 54s left ) -> ETA: Tue Nov 28 22:46 XS = 2027.33 pb +- ( 230.252 pb = 11 % ) Event 70 ( 1s elapsed / 4m 15s left ) -> ETA: Tue Nov 28 22:46 XS = 1986.18 pb +- ( 209.41 pb = 10 % ) Event 80 ( 1s elapsed / 3m 46s left ) -> ETA: Tue Nov 28 22:45 XS = 1967.26 pb +- ( 194.245 pb = 9 % ) Event 90 ( 1s elapsed / 3m 24s left ) -> ETA: Tue Nov 28 22:45 XS = 1967.26 pb +- ( 183.107 pb = 9 % ) Event 100 ( 1s elapsed / 3m 5s left ) -> ETA: Tue Nov 28 22:45 XS = 2053.99 pb +- ( 180.209 pb = 8 % ) Event 200 ( 2s elapsed / 1m 40s left ) -> ETA: Tue Nov 28 22:43 XS = 2007.41 pb +- ( 124.889 pb = 6 % ) Event 300 ( 2s elapsed / 1m 13s left ) -> ETA: Tue Nov 28 22:43 XS = 1924.49 pb +- ( 98.33 pb = 5 % ) Event 400 ( 2s elapsed / 59s left ) -> ETA: Tue Nov 28 22:42 XS = 1889.58 pb +- ( 83.8137 pb = 4 % ) Event 500 ( 2s elapsed / 50s left ) -> ETA: Tue Nov 28 22:42 XS = 1917.82 pb +- ( 75.9275 pb = 3 % ) Event 600 ( 2s elapsed / 44s left ) -> ETA: Tue Nov 28 22:42 XS = 1980.46 pb +- ( 71.2498 pb = 3 % ) Event 700 ( 3s elapsed / 40s left ) -> ETA: Tue Nov 28 22:42 XS = 1922.11 pb +- ( 64.2899 pb = 3 % ) Event 800 ( 3s elapsed / 37s left ) -> ETA: Tue Nov 28 22:42 XS = 1923.45 pb +- ( 60.1727 pb = 3 % ) Event 900 ( 3s elapsed / 34s left ) -> ETA: Tue Nov 28 22:42 XS = 1938.07 pb +- ( 57.1015 pb = 2 % ) Event 1000 ( 3s elapsed / 32s left ) -> ETA: Tue Nov 28 22:42 XS = 1953.37 pb +- ( 54.5378 pb = 2 % ) Event 2000 ( 5s elapsed / 22s left ) -> ETA: Tue Nov 28 22:42 XS = 1974.72 pb +- ( 38.9231 pb = 1 % ) Event 3000 ( 7s elapsed / 17s left ) -> ETA: Tue Nov 28 22:42 XS = 1940.53 pb +- ( 31.3072 pb = 1 % ) Event 4000 ( 9s elapsed / 14s left ) -> ETA: Tue Nov 28 22:42 XS = 1934.48 pb +- ( 27.0399 pb = 1 % ) Event 5000 ( 11s elapsed / 11s left ) -> ETA: Tue Nov 28 22:42 XS = 1942.57 pb +- ( 24.272 pb = 1 % ) Event 6000 ( 13s elapsed / 9s left ) -> ETA: Tue Nov 28 22:42 XS = 1933.74 pb +- ( 22.0706 pb = 1 % ) Event 7000 ( 15s elapsed / 6s left ) -> ETA: Tue Nov 28 22:42 XS = 1924.79 pb +- ( 20.3519 pb = 1 % ) Event 8000 ( 17s elapsed / 4s left ) -> ETA: Tue Nov 28 22:42 XS = 1928.69 pb +- ( 19.0706 pb = 0 % ) Event 9000 ( 19s elapsed / 2s left ) -> ETA: Tue Nov 28 22:42 XS = 1930.6 pb +- ( 17.9953 pb = 0 % ) Event 10000 ( 21 s total ) = 4.17391e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1927.34 0 % 17.047 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 21s on Tue Nov 28 22:42:16 2023 (User: 