Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:44:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 51m 38s left ) -> ETA: Wed Nov 29 02:35 XS = 1704.29 pb +- ( 1704.29 pb = 100 % ) Event 2 ( 1s elapsed / 2h 26m 38s left ) -> ETA: Wed Nov 29 00:10 XS = 2158.76 pb +- ( 1499.93 pb = 69 % ) Event 3 ( 1s elapsed / 1h 37m 44s left ) -> ETA: Tue Nov 28 23:22 XS = 2625.52 pb +- ( 1473.14 pb = 56 % ) Event 4 ( 1s elapsed / 1h 14m 8s left ) -> ETA: Tue Nov 28 22:58 XS = 3238.14 pb +- ( 1555.55 pb = 48 % ) Event 5 ( 1s elapsed / 59m 18s left ) -> ETA: Tue Nov 28 22:43 XS = 3948.96 pb +- ( 1675.4 pb = 42 % ) Event 6 ( 1s elapsed / 49m 41s left ) -> ETA: Tue Nov 28 22:34 XS = 2857.19 pb +- ( 1122.07 pb = 39 % ) Event 7 ( 1s elapsed / 42m 35s left ) -> ETA: Tue Nov 28 22:26 XS = 2906.03 pb +- ( 1054.71 pb = 36 % ) Event 8 ( 1s elapsed / 37m 28s left ) -> ETA: Tue Nov 28 22:21 XS = 2977.6 pb +- ( 1008.99 pb = 33 % ) Event 9 ( 1s elapsed / 33m 29s left ) -> ETA: Tue Nov 28 22:17 XS = 3100.35 pb +- ( 988.001 pb = 31 % ) Event 10 ( 1s elapsed / 30m 8s left ) -> ETA: Tue Nov 28 22:14 XS = 3373.07 pb +- ( 1014.87 pb = 30 % ) Event 20 ( 1s elapsed / 15m 38s left ) -> ETA: Tue Nov 28 21:59 XS = 3190.29 pb +- ( 678.992 pb = 21 % ) Event 30 ( 1s elapsed / 10m 51s left ) -> ETA: Tue Nov 28 21:55 XS = 3195.54 pb +- ( 554.801 pb = 17 % ) Event 40 ( 2s elapsed / 8m 22s left ) -> ETA: Tue Nov 28 21:52 XS = 3690.19 pb +- ( 550.003 pb = 14 % ) Event 50 ( 2s elapsed / 6m 51s left ) -> ETA: Tue Nov 28 21:51 XS = 3978.06 pb +- ( 527.543 pb = 13 % ) Event 60 ( 2s elapsed / 5m 51s left ) -> ETA: Tue Nov 28 21:50 XS = 3765.28 pb +- ( 457.405 pb = 12 % ) Event 70 ( 2s elapsed / 5m 12s left ) -> ETA: Tue Nov 28 21:49 XS = 3759.04 pb +- ( 422.759 pb = 11 % ) Event 80 ( 2s elapsed / 4m 46s left ) -> ETA: Tue Nov 28 21:49 XS = 3454.02 pb +- ( 365.238 pb = 10 % ) Event 90 ( 2s elapsed / 4m 20s left ) -> ETA: Tue Nov 28 21:48 XS = 3507.01 pb +- ( 349.29 pb = 9 % ) Event 100 ( 2s elapsed / 4m 1s left ) -> ETA: Tue Nov 28 21:48 XS = 3538.95 pb +- ( 334.18 pb = 9 % ) Event 200 ( 3s elapsed / 2m 36s left ) -> ETA: Tue Nov 28 21:46 XS = 3752.19 pb +- ( 249.547 pb = 6 % ) Event 300 ( 3s elapsed / 2m 5s left ) -> ETA: Tue Nov 28 21:46 XS = 3898.25 pb +- ( 211.126 pb = 5 % ) Event 400 ( 4s elapsed / 1m 49s left ) -> ETA: Tue Nov 28 21:46 XS = 4015.06 pb +- ( 187.924 pb = 4 % ) Event 500 ( 5s elapsed / 1m 41s left ) -> ETA: Tue Nov 28 21:46 XS = 3974.16 pb +- ( 166.487 pb = 4 % ) Event 600 ( 6s elapsed / 1m 34s left ) -> ETA: Tue Nov 28 21:45 XS = 3979.69 pb +- ( 152.175 pb = 3 % ) Event 700 ( 6s elapsed / 1m 29s left ) -> ETA: Tue Nov 28 21:45 XS = 4015.41 pb +- ( 142.06 pb = 3 % ) Event 800 ( 7s elapsed / 1m 26s left ) -> ETA: Tue Nov 28 21:45 XS = 3962.24 pb +- ( 131.246 pb = 3 % ) Event 900 ( 8s elapsed / 1m 23s left ) -> ETA: Tue Nov 28 21:45 XS = 3932.97 pb +- ( 122.888 pb = 3 % ) Event 1000 ( 9s elapsed / 1m 21s left ) -> ETA: Tue Nov 28 21:45 XS = 3928.36 pb +- ( 116.454 pb = 2 % ) Event 2000 ( 16s elapsed / 1m 5s left ) -> ETA: Tue Nov 28 21:45 XS = 3888.96 pb +- ( 81.5734 pb = 2 % ) Event 3000 ( 23s elapsed / 54s left ) -> ETA: Tue Nov 28 21:45 XS = 3872.91 pb +- ( 66.3476 pb = 1 % ) Event 4000 ( 30s elapsed / 46s left ) -> ETA: Tue Nov 28 21:45 XS = 3881.62 pb +- ( 57.5788 pb = 1 % ) Event 5000 ( 38s elapsed / 38s left ) -> ETA: Tue Nov 28 21:45 XS = 3844.86 pb +- ( 51.0451 pb = 1 % ) Event 6000 ( 45s elapsed / 30s left ) -> ETA: Tue Nov 28 21:45 XS = 3872.61 pb +- ( 46.9109 pb = 1 % ) Event 7000 ( 53s elapsed / 22s left ) -> ETA: Tue Nov 28 21:45 XS = 3865.65 pb +- ( 43.3582 pb = 1 % ) Event 8000 ( 1m elapsed / 15s left ) -> ETA: Tue Nov 28 21:45 XS = 3872.22 pb +- ( 40.6221 pb = 1 % ) Event 9000 ( 1m 8s elapsed / 7s left ) -> ETA: Tue Nov 28 21:45 XS = 3870.91 pb +- ( 38.2868 pb = 0 % ) Event 10000 ( 74 s total ) = 1.15616e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Zrecoil/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3890.92 0 % 36.497 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 15s on Tue Nov 28 21:45:33 2023 (User: 1m 14s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:46:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 29m 58s left ) -> ETA: Wed Nov 29 02:16 XS = 1704.29 pb +- ( 1704.29 pb = 100 % ) Event 2 ( 1s elapsed / 2h 14m 58s left ) -> ETA: Wed Nov 29 00:01 XS = 2943.77 pb +- ( 2031.39 pb = 69 % ) Event 3 ( 1s elapsed / 1h 30m 31s left ) -> ETA: Tue Nov 28 23:16 XS = 3238.14 pb +- ( 