20s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:37:24 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 56m 38s left ) -> ETA: Wed Nov 29 23:34 XS = 3727.06 pb +- ( 3727.06 pb = 99 % ) Event 2 ( 1s elapsed / 2h 29m 8s left ) -> ETA: Wed Nov 29 21:06 XS = 5797.65 pb +- ( 3834.78 pb = 66 % ) Event 3 ( 1s elapsed / 1h 39m 58s left ) -> ETA: Wed Nov 29 20:17 XS = 3130.73 pb +- ( 1730.58 pb = 55 % ) Event 4 ( 1s elapsed / 1h 14m 58s left ) -> ETA: Wed Nov 29 19:52 XS = 3162.35 pb +- ( 1505.24 pb = 47 % ) Event 5 ( 1s elapsed / 59m 58s left ) -> ETA: Wed Nov 29 19:37 XS = 3836.68 pb +- ( 1608.47 pb = 41 % ) Event 6 ( 1s elapsed / 50m 14s left ) -> ETA: Wed Nov 29 19:27 XS = 3817.96 pb +- ( 1458.01 pb = 38 % ) Event 7 ( 1s elapsed / 43m 3s left ) -> ETA: Wed Nov 29 19:20 XS = 4150.59 pb +- ( 1455.22 pb = 35 % ) Event 8 ( 1s elapsed / 37m 40s left ) -> ETA: Wed Nov 29 19:15 XS = 4537.29 pb +- ( 1474.13 pb = 32 % ) Event 9 ( 1s elapsed / 33m 40s left ) -> ETA: Wed Nov 29 19:11 XS = 4995.84 pb +- ( 1513.56 pb = 30 % ) Event 10 ( 1s elapsed / 30m 18s left ) -> ETA: Wed Nov 29 19:07 XS = 4076.47 pb +- ( 1193.47 pb = 29 % ) Event 20 ( 1s elapsed / 15m 28s left ) -> ETA: Wed Nov 29 18:52 XS = 4421.93 pb +- ( 904.935 pb = 20 % ) Event 30 ( 1s elapsed / 10m 31s left ) -> ETA: Wed Nov 29 18:47 XS = 5115.57 pb +- ( 840.164 pb = 16 % ) Event 40 ( 1s elapsed / 8m 8s left ) -> ETA: Wed Nov 29 18:45 XS = 4312.3 pb +- ( 624.232 pb = 14 % ) Event 50 ( 2s elapsed / 6m 39s left ) -> ETA: Wed Nov 29 18:44 XS = 3705.88 pb +- ( 486.135 pb = 13 % ) Event 60 ( 2s elapsed / 5m 41s left ) -> ETA: Wed Nov 29 18:43 XS = 3517.67 pb +- ( 422.882 pb = 12 % ) Event 70 ( 2s elapsed / 5m left ) -> ETA: Wed Nov 29 18:42 XS = 3445.77 pb +- ( 384.051 pb = 11 % ) Event 80 ( 2s elapsed / 4m 29s left ) -> ETA: Wed Nov 29 18:41 XS = 3478.59 pb +- ( 362.365 pb = 10 % ) Event 90 ( 2s elapsed / 4m 3s left ) -> ETA: Wed Nov 29 18:41 XS = 3579.34 pb +- ( 350.727 pb = 9 % ) Event 100 ( 2s elapsed / 3m 43s left ) -> ETA: Wed Nov 29 18:41 XS = 3559.27 pb +- ( 330.984 pb = 9 % ) Event 200 ( 2s elapsed / 2m 12s left ) -> ETA: Wed Nov 29 18:39 XS = 3464.73 pb +- ( 228.222 pb = 6 % ) Event 300 ( 3s elapsed / 1m 39s left ) -> ETA: Wed Nov 29 18:39 XS = 3620.18 pb +- ( 194.013 pb = 5 % ) Event 400 ( 3s elapsed / 1m 21s left ) -> ETA: Wed Nov 29 18:38 XS = 3603.51 pb +- ( 167.299 pb = 4 % ) Event 500 ( 3s elapsed / 1m 11s left ) -> ETA: Wed Nov 29 18:38 XS = 3543.79 pb +- ( 147.347 pb = 4 % ) Event 600 ( 4s elapsed / 1m 5s left ) -> ETA: Wed Nov 29 18:38 XS = 3543.95 pb +- ( 134.511 pb = 3 % ) Event 700 ( 4s elapsed / 1m 1s left ) -> ETA: Wed Nov 29 18:38 XS = 3495.9 pb +- ( 122.973 pb = 3 % ) Event 800 ( 4s elapsed / 57s left ) -> ETA: Wed Nov 29 18:38 XS = 3501.93 pb +- ( 115.213 pb = 3 % ) Event 900 ( 5s elapsed / 54s left ) -> ETA: Wed Nov 29 18:38 XS = 3444.4 pb +- ( 106.974 pb = 3 % ) Event 1000 ( 5s elapsed / 51s left ) -> ETA: Wed Nov 29 18:38 XS = 3470.26 pb +- ( 102.187 pb = 2 % ) Event 2000 ( 9s elapsed / 37s left ) -> ETA: Wed Nov 29 18:38 XS = 3425.83 pb +- ( 71.3998 pb = 2 % ) Event 3000 ( 13s elapsed / 31s left ) -> ETA: Wed Nov 29 18:38 XS = 3396.03 pb +- ( 57.8279 pb = 1 % ) Event 4000 ( 17s elapsed / 26s left ) -> ETA: Wed Nov 29 18:38 XS = 3387.03 pb +- ( 49.9573 pb = 1 % ) Event 5000 ( 21s elapsed / 21s left ) -> ETA: Wed Nov 29 18:38 XS = 3450.89 pb +- ( 45.4615 pb = 1 % ) Event 6000 ( 24s elapsed / 16s left ) -> ETA: Wed Nov 29 18:38 XS = 3441.35 pb +- ( 41.3943 pb = 1 % ) Event 7000 ( 28s elapsed / 12s left ) -> ETA: Wed Nov 29 18:38 XS = 3446.88 pb +- ( 38.3806 pb = 1 % ) Event 8000 ( 32s elapsed / 8s left ) -> ETA: Wed Nov 29 18:38 XS = 3430.45 pb +- ( 35.7435 pb = 1 % ) Event 9000 ( 36s elapsed / 4s left ) -> ETA: Wed Nov 29 18:38 XS = 3416.19 pb +- ( 33.5697 pb = 0 % ) Event 10000 ( 40 s total ) = 2.17413e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3410.2 0 % 31.7954 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 40s on Wed Nov 29 18:38:05 2023 (User: 40s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:43:36 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 3h 24m 58s left ) -> ETA: Wed Nov 29 22:08 XS = 3727.06 pb +- ( 3727.06 pb = 99 % ) Event 2 ( 1s elapsed / 1h 42m 28s left ) -> ETA: Wed Nov 29 20:26 XS = 5797.65 pb +- ( 3834.78 pb = 66 % ) Event 3 ( 1s elapsed / 1h 8m 52s left ) -> ETA: Wed Nov 29 19:52 XS = 3130.73 pb +- ( 1730.58 pb = 55 % ) Event 4 ( 1s elapsed / 51m 38s left ) -> ETA: Wed Nov 29 19:35 XS = 3162.35 pb +- ( 1505.24 pb = 47 % ) Event 5 ( 1s elapsed / 41m 38s left ) -> ETA: Wed Nov 29 19:25 XS = 3836.68 pb +- ( 1608.47 pb = 41 % ) Event 6 ( 1s elapsed / 34m 42s left ) -> ETA: Wed Nov 29 19:18 XS = 3817.96 pb +- ( 1458.01 pb = 38 % ) Event 7 ( 1s elapsed / 29m 44s left ) -> ETA: Wed Nov 29 19:13 XS = 4150.59 pb +- ( 1455.22 pb = 35 % ) Event 8 ( 1s elapsed / 26m 13s left ) -> ETA: Wed