1803.92 pb = 55 % ) Event 4 ( 1s elapsed / 1h 7m 53s left ) -> ETA: Tue Nov 28 22:54 XS = 3925.02 pb +- ( 1868.26 pb = 47 % ) Event 5 ( 1s elapsed / 54m 38s left ) -> ETA: Tue Nov 28 22:40 XS = 3854.93 pb +- ( 1637.72 pb = 42 % ) Event 6 ( 1s elapsed / 45m 48s left ) -> ETA: Tue Nov 28 22:32 XS = 3408.57 pb +- ( 1327.97 pb = 38 % ) Event 7 ( 1s elapsed / 39m 29s left ) -> ETA: Tue Nov 28 22:25 XS = 3777.83 pb +- ( 1353.34 pb = 35 % ) Event 8 ( 1s elapsed / 34m 33s left ) -> ETA: Tue Nov 28 22:20 XS = 4111.93 pb +- ( 1369.26 pb = 33 % ) Event 9 ( 1s elapsed / 30m 53s left ) -> ETA: Tue Nov 28 22:17 XS = 3689.02 pb +- ( 1164.91 pb = 31 % ) Event 10 ( 1s elapsed / 27m 48s left ) -> ETA: Tue Nov 28 22:14 XS = 3765.28 pb +- ( 1125.89 pb = 29 % ) Event 20 ( 1s elapsed / 14m 48s left ) -> ETA: Tue Nov 28 22:01 XS = 3700.74 pb +- ( 781.024 pb = 21 % ) Event 30 ( 1s elapsed / 10m 18s left ) -> ETA: Tue Nov 28 21:56 XS = 3315.51 pb +- ( 574.481 pb = 17 % ) Event 40 ( 1s elapsed / 7m 58s left ) -> ETA: Tue Nov 28 21:54 XS = 3913.16 pb +- ( 581.015 pb = 14 % ) Event 50 ( 1s elapsed / 6m 36s left ) -> ETA: Tue Nov 28 21:52 XS = 3756.55 pb +- ( 500.072 pb = 13 % ) Event 60 ( 2s elapsed / 5m 41s left ) -> ETA: Tue Nov 28 21:52 XS = 3693.7 pb +- ( 449.262 pb = 12 % ) Event 70 ( 2s elapsed / 5m 3s left ) -> ETA: Tue Nov 28 21:51 XS = 3615.15 pb +- ( 407.585 pb = 11 % ) Event 80 ( 2s elapsed / 4m 32s left ) -> ETA: Tue Nov 28 21:50 XS = 3669.28 pb +- ( 386.571 pb = 10 % ) Event 90 ( 2s elapsed / 4m 7s left ) -> ETA: Tue Nov 28 21:50 XS = 3760.43 pb +- ( 372.898 pb = 9 % ) Event 100 ( 2s elapsed / 3m 48s left ) -> ETA: Tue Nov 28 21:50 XS = 3760.91 pb +- ( 353.782 pb = 9 % ) Event 200 ( 3s elapsed / 2m 29s left ) -> ETA: Tue Nov 28 21:48 XS = 3698.62 pb +- ( 246.213 pb = 6 % ) Event 300 ( 3s elapsed / 2m 2s left ) -> ETA: Tue Nov 28 21:48 XS = 3719.15 pb +- ( 202.057 pb = 5 % ) Event 400 ( 4s elapsed / 1m 47s left ) -> ETA: Tue Nov 28 21:48 XS = 3778.46 pb +- ( 177.585 pb = 4 % ) Event 500 ( 5s elapsed / 1m 37s left ) -> ETA: Tue Nov 28 21:48 XS = 3753.06 pb +- ( 157.834 pb = 4 % ) Event 600 ( 6s elapsed / 1m 34s left ) -> ETA: Tue Nov 28 21:47 XS = 3744.96 pb +- ( 143.789 pb = 3 % ) Event 700 ( 6s elapsed / 1m 30s left ) -> ETA: Tue Nov 28 21:47 XS = 3750.33 pb +- ( 133.299 pb = 3 % ) Event 800 ( 7s elapsed / 1m 27s left ) -> ETA: Tue Nov 28 21:47 XS = 3821.95 pb +- ( 126.911 pb = 3 % ) Event 900 ( 8s elapsed / 1m 24s left ) -> ETA: Tue Nov 28 21:47 XS = 3781.9 pb +- ( 118.481 pb = 3 % ) Event 1000 ( 8s elapsed / 1m 20s left ) -> ETA: Tue Nov 28 21:47 XS = 3822.62 pb +- ( 113.53 pb = 2 % ) Event 2000 ( 16s elapsed / 1m 5s left ) -> ETA: Tue Nov 28 21:47 XS = 3967.58 pb +- ( 83.1077 pb = 2 % ) Event 3000 ( 24s elapsed / 56s left ) -> ETA: Tue Nov 28 21:47 XS = 3925.82 pb +- ( 67.1915 pb = 1 % ) Event 4000 ( 32s elapsed / 48s left ) -> ETA: Tue Nov 28 21:47 XS = 3875.81 pb +- ( 57.4985 pb = 1 % ) Event 5000 ( 43s elapsed / 43s left ) -> ETA: Tue Nov 28 21:47 XS = 3875.51 pb +- ( 51.4243 pb = 1 % ) Event 6000 ( 1m 2s elapsed / 41s left ) -> ETA: Tue Nov 28 21:48 XS = 3838.48 pb +- ( 46.5253 pb = 1 % ) Event 7000 ( 1m 14s elapsed / 31s left ) -> ETA: Tue Nov 28 21:48 XS = 3842.65 pb +- ( 43.1176 pb = 1 % ) Event 8000 ( 1m 22s elapsed / 20s left ) -> ETA: Tue Nov 28 21:48 XS = 3857.63 pb +- ( 40.4795 pb = 1 % ) Event 9000 ( 1m 30s elapsed / 10s left ) -> ETA: Tue Nov 28 21:47 XS = 3862.14 pb +- ( 38.2059 pb = 0 % ) Event 10000 ( 97 s total ) = 8.84068e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3848.75 0 % 36.1281 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 38s on Tue Nov 28 21:47:56 2023 (User: 1m 22s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:56:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 29m 8s left ) -> ETA: Wed Nov 29 00:25 XS = 1704.29 pb +- ( 1704.29 pb = 100 % ) Event 2 ( 1s elapsed / 1h 14m 58s left ) -> ETA: Tue Nov 28 23:11 XS = 2943.77 pb +- ( 2031.39 pb = 69 % ) Event 3 ( 1s elapsed / 49m 58s left ) -> ETA: Tue Nov 28 22:46 XS = 3238.14 pb +- ( 1803.92 pb = 55 % ) Event 4 ( 1s elapsed / 37m 40s left ) -> ETA: Tue Nov 28 22:34 XS = 3925.02 pb +- ( 1868.26 pb = 47 % ) Event 5 ( 1s elapsed / 30m 8s left ) -> ETA: Tue Nov 28 22:26 XS = 3854.93 pb +- ( 1637.72 pb = 42 % ) Event 6 ( 1s elapsed / 25m 23s left ) -> ETA: Tue Nov 28 22:21 XS = 3408.57 pb +- ( 1327.97 pb = 38 % ) Event 7 ( 1s elapsed / 21m 52s left ) -> ETA: Tue Nov 28 22:18 XS = 3777.83 pb +- ( 1353.34 pb = 35 % ) Event 8 ( 1s elapsed / 19m 8s left ) -> ETA: Tue Nov 28 22:15 XS = 4111.93 pb +- ( 1369.26 pb = 33 % ) Event 9 ( 1s elapsed / 17m 5s left ) -> ETA: Tue Nov 28 22:13 XS = 3689.02 pb +- ( 1164.91 pb = 31 % ) Event 10 ( 1s elapsed / 15m 28s left ) -> ETA: Tue Nov 28 22:11 XS = 3765.28 pb +- ( 1125.89 pb = 29 % ) Event 20 ( 1s elapsed / 8m 10s left ) -> ETA: Tue Nov 28 22:04 XS = 3700.74 pb +- ( 781.024 pb = 21 % ) Event 30 ( 2s elapsed / 5m 34s left ) -> ETA: Tue Nov 28 22:01 XS = 3315.51 pb +- ( 574.481 pb = 17 % ) Event 40 ( 2s elapsed / 4m 17s left ) -> ETA: Tue Nov 28 22:00 XS = 3607.96 pb +- ( 538.5 pb = 14 % ) Event 50 ( 2s elapsed / 3m 29s left ) -> ETA: Tue Nov 28 21:59 XS = 4194.49 pb +- ( 554.157 pb = 13 % ) Event 60 ( 2s elapsed / 3m 1s left ) -> ETA: Tue Nov 28 21:59 XS = 4047.68 pb +- ( 489.314 pb = 12 % ) Event 70 ( 2s elapsed / 2m 41s left ) -> ETA: Tue Nov 28 21:59 XS = 4174.4 pb +- ( 466.097 pb = 11 % ) Event 80 ( 2s elapsed / 2m 26s left ) -> ETA: Tue Nov 28 21:58 XS = 4047.68 pb +- ( 423.648 pb = 10 % ) Event 90 ( 2s elapsed / 2m 13s left ) -> ETA: Tue Nov 28 21:58 XS = 3997.71 pb +- ( 394.798 pb = 9 % ) Event 100 ( 2s elapsed / 2m 3s left ) -> ETA: Tue Nov 28 21:58 XS = 3944.15 pb +- ( 369.84 pb = 9 % ) Event 200 ( 3s elapsed / 1m 20s left ) -> ETA: Tue Nov 28 21:57 XS = 3951.37 pb +- ( 261.882 pb = 6 % ) Event 300 ( 4s elapsed / 1m 4s left ) -> ETA: Tue Nov 28 21:57 XS = 3910.8 pb +- ( 211.76 pb = 5 % ) Event 400 ( 4s elapsed / 56s left ) -> ETA: Tue Nov 28 21:57 XS = 3825.33 pb +- ( 179.641 pb = 4 % ) Event 500 ( 5s elapsed / 51s left ) -> ETA: Tue Nov 28 21:57 XS = 3908.91 pb +- ( 163.941 pb = 4 % ) Event 600 ( 6s elapsed / 46s left ) -> ETA: Tue Nov 28 21:57 XS = 3848.82 pb +- ( 147.509 pb = 3 % ) Event 700 ( 7s elapsed / 43s left ) -> ETA: Tue Nov 28 21:57 XS = 3837.96 pb +- ( 136.205 pb = 3 % ) Event 800 ( 7s elapsed / 41s left ) -> ETA: Tue Nov 28 21:57 XS = 3971.96 pb +- ( 131.546 pb = 3 % ) Event 900 ( 8s elapsed / 39s left ) -> ETA: Tue Nov 28 21:57 XS = 3956.46 pb +- ( 123.571 pb = 3 % ) Event 1000 ( 9s elapsed / 37s left ) -> ETA: Tue Nov 28 21:57 XS = 3929.79 pb +- ( 116.493 pb = 2 % ) Event 2000 ( 17s elapsed / 26s left ) -> ETA: Tue Nov 28 21:57 XS = 3826.24 pb +- ( 80.346 pb = 2 % ) Event 3000 ( 25s elapsed / 16s left ) -> ETA: Tue Nov 28 21:57 XS = 3838.94 pb +- ( 65.8047 pb = 1 % ) Event 4000 ( 32s elapsed / 8s left ) -> ETA: Tue Nov 28 21:57 XS = 3840.19 pb +- ( 57.0056 pb = 1 % ) Event 5000 ( 39 s total ) = 1.08761e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3849.25 0 % 51.0994 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 40s on Tue Nov 28 21:56:59 2023 (User: 39s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:59:12 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 25m 48s left ) -> ETA: Wed Nov 29 00:25 XS = 1704.29 pb +- ( 1704.29 pb = 100 % ) Event 2 ( 1s elapsed / 1h 13m 18s left ) -> ETA: Tue Nov 28 23:12 XS = 3238.14 pb +- ( 2228.64 pb = 68 % ) Event 3 ( 1s elapsed / 48m 51s left ) -> ETA: Tue Nov 28 22:48 XS = 4223.67 pb +- ( 2325.05 pb = 55 % ) Event 4 ( 1s elapsed / 36m 50s left ) -> ETA: Tue Nov 28 22:36 XS = 2878.35 pb +- ( 1389.25 pb = 48 % ) Event 5 ( 1s elapsed / 29m 38s left ) -> ETA: Tue Nov 28 22:28 XS = 3113.6 pb +- ( 1336.72 pb = 42 % ) Event 6 ( 1s elapsed / 24m 49s left ) -> ETA: Tue Nov 28 22:24 XS = 2023.84 pb +- ( 804.192 pb = 39 % ) Event 7 ( 1s elapsed / 21m 16s left ) -> ETA: Tue Nov 28 22:20 XS = 2312.96 pb +- ( 846.747 pb = 36 % ) Event 8 ( 1s elapsed / 18m 36s left ) -> ETA: Tue Nov 28 22:17 XS = 2616.68 pb +- ( 891.484 pb = 34 % ) Event 9 ( 1s elapsed / 16m 32s left ) -> ETA: Tue Nov 28 22:15 XS = 2673.7 pb +- ( 857.589 pb = 32 % ) Event 10 ( 1s elapsed / 14m 58s left ) -> ETA: Tue Nov 28 22:14 XS = 2654.22 pb +- ( 807.519 pb = 30 % ) Event 20 ( 1s elapsed / 7m 45s left ) -> ETA: Tue Nov 28 22:06 XS = 3222.03 pb +- ( 685.393 pb = 21 % ) Event 30 ( 1s elapsed / 5m 19s left ) -> ETA: Tue Nov 28 22:04 XS = 3045.28 pb +- ( 530.031 pb = 17 % ) Event 40 ( 2s elapsed / 4m 9s left ) -> ETA: Tue Nov 28 22:03 XS = 3198.17 pb +- ( 480.648 pb = 15 % ) Event 50 ( 2s elapsed / 3m 29s left ) -> ETA: Tue Nov 28 22:02 XS = 3162.25 pb +- ( 425.228 pb = 13 % ) Event 60 ( 2s elapsed / 2m 58s left ) -> ETA: Tue Nov 28 22:02 XS = 3488.13 pb +- ( 425.753 pb = 12 % ) Event 70 ( 2s elapsed / 2m 38s left ) -> ETA: Tue Nov 28 22:01 XS = 3444.83 pb +- ( 389.516 pb = 11 % ) Event 80 ( 2s elapsed / 2m 22s left ) -> ETA: Tue Nov 28 22:01 