Nov 29 19:09 XS = 4537.29 pb +- ( 1474.13 pb = 32 % ) Event 9 ( 1s elapsed / 23m 18s left ) -> ETA: Wed Nov 29 19:06 XS = 4995.84 pb +- ( 1513.56 pb = 30 % ) Event 10 ( 1s elapsed / 20m 58s left ) -> ETA: Wed Nov 29 19:04 XS = 4076.47 pb +- ( 1193.47 pb = 29 % ) Event 20 ( 1s elapsed / 10m 48s left ) -> ETA: Wed Nov 29 18:54 XS = 4421.93 pb +- ( 904.935 pb = 20 % ) Event 30 ( 1s elapsed / 7m 22s left ) -> ETA: Wed Nov 29 18:50 XS = 5115.57 pb +- ( 840.164 pb = 16 % ) Event 40 ( 1s elapsed / 5m 43s left ) -> ETA: Wed Nov 29 18:49 XS = 4312.3 pb +- ( 624.232 pb = 14 % ) Event 50 ( 1s elapsed / 4m 44s left ) -> ETA: Wed Nov 29 18:48 XS = 3705.88 pb +- ( 486.135 pb = 13 % ) Event 60 ( 1s elapsed / 4m 5s left ) -> ETA: Wed Nov 29 18:47 XS = 3517.67 pb +- ( 422.882 pb = 12 % ) Event 70 ( 1s elapsed / 3m 37s left ) -> ETA: Wed Nov 29 18:47 XS = 3445.77 pb +- ( 384.051 pb = 11 % ) Event 80 ( 1s elapsed / 3m 13s left ) -> ETA: Wed Nov 29 18:46 XS = 3478.59 pb +- ( 362.365 pb = 10 % ) Event 90 ( 1s elapsed / 2m 56s left ) -> ETA: Wed Nov 29 18:46 XS = 3579.34 pb +- ( 350.727 pb = 9 % ) Event 100 ( 1s elapsed / 2m 42s left ) -> ETA: Wed Nov 29 18:46 XS = 3559.27 pb +- ( 330.984 pb = 9 % ) Event 200 ( 1s elapsed / 1m 36s left ) -> ETA: Wed Nov 29 18:45 XS = 3464.73 pb +- ( 228.222 pb = 6 % ) Event 300 ( 2s elapsed / 1m 15s left ) -> ETA: Wed Nov 29 18:44 XS = 3620.18 pb +- ( 194.013 pb = 5 % ) Event 400 ( 2s elapsed / 1m 5s left ) -> ETA: Wed Nov 29 18:44 XS = 3603.51 pb +- ( 167.299 pb = 4 % ) Event 500 ( 3s elapsed / 59s left ) -> ETA: Wed Nov 29 18:44 XS = 3543.79 pb +- ( 147.347 pb = 4 % ) Event 600 ( 3s elapsed / 54s left ) -> ETA: Wed Nov 29 18:44 XS = 3543.95 pb +- ( 134.511 pb = 3 % ) Event 700 ( 3s elapsed / 51s left ) -> ETA: Wed Nov 29 18:44 XS = 3495.9 pb +- ( 122.973 pb = 3 % ) Event 800 ( 4s elapsed / 48s left ) -> ETA: Wed Nov 29 18:44 XS = 3501.93 pb +- ( 115.213 pb = 3 % ) Event 900 ( 4s elapsed / 46s left ) -> ETA: Wed Nov 29 18:44 XS = 3444.4 pb +- ( 106.974 pb = 3 % ) Event 1000 ( 5s elapsed / 45s left ) -> ETA: Wed Nov 29 18:44 XS = 3470.26 pb +- ( 102.187 pb = 2 % ) Event 2000 ( 8s elapsed / 33s left ) -> ETA: Wed Nov 29 18:44 XS = 3425.83 pb +- ( 71.3998 pb = 2 % ) Event 3000 ( 12s elapsed / 28s left ) -> ETA: Wed Nov 29 18:44 XS = 3396.03 pb +- ( 57.8279 pb = 1 % ) Event 4000 ( 15s elapsed / 23s left ) -> ETA: Wed Nov 29 18:44 XS = 3387.03 pb +- ( 49.9573 pb = 1 % ) Event 5000 ( 18s elapsed / 18s left ) -> ETA: Wed Nov 29 18:44 XS = 3450.89 pb +- ( 45.4615 pb = 1 % ) Event 6000 ( 22s elapsed / 15s left ) -> ETA: Wed Nov 29 18:44 XS = 3441.35 pb +- ( 41.3943 pb = 1 % ) Event 7000 ( 26s elapsed / 11s left ) -> ETA: Wed Nov 29 18:44 XS = 3446.88 pb +- ( 38.3806 pb = 1 % ) Event 8000 ( 29s elapsed / 7s left ) -> ETA: Wed Nov 29 18:44 XS = 3430.45 pb +- ( 35.7435 pb = 1 % ) Event 9000 ( 33s elapsed / 3s left ) -> ETA: Wed Nov 29 18:44 XS = 3416.19 pb +- ( 33.5697 pb = 0 % ) Event 10000 ( 36 s total ) = 2.3491e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3410.2 0 % 31.7954 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 37s on Wed Nov 29 18:44:13 2023 (User: 36s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 19:45:50 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8050 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 8m 18s left ) -> ETA: Wed Nov 29 23:54 XS = 3727.06 pb +- ( 3727.06 pb = 99 % ) Event 2 ( 1s elapsed / 2h 4m 8s left ) -> ETA: Wed Nov 29 21:49 XS = 5797.65 pb +- ( 3834.78 pb = 66 % ) Event 3 ( 1s elapsed / 1h 22m 45s left ) -> ETA: Wed Nov 29 21:08 XS = 3130.73 pb +- ( 1730.58 pb = 55 % ) Event 4 ( 1s elapsed / 1h 2m 28s left ) -> ETA: Wed Nov 29 20:48 XS = 3162.35 pb +- ( 1505.24 pb = 47 % ) Event 5 ( 1s elapsed / 49m 58s left ) -> ETA: Wed Nov 29 20:35 XS = 3836.68 pb +- ( 1608.47 pb = 41 % ) Event 6 ( 1s elapsed / 41m 38s left ) -> ETA: Wed Nov 29 20:27 XS = 3817.96 pb +- ( 1458.01 pb = 38 % ) Event 7 ( 1s elapsed / 35m 41s left ) -> ETA: Wed Nov 29 20:21 XS = 4150.59 pb +- ( 1455.22 pb = 35 % ) Event 8 ( 1s elapsed / 31m 13s left ) -> ETA: Wed Nov 29 20:17 XS = 4537.29 pb +- ( 1474.13 pb = 32 % ) Event 9 ( 1s elapsed / 27m 56s left ) -> ETA: Wed Nov 29 20:13 XS = 4995.84 pb +- ( 1513.56 pb = 30 % ) Event 10 ( 1s elapsed / 25m 8s left ) -> ETA: Wed Nov 29 20:10 XS = 4076.47 pb +- ( 1193.47 pb = 29 % ) Event 20 ( 1s elapsed / 12m 43s left ) -> ETA: Wed Nov 29 19:58 XS = 4421.93 pb +- ( 904.935 pb = 20 % ) Event 30 ( 1s elapsed / 8m 35s left ) -> ETA: Wed Nov 29 19:54 XS = 5115.57 pb +- ( 840.164 pb = 16 % ) Event 40 ( 1s elapsed / 6m 35s left ) -> ETA: Wed Nov 29 19:52 XS = 4312.3 pb +- ( 624.232 pb = 14 % ) Event 50 ( 1s elapsed / 5m 22s left ) -> ETA: Wed Nov 29 19:51 XS = 3705.88 pb +- ( 486.135 pb = 13 % ) Event 60 ( 1s elapsed / 4m 33s left ) -> ETA: Wed Nov 29 19:50 XS = 3517.67 pb +- ( 422.882 pb = 12 % ) Event 70 ( 1s elapsed / 3m 58s left ) -> ETA: Wed Nov 29 19:49 XS = 3445.77 pb +- ( 384.051 pb = 11 % ) Event 80 ( 1s elapsed / 3m 33s left ) -> ETA: Wed Nov 29 19:49 XS = 3478.59 pb +- ( 362.365 pb = 10 % ) Event 90 ( 1s elapsed / 3m 12s left ) -> ETA: Wed Nov 29 19:49 XS = 3579.34 pb +- ( 350.727 pb = 9 % ) Event 100 ( 1s elapsed / 2m 55s left ) -> ETA: Wed Nov 29 19:48 XS = 3559.27 pb +- ( 330.984 pb = 9 % ) Event 200 ( 2s elapsed / 1m 45s left ) -> ETA: Wed Nov 29 19:47 XS = 3464.73 pb +- ( 228.222 pb = 6 % ) Event 300 ( 2s elapsed / 1m 18s left ) -> ETA: Wed Nov 29 19:47 XS = 3620.18 pb +- ( 194.013 pb = 5 % ) Event 400 ( 2s elapsed / 1m 6s left ) -> ETA: Wed Nov 29 19:46 XS = 3603.51 pb +- ( 167.299 pb = 4 % ) Event 500 ( 3s elapsed / 59s left ) -> ETA: Wed Nov 29 19:46 XS = 3543.79 pb +- ( 147.347 pb = 4 % ) Event 600 ( 3s elapsed / 54s left ) -> ETA: Wed Nov 29 19:46 XS = 3543.95 pb +- ( 134.511 pb = 3 % ) Event 700 ( 3s elapsed / 50s left ) -> ETA: Wed Nov 29 19:46 XS = 3495.9 pb +- ( 122.973 pb = 3 % ) Event 800 ( 4s elapsed / 47s left ) -> ETA: Wed Nov 29 19:46 XS = 3501.93 pb +- ( 115.213 pb = 3 % ) Event 900 ( 4s elapsed / 44s left ) -> ETA: Wed Nov 29 19:46 XS = 3444.4 pb +- ( 106.974 pb = 3 % ) Event 1000 ( 4s elapsed / 42s left ) -> ETA: Wed Nov 29 19:46 XS = 3470.26 pb +- ( 102.187 pb = 2 % ) Event 2000 ( 7s elapsed / 31s left ) -> ETA: Wed Nov 29 19:46 XS = 3425.83 pb +- ( 71.3998 pb = 2 % ) Event 3000 ( 11s elapsed / 26s left ) -> ETA: Wed Nov 29 19:46 XS = 3396.03 pb +- ( 57.8279 pb = 1 % ) Event 4000 ( 14s elapsed / 22s left ) -> ETA: Wed Nov 29 19:46 XS = 3387.03 pb +- ( 49.9573 pb = 1 % ) Event 5000 ( 18s elapsed / 18s left ) -> ETA: Wed Nov 29 19:46 XS = 3450.89 pb +- ( 45.4615 pb = 1 % ) Event 6000 ( 21s elapsed / 14s left ) -> ETA: Wed Nov 29 19:46 XS = 3441.35 pb +- ( 41.3943 pb = 1 % ) Event 7000 ( 24s elapsed / 10s left ) -> ETA: Wed Nov 29 19:46 XS = 3446.88 pb +- ( 38.3806 pb = 1 % ) Event 8000 ( 28s elapsed / 7s left ) -> ETA: Wed Nov 29 19:46 XS = 3430.45 pb +- ( 35.7435 pb = 1 % ) Event 9000 ( 31s elapsed / 3s left ) -> ETA: Wed Nov 29 19:46 XS = 3416.19 pb +- ( 33.5697 pb = 0 % ) Event 10000 ( 34 s total ) = 2.56304e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8050){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3410.2 0 % 31.7954 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 34s on Wed Nov 29 19:46:24 2023 (User: 34s, System: 0s, Children User: 0s, Children System: 0s)