XS = 3583.01 pb +- ( 378.042 pb = 10 % ) Event 90 ( 2s elapsed / 2m 8s left ) -> ETA: Tue Nov 28 22:01 XS = 3693.7 pb +- ( 366.704 pb = 9 % ) Event 100 ( 2s elapsed / 1m 57s left ) -> ETA: Tue Nov 28 22:01 XS = 3722 pb +- ( 350.358 pb = 9 % ) Event 200 ( 3s elapsed / 1m 13s left ) -> ETA: Tue Nov 28 22:00 XS = 3793.96 pb +- ( 252.142 pb = 6 % ) Event 300 ( 3s elapsed / 57s left ) -> ETA: Tue Nov 28 22:00 XS = 3950.56 pb +- ( 213.764 pb = 5 % ) Event 400 ( 4s elapsed / 50s left ) -> ETA: Tue Nov 28 22:00 XS = 3837.8 pb +- ( 180.187 pb = 4 % ) Event 500 ( 5s elapsed / 45s left ) -> ETA: Tue Nov 28 22:00 XS = 3905.14 pb +- ( 163.794 pb = 4 % ) Event 600 ( 5s elapsed / 42s left ) -> ETA: Tue Nov 28 22:00 XS = 3938.55 pb +- ( 150.71 pb = 3 % ) Event 700 ( 6s elapsed / 39s left ) -> ETA: Tue Nov 28 21:59 XS = 3864.79 pb +- ( 137.093 pb = 3 % ) Event 800 ( 7s elapsed / 37s left ) -> ETA: Tue Nov 28 21:59 XS = 3881.5 pb +- ( 128.754 pb = 3 % ) Event 900 ( 7s elapsed / 35s left ) -> ETA: Tue Nov 28 21:59 XS = 3855.44 pb +- ( 120.63 pb = 3 % ) Event 1000 ( 8s elapsed / 34s left ) -> ETA: Tue Nov 28 21:59 XS = 3858.61 pb +- ( 114.526 pb = 2 % ) Event 2000 ( 15s elapsed / 22s left ) -> ETA: Tue Nov 28 21:59 XS = 3874.3 pb +- ( 81.2869 pb = 2 % ) Event 3000 ( 21s elapsed / 14s left ) -> ETA: Tue Nov 28 21:59 XS = 3860.14 pb +- ( 66.1436 pb = 1 % ) Event 4000 ( 28s elapsed / 7s left ) -> ETA: Tue Nov 28 21:59 XS = 3862.06 pb +- ( 57.3083 pb = 1 % ) Event 5000 ( 35 s total ) = 1.24245e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3865.24 0 % 51.2973 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 35s on Tue Nov 28 21:59:47 2023 (User: 34s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:04:11 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 25m 48s left ) -> ETA: Wed Nov 29 00:30 XS = 1704.29 pb +- ( 1704.29 pb = 100 % ) Event 2 ( 1s elapsed / 1h 12m 53s left ) -> ETA: Tue Nov 28 23:17 XS = 3238.14 pb +- ( 2228.64 pb = 68 % ) Event 3 ( 1s elapsed / 48m 51s left ) -> ETA: Tue Nov 28 22:53 XS = 4625.92 pb +- ( 2533.72 pb = 54 % ) Event 4 ( 1s elapsed / 36m 38s left ) -> ETA: Tue Nov 28 22:40 XS = 5887.53 pb +- ( 2725.4 pb = 46 % ) Event 5 ( 1s elapsed / 29m 28s left ) -> ETA: Tue Nov 28 22:33 XS = 3948.96 pb +- ( 1675.4 pb = 42 % ) Event 6 ( 1s elapsed / 24m 41s left ) -> ETA: Tue Nov 28 22:28 XS = 3965.07 pb +- ( 1532.11 pb = 38 % ) Event 7 ( 1s elapsed / 21m 9s left ) -> ETA: Tue Nov 28 22:25 XS = 3655.97 pb +- ( 1312.11 pb = 35 % ) Event 8 ( 1s elapsed / 18m 36s left ) -> ETA: Tue Nov 28 22:22 XS = 3198.17 pb +- ( 1080.12 pb = 33 % ) Event 9 ( 1s elapsed / 16m 32s left ) -> ETA: Tue Nov 28 22:20 XS = 3274.53 pb +- ( 1040.71 pb = 31 % ) Event 10 ( 1s elapsed / 14m 58s left ) -> ETA: Tue Nov 28 22:19 XS = 3558.4 pb +- ( 1067.52 pb = 30 % ) Event 20 ( 1s elapsed / 7m 38s left ) -> ETA: Tue Nov 28 22:11 XS = 3787.3 pb +- ( 798.14 pb = 21 % ) Event 30 ( 1s elapsed / 5m 9s left ) -> ETA: Tue Nov 28 22:09 XS = 4223.67 pb +- ( 720.653 pb = 17 % ) Event 40 ( 1s elapsed / 3m 58s left ) -> ETA: Tue Nov 28 22:08 XS = 4125.02 pb +- ( 610.238 pb = 14 % ) Event 50 ( 1s elapsed / 3m 14s left ) -> ETA: Tue Nov 28 22:07 XS = 4078.27 pb +- ( 539.893 pb = 13 % ) Event 60 ( 2s elapsed / 2m 45s left ) -> ETA: Tue Nov 28 22:06 XS = 3672.75 pb +- ( 446.874 pb = 12 % ) Event 70 ( 2s elapsed / 2m 24s left ) -> ETA: Tue Nov 28 22:06 XS = 3874.7 pb +- ( 434.897 pb = 11 % ) Event 80 ( 2s elapsed / 2m 9s left ) -> ETA: Tue Nov 28 22:06 XS = 3883.83 pb +- ( 407.659 pb = 10 % ) Event 90 ( 2s elapsed / 1m 56s left ) -> ETA: Tue Nov 28 22:06 XS = 3844.76 pb +- ( 380.705 pb = 9 % ) Event 100 ( 2s elapsed / 1m 47s left ) -> ETA: Tue Nov 28 22:06 XS = 3675.53 pb +- ( 346.262 pb = 9 % ) Event 200 ( 2s elapsed / 1m 2s left ) -> ETA: Tue Nov 28 22:05 XS = 3802.87 pb +- ( 252.695 pb = 6 % ) Event 300 ( 2s elapsed / 46s left ) -> ETA: Tue Nov 28 22:05 XS = 3814.07 pb +- ( 206.871 pb = 5 % ) Event 400 ( 3s elapsed / 39s left ) -> ETA: Tue Nov 28 22:04 XS = 3776.26 pb +- ( 177.488 pb = 4 % ) Event 500 ( 3s elapsed / 34s left ) -> ETA: Tue Nov 28 22:04 XS = 3855.85 pb +- ( 161.866 pb = 4 % ) Event 600 ( 4s elapsed / 30s left ) -> ETA: Tue Nov 28 22:04 XS = 3811.82 pb +- ( 146.185 pb = 3 % ) Event 700 ( 4s elapsed / 28s left ) -> ETA: Tue Nov 28 22:04 XS = 3876.69 pb +- ( 137.486 pb = 3 % ) Event 800 ( 5s elapsed / 26s left ) -> ETA: Tue Nov 28 22:04 XS = 3843.49 pb +- ( 127.578 pb = 3 % ) Event 900 ( 5s elapsed / 25s left ) -> ETA: Tue Nov 28 22:04 XS = 3830.11 pb +- ( 119.89 pb = 3 % ) Event 1000 ( 5s elapsed / 23s left ) -> ETA: Tue Nov 28 22:04 XS = 3853.1 pb +- ( 114.374 pb = 2 % ) Event 2000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:04 XS = 3805.55 pb +- ( 79.9406 pb = 2 % ) Event 3000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:04 XS = 3802.72 pb +- ( 65.2252 pb = 1 % ) Event 4000 ( 18s elapsed / 4s left ) -> ETA: Tue Nov 28 22:04 XS = 3765.17 pb +- ( 55.9654 pb = 1 % ) Event 5000 ( 22 s total ) = 1.9917e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3765.81 0 % 50.0647 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 22s on Tue Nov 28 22:04:34 2023 (User: 22s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:06:33 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 18m 18s left ) -> ETA: Wed Nov 29 00:24 XS = 1704.29 pb +- ( 1704.29 pb = 100 % ) Event 2 ( 1s elapsed / 1h 9m 33s left ) -> ETA: Tue Nov 28 23:16 XS = 3238.14 pb +- ( 2228.64 pb = 68 % ) Event 3 ( 1s elapsed / 46m 21s left ) -> ETA: Tue Nov 28 22:52 XS = 3469.44 pb +- ( 1927.47 pb = 55 % ) Event 4 ( 1s elapsed / 34m 58s left ) -> ETA: Tue Nov 28 22:41 XS = 2490.88 pb +- ( 1208.25 pb = 48 % ) Event 5 ( 1s elapsed / 27m 58s left ) -> ETA: Tue Nov 28 22:34 XS = 3054.85 pb +- ( 1312.58 pb = 42 % ) Event 6 ( 1s elapsed / 23m 18s left ) -> ETA: Tue Nov 28 22:29 XS = 2857.19 pb +- ( 1122.07 pb = 39 % ) Event 7 ( 1s elapsed / 20m 5s left ) -> ETA: Tue Nov 28 22:26 XS = 2312.96 pb +- ( 846.747 pb = 36 % ) Event 8 ( 1s elapsed / 17m 40s left ) -> ETA: Tue Nov 28 22:24 XS = 2398.63 pb +- ( 819.833 pb = 34 % ) Event 9 ( 1s elapsed / 15m 42s left ) -> ETA: Tue Nov 28 22:22 XS = 2350.27 pb +- ( 757.516 pb = 32 % ) Event 10 ( 1s elapsed / 14m 13s left ) -> ETA: Tue Nov 28 22:20 XS = 2529.8 pb +- ( 771.126 pb = 30 % ) Event 20 ( 1s elapsed / 7m 13s left ) -> ETA: Tue Nov 28 22:13 XS = 3238.14 pb +- ( 688.638 pb = 21 % ) Event 30 ( 1s elapsed / 4m 54s left ) -> ETA: Tue Nov 28 22:11 XS = 3164.31 pb +- ( 549.664 pb = 17 % ) Event 40 ( 1s elapsed / 3m 45s left ) -> ETA: Tue Nov 28 22:10 XS = 3628.17 pb +- ( 541.331 pb = 14 % ) Event 50 ( 1s elapsed / 3m 4s left ) -> ETA: Tue Nov 28 22:09 XS = 3558.4 pb +- ( 475.302 pb = 13 % ) Event 60 ( 1s elapsed / 2m 36s left ) -> ETA: Tue Nov 28 22:09 XS = 3558.4 pb +- ( 433.809 pb = 12 % ) Event 70 ( 1s elapsed / 2m 16s left ) -> ETA: Tue Nov 28 22:08 XS = 3784.14 pb +- ( 425.398 pb = 11 % ) Event 80 ( 1s elapsed / 2m 1s left ) -> ETA: Tue Nov 28 22:08 XS = 3748.94 pb +- ( 394.42 pb = 10 % ) Event 90 ( 2s elapsed / 1m 51s left ) -> ETA: Tue Nov 28 22:08 XS = 3453 pb +- ( 344.228 pb = 9 % ) Event 100 ( 2s elapsed / 1m 41s left ) -> ETA: Tue Nov 28 22:08 XS = 3667.21 pb +- ( 345.527 pb = 9 % ) Event 200 ( 2s elapsed / 59s left ) -> ETA: Tue Nov 28 22:07 XS = 3910.8 pb +- ( 259.378 pb = 6 % ) Event 300 ( 2s elapsed / 45s left ) -> ETA: Tue Nov 28 22:07 XS = 3987.86 pb +- ( 215.641 pb = 5 % ) Event 400 ( 3s elapsed / 38s left ) -> ETA: Tue Nov 28 22:07 XS = 4036.33 pb +- ( 188.849 pb = 4 % ) Event 500 ( 3s elapsed / 33s left ) -> ETA: Tue Nov 28 22:07 XS = 3950.88 pb +- ( 165.58 pb = 4 % ) Event 600 ( 4s elapsed / 30s left ) -> ETA: Tue Nov 28 22:07 XS = 3966.69 pb +- ( 151.712 pb = 3 % ) Event 700 ( 4s elapsed / 28s left ) -> ETA: Tue Nov 28 22:07 XS = 4009.02 pb +- ( 141.85 pb = 3 % ) Event 800 ( 5s elapsed / 26s left ) -> ETA: Tue Nov 28 22:07 XS = 4010.71 pb +- ( 132.738 pb = 3 % ) Event 900 ( 5s elapsed / 25s left ) -> ETA: Tue Nov 28 22:07 XS = 3970.48 pb +- ( 123.978 pb = 3 % ) Event 1000 ( 6s elapsed / 24s left ) -> ETA: Tue Nov 28 22:07 XS = 3981.98 pb +- ( 117.932 pb = 2 % ) Event 2000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:06 XS = 3966.61 pb +- ( 83.0888 pb = 2 % ) Event 3000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:06 XS = 3925.97 pb +- ( 67.194 pb = 1 % ) Event 4000 ( 18s elapsed / 4s left ) -> ETA: Tue Nov 28 22:06 XS = 3937.19 pb +- ( 58.3462 pb = 1 % ) Event 5000 ( 22 s total ) = 1.98803e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3914.68 0 % 51.9084 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 22s on Tue Nov 28 22:06:55 2023 (User: 22s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:11:50 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 25m 48s left ) -> ETA: Wed Nov 29 00:37 XS = 590.178 pb +- ( 590.178 pb = 100 % ) Event 2 ( 1s elapsed / 1h 13m 18s left ) -> ETA: Tue Nov 28 23:25 XS = 983.631 pb +- ( 674.765 pb = 68 % ) Event 3 ( 1s elapsed / 49m 8s left ) -> ETA: Tue Nov 28 23:01 XS = 1207.18 pb +- ( 662.948 pb = 54 % ) Event 4 ( 1s elapsed / 36m 50s left ) -> ETA: Tue Nov 28 22:48 XS = 1361.95 pb +- ( 638.811 pb = 46 % ) Event 5 ( 1s elapsed / 29m 38s left ) -> ETA: Tue Nov 28 22:41 XS = 1427.85 pb +- ( 594.462 pb = 41 % ) Event 6 ( 1s elapsed / 24m 41s left ) -> ETA: Tue Nov 28 22:36 XS = 1435.57 pb +- ( 543.849 pb = 37 % ) Event 7 ( 1s elapsed / 21m 23s left ) -> ETA: Tue Nov 28 22:33 XS = 1264.67 pb +- ( 447.128 pb = 35 % ) Event 8 ( 1s elapsed / 18m 43s left ) -> ETA: Tue Nov 28 22:30 XS = 1336.25 pb +- ( 439.489 pb = 32 % ) Event 9 ( 1s elapsed / 16m 38s left ) -> ETA: Tue Nov 28 22:28 XS = 1327.9 pb +- ( 411.532 pb = 30 % ) Event 10 ( 1s elapsed / 15m 3s left ) -> ETA: Tue Nov 28 22:26 XS = 1341.31 pb +- ( 393.702 pb = 29 % ) Event 20 ( 1s elapsed / 7m 43s left ) -> ETA: Tue Nov 28 22:19 XS = 1609.58 pb +- ( 327.043 pb = 20 % ) Event 30 ( 1s elapsed / 5m 18s left ) -> ETA: Tue Nov 28 22:17 XS = 1571.48 pb +- ( 260.976 pb = 16 % ) Event 40 ( 1s elapsed / 4m 6s left ) -> ETA: Tue Nov 28 22:15 XS = 1797.5 pb +- ( 254.367 pb = 14 % ) Event 50 ( 2s elapsed / 3m 21s left ) -> ETA: Tue Nov 28 22:15 XS = 1799.32 pb +- ( 227.599 pb = 12 % ) Event 60 ( 2s elapsed / 2m 51s left ) -> ETA: Tue Nov 28 22:14 XS = 1713.42 pb +- ( 198.966 pb = 11 % ) Event 70 ( 2s elapsed / 2m 29s left ) -> ETA: Tue Nov 28 22:14 XS = 1770.54 pb +- ( 189.549 pb = 10 % ) Event 80 ( 2s elapsed / 2m 14s left ) -> ETA: Tue Nov 28 22:14 XS = 1706.54 pb +- ( 171.63 pb = 10 % ) Event 90 ( 2s elapsed / 2m 1s left ) -> ETA: Tue Nov 28 22:13 XS = 1724.55 pb +- ( 163.296 pb = 9 % ) Event 100 ( 2s elapsed / 1m 51s left ) -> ETA: Tue Nov 28 22:13 XS = 1770.54 pb +- ( 158.52 pb = 8 % ) Event 200 ( 2s elapsed / 1m 8s left ) -> ETA: Tue Nov 28 22:13 XS = 1790.23 pb +- ( 113.124 pb = 6 % ) Event 300 ( 3s elapsed / 53s left ) -> ETA: Tue Nov 28 22:12 XS = 1901.08 pb +- ( 97.297 pb = 5 % ) Event 400 ( 3s elapsed / 44s left ) -> ETA: Tue Nov 28 22:12 XS = 1902.78 pb +- ( 84.3193 pb = 4 % ) Event 500 ( 4s elapsed / 40s left ) -> ETA: Tue Nov 28 22:12 XS = 1874.77 pb +- ( 74.4527 pb = 3 % ) Event 600 ( 5s elapsed / 37s left ) -> ETA: Tue Nov 28 22:12 XS = 1894.97 pb +- ( 68.5962 pb = 3 % ) Event 700 ( 5s elapsed / 34s left ) -> ETA: Tue Nov 28 22:12 XS = 1882.4 pb +- ( 63.1418 pb = 3 % ) Event 800 ( 6s elapsed / 32s left ) -> ETA: Tue Nov 28 22:12 XS = 1875.07 pb +- ( 58.8635 pb = 3 % ) Event 900 ( 6s elapsed / 31s left ) -> ETA: Tue Nov 28 22:12 XS = 1882.21 pb +- ( 55.6791 pb = 2 % ) Event 1000 ( 7s elapsed / 30s left ) -> ETA: Tue Nov 28 22:12 XS = 1879.55 pb +- ( 52.7565 pb = 2 % ) Event 2000 ( 14s elapsed / 21s left ) -> ETA: Tue Nov 28 22:12 XS = 1890.18 pb +- ( 37.485 pb = 1 % ) Event 3000 ( 20s elapsed / 13s left ) -> ETA: Tue Nov 28 22:12 XS = 1862.68 pb +- ( 30.2199 pb = 1 % ) Event 4000 ( 26s elapsed / 6s left ) -> ETA: Tue Nov 28 22:12 XS = 1861.27 pb +- ( 26.1539 pb = 1 % ) Event 5000 ( 32 s total ) = 1.36149e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1892 0 % 23.7265 1.25 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 32s on Tue Nov 28 22:12:23 2023 (User: 32s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:13:56 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 26m 38s left ) -> ETA: Wed Nov 29 02:40 XS = 590.178 pb +- ( 590.178 pb = 100 % ) Event 2 ( 1s elapsed / 2h 13m 18s left ) -> ETA: Wed Nov 29 00:27 XS = 983.631 pb +- ( 674.765 pb = 68 % ) Event 3 ( 1s elapsed / 1h 29m 25s left ) -> ETA: Tue Nov 28 23:43 XS = 1207.18 pb +- ( 662.948 pb = 54 % ) Event 4 ( 1s elapsed / 1h 7m 3s left ) -> ETA: Tue Nov 28 23:21 XS = 1361.95 pb +- ( 638.811 pb = 46 % ) Event 5 ( 1s elapsed / 53m 58s left ) -> ETA: Tue Nov 28 23:07 XS = 1427.85 pb +- ( 594.462 pb = 41 % ) Event 6 ( 1s elapsed / 44m 58s left ) -> ETA: Tue Nov 28 22:58 XS = 1435.57 pb +- ( 543.849 pb = 37 % ) Event 7 ( 1s elapsed / 39m 1s left ) -> ETA: Tue Nov 28 22:52 XS = 1264.67 pb +- ( 447.128 pb = 35 % ) Event 8 ( 1s elapsed / 34m 8s left ) -> ETA: Tue Nov 28 22:48 XS = 1336.25 pb +- ( 439.489 pb = 32 % ) Event 9 ( 1s elapsed / 30m 31s left ) -> ETA: Tue Nov 28 22:44 XS = 1327.9 pb +- ( 411.532 pb = 30 % ) Event 10 ( 1s elapsed / 27m 28s left ) -> ETA: Tue Nov 28 22:41 XS = 1341.31 pb +- ( 393.702 pb = 29 % ) Event 20 ( 1s elapsed / 14m 8s left ) -> ETA: Tue Nov 28 22:28 XS = 1609.58 pb +- ( 327.043 pb = 20 % ) Event 30 ( 1s elapsed / 9m 44s left ) -> ETA: Tue Nov 28 22:23 XS = 1571.48 pb +- ( 260.976 pb = 16 % ) Event 40 ( 1s elapsed / 7m 35s left ) -> ETA: Tue Nov 28 22:21 XS = 1797.5 pb +- ( 254.367 pb = 14 % ) Event 50 ( 1s elapsed / 6m 14s left ) -> ETA: Tue Nov 28 22:20 XS = 1799.32 pb +- ( 227.599 pb = 12 % ) Event 60 ( 1s elapsed / 5m 18s left ) -> ETA: Tue Nov 28 22:19 XS = 1713.42 pb +- ( 198.966 pb = 11 % ) Event 70 ( 1s elapsed / 4m 39s left ) -> ETA: Tue Nov 28 22:18 XS = 1770.54 pb +- ( 189.549 pb = 10 % ) Event 80 ( 2s elapsed / 4m 14s left ) -> ETA: Tue Nov 28 22:18 XS = 1706.54 pb +- ( 171.63 pb = 10 % ) Event 90 ( 2s elapsed / 3m 52s left ) -> ETA: Tue Nov 28 22:17 XS = 1724.55 pb +- ( 163.296 pb = 9 % ) Event 100 ( 2s elapsed / 3m 34s left ) -> ETA: Tue Nov 28 22:17 XS = 1770.54 pb +- ( 158.52 pb = 8 % ) Event 200 ( 2s elapsed / 2m 17s left ) -> ETA: Tue Nov 28 22:16 XS = 1790.23 pb +- ( 113.124 pb = 6 % ) Event 300 ( 3s elapsed / 1m 47s left ) -> ETA: Tue Nov 28 22:15 XS = 1901.08 pb +- ( 97.297 pb = 5 % ) Event 400 ( 3s elapsed / 1m 30s left ) -> ETA: Tue Nov 28 22:15 XS = 1902.78 pb +- ( 84.3193 pb = 4 % ) Event 500 ( 4s elapsed / 1m 23s left ) -> ETA: Tue Nov 28 22:15 XS = 1874.77 pb +- ( 74.4527 pb = 3 % ) Event 600 ( 4s elapsed / 1m 16s left ) -> ETA: Tue Nov 28 22:15 XS = 1894.97 pb +- ( 68.5962 pb = 3 % ) Event 700 ( 5s elapsed / 1m 11s left ) -> ETA: Tue Nov 28 22:15 XS = 1882.4 pb +- ( 63.1418 pb = 3 % ) Event 800 ( 5s elapsed / 1m 7s left ) -> ETA: Tue Nov 28 22:15 XS = 1875.07 pb +- ( 58.8635 pb = 3 % ) Event 900 ( 6s elapsed / 1m 5s left ) -> ETA: Tue Nov 28 22:15 XS = 1882.21 pb +- ( 55.6791 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 3s left ) -> ETA: Tue Nov 28 22:15 XS = 1879.55 pb +- ( 52.7565 pb = 2 % ) Event 2000 ( 12s elapsed / 51s left ) -> ETA: Tue Nov 28 22:15 XS = 1890.18 pb +- ( 37.485 pb = 1 % ) Event 3000 ( 18s elapsed / 43s left ) -> ETA: Tue Nov 28 22:14 XS = 1862.68 pb +- ( 30.2199 pb = 1 % ) Event 4000 ( 24s elapsed / 36s left ) -> ETA: Tue Nov 28 22:14 XS = 1861.27 pb +- ( 26.1539 pb = 1 % ) Event 5000 ( 29s elapsed / 29s left ) -> ETA: Tue Nov 28 22:14 XS = 1892 pb +- ( 23.7265 pb = 1 % ) Event 6000 ( 34s elapsed / 23s left ) -> ETA: Tue Nov 28 22:14 XS = 1909.82 pb +- ( 21.8352 pb = 1 % ) Event 7000 ( 39s elapsed / 17s left ) -> ETA: Tue Nov 28 22:14 XS = 1927.31 pb +- ( 20.3748 pb = 1 % ) Event 8000 ( 45s elapsed / 11s left ) -> ETA: Tue Nov 28 22:14 XS = 1933.27 pb +- ( 19.1095 pb = 0 % ) Event 9000 ( 51s elapsed / 5s left ) -> ETA: Tue Nov 28 22:14 XS = 1930 pb +- ( 17.9904 pb = 0 % ) Event 10000 ( 56 s total ) = 1.54839e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1932.94 0 % 17.0896 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 56s on Tue Nov 28 22:14:53 2023 (User: 56s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:21:09 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 36m 38s left ) -> ETA: Wed Nov 29 02:57 XS = 590.178 pb +- ( 590.178 pb = 100 % ) Event 2 ( 1s elapsed / 2h 18m 18s left ) -> ETA: Wed Nov 29 00:39 XS = 983.631 pb +- ( 674.765 pb = 68 % ) Event 3 ( 1s elapsed / 1h 32m 44s left ) -> ETA: Tue Nov 28 23:53 XS = 1397.79 pb +- ( 760.861 pb = 54 % ) Event 4 ( 1s elapsed / 1h 9m 33s left ) -> ETA: Tue Nov 28 23:30 XS = 1475.45 pb +- ( 687.93 pb = 46 % ) Event 5 ( 1s elapsed / 55m 38s left ) -> ETA: Tue Nov 28 23:16 XS = 1639.38 pb +- ( 674.404 pb = 41 % ) Event 6 ( 1s elapsed / 46m 21s left ) -> ETA: Tue Nov 28 23:07 XS = 1713.42 pb +- ( 638.554 pb = 37 % ) Event 7 ( 1s elapsed / 39m 58s left ) -> ETA: Tue Nov 28 23:01 XS = 1721.35 pb +- ( 592.224 pb = 34 % ) Event 8 ( 1s elapsed / 34m 58s left ) -> ETA: Tue Nov 28 22:56 XS = 1863.72 pb +- ( 593.329 pb = 31 % ) Event 9 ( 1s elapsed / 31m 4s left ) -> ETA: Tue Nov 28 22:52 XS = 1943.27 pb +- ( 579.371 pb = 29 % ) Event 10 ( 1s elapsed / 27m 58s left ) -> ETA: Tue Nov 28 22:49 XS = 2107.78 pb +- ( 588.855 pb = 27 % ) Event 20 ( 1s elapsed / 14m 8s left ) -> ETA: Tue Nov 28 22:35 XS = 1945.64 pb +- ( 386.417 pb = 19 % ) Event 30 ( 1s elapsed / 9m 34s left ) -> ETA: Tue Nov 28 22:30 XS = 1844.31 pb +- ( 300.647 pb = 16 % ) Event 40 ( 1s elapsed / 7m 15s left ) -> ETA: Tue Nov 28 22:28 XS = 1924.49 pb +- ( 269.925 pb = 14 % ) Event 50 ( 1s elapsed / 5m 52s left ) -> ETA: Tue Nov 28 22:27 XS = 1958.56 pb +- ( 244.972 pb = 12 % ) Event 60 ( 1s elapsed / 4m 56s left ) -> ETA: Tue Nov 28 22:26 XS = 1989.37 pb +- ( 226.56 pb = 11 % ) Event 70 ( 1s elapsed / 4m 15s left ) -> ETA: Tue Nov 28 22:25 XS = 2011.97 pb +- ( 211.735 pb = 10 % ) Event 80 ( 1s elapsed / 3m 45s left ) -> ETA: Tue Nov 28 22:24 XS = 1903.8 pb +- ( 188.834 pb = 9 % ) Event 90 ( 1s elapsed / 3m 22s left ) -> ETA: Tue Nov 28 22:24 XS = 1933.84 pb +- ( 180.429 pb = 9 % ) Event 100 ( 1s elapsed / 3m 4s left ) -> ETA: Tue Nov 28 22:24 XS = 1903.8 pb +- ( 168.853 pb = 8 % ) Event 200 ( 2s elapsed / 1m 41s left ) -> ETA: Tue Nov 28 22:22 XS = 1943.51 pb +- ( 121.475 pb = 6 % ) Event 300 ( 2s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:22 XS = 1861.11 pb +- ( 95.5242 pb = 5 % ) Event 400 ( 2s elapsed / 1m left ) -> ETA: Tue Nov 28 22:22 XS = 1889.58 pb +- ( 83.8137 pb = 4 % ) Event 500 ( 2s elapsed / 53s left ) -> ETA: Tue Nov 28 22:22 XS = 1871.6 pb +- ( 74.3437 pb = 3 % ) Event 600 ( 3s elapsed / 47s left ) -> ETA: Tue Nov 28 22:21 XS = 1832.22 pb +- ( 66.6227 pb = 3 % ) Event 700 ( 3s elapsed / 43s left ) -> ETA: Tue Nov 28 22:21 XS = 1836.65 pb +- ( 61.8089 pb = 3 % ) Event 800 ( 3s elapsed / 40s left ) -> ETA: Tue Nov 28 22:21 XS = 1871.6 pb +- ( 58.7692 pb = 3 % ) Event 900 ( 3s elapsed / 37s left ) -> ETA: Tue Nov 28 22:21 XS = 1853.75 pb +- ( 54.9488 pb = 2 % ) Event 1000 ( 3s elapsed / 35s left ) -> ETA: Tue Nov 28 22:21 XS = 1867.26 pb +- ( 52.4577 pb = 2 % ) Event 2000 ( 6s elapsed / 25s left ) -> ETA: Tue Nov 28 22:21 XS = 1848.74 pb +- ( 36.7719 pb = 1 % ) Event 3000 ( 8s elapsed / 19s left ) -> ETA: Tue Nov 28 22:21 XS = 1891.33 pb +- ( 30.6218 pb = 1 % ) Event 4000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:21 XS = 1920.42 pb +- ( 26.8707 pb = 1 % ) Event 5000 ( 12s elapsed / 12s left ) -> ETA: Tue Nov 28 22:21 XS = 1911.28 pb +- ( 23.9351 pb = 1 % ) Event 6000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:21 XS = 1908.59 pb +- ( 21.823 pb = 1 % ) Event 7000 ( 16s elapsed / 7s left ) -> ETA: Tue Nov 28 22:21 XS = 1907.38 pb +- ( 20.1931 pb = 1 % ) Event 8000 ( 19s elapsed / 4s left ) -> ETA: Tue Nov 28 22:21 XS = 1925.59 pb +- ( 19.0442 pb = 0 % ) Event 9000 ( 21s elapsed / 2s left ) -> ETA: Tue Nov 28 22:21 XS = 1932.15 pb +- ( 18.0076 pb = 0 % ) Event 10000 ( 23 s total ) = 3.79114e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_1em/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1935.52 0 % 17.1092 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:21:32 2023 (User: 22s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:22:27 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 54m 58s left ) -> ETA: Wed Nov 29 03:17 XS = 1704.29 pb +- ( 1704.29 pb = 100 % ) Event 2 ( 1s elapsed / 2h 28m 18s left ) -> ETA: Wed Nov 29 00:50 XS = 3083.95 pb +- ( 2125.46 pb = 68 % ) Event 3 ( 1s elapsed / 1h 38m 51s left ) -> ETA: Wed Nov 29 00:01 XS = 3885.77 pb +- ( 2147.94 pb = 55 % ) Event 4 ( 1s elapsed / 1h 14m 8s left ) -> ETA: Tue Nov 28 23:36 XS = 3597.94 pb +- ( 1720.14 pb = 47 % ) Event 5 ( 1s elapsed / 59m 38s left ) -> ETA: Tue Nov 28 23:22 XS = 3174.65 pb +- ( 1361.77 pb = 42 % ) Event 6 ( 1s elapsed / 49m 41s left ) -> ETA: Tue Nov 28 23:12 XS = 3133.69 pb +- ( 1225.77 pb = 39 % ) Event 7 ( 1s elapsed / 42m 35s left ) -> ETA: Tue Nov 28 23:05 XS = 3541.72 pb +- ( 1273.3 pb = 35 % ) Event 8 ( 1s elapsed / 37m 28s left ) -> ETA: Tue Nov 28 22:59 XS = 3700.74 pb +- ( 1240.26 pb = 33 % ) Event 9 ( 1s elapsed / 33m 18s left ) -> ETA: Tue Nov 28 22:55 XS = 4104.69 pb +- ( 1287.67 pb = 31 % ) Event 10 ( 1s elapsed / 29m 58s left ) -> ETA: Tue Nov 28 22:52 XS = 4435.81 pb +- ( 1312.13 pb = 29 % ) Event 20 ( 1s elapsed / 15m 13s left ) -> ETA: Tue Nov 28 22:37 XS = 5059.6 pb +- ( 1043.3 pb = 20 % ) Event 30 ( 1s elapsed / 10m 24s left ) -> ETA: Tue Nov 28 22:32 XS = 3611.31 pb +- ( 622.639 pb = 17 % ) Event 40 ( 1s elapsed / 7m 55s left ) -> ETA: Tue Nov 28 22:30 XS = 4047.68 pb +- ( 599.598 pb = 14 % ) Event 50 ( 1s elapsed / 6m 28s left ) -> ETA: Tue Nov 28 22:28 XS = 3958.61 pb +- ( 525.14 pb = 13 % ) Event 60 ( 1s elapsed / 5m 29s left ) -> ETA: Tue Nov 28 22:27 XS = 3772.59 pb +- ( 458.235 pb = 12 % ) Event 70 ( 2s elapsed / 4m 46s left ) -> ETA: Tue Nov 28 22:27 XS = 4033.28 pb +- ( 451.45 pb = 11 % ) Event 80 ( 2s elapsed / 4m 14s left ) -> ETA: Tue Nov 28 22:26 XS = 3967.1 pb +- ( 415.797 pb = 10 % ) Event 90 ( 2s elapsed / 3m 51s left ) -> ETA: Tue Nov 28 22:26 XS = 3819.57 pb +- ( 378.375 pb = 9 % ) Event 100 ( 2s elapsed / 3m 29s left ) -> ETA: Tue Nov 28 22:25 XS = 4037.59 pb +- ( 377.985 pb = 9 % ) Event 200 ( 2s elapsed / 2m 2s left ) -> ETA: Tue Nov 28 22:24 XS = 3671.36 pb +- ( 244.515 pb = 6 % ) Event 300 ( 2s elapsed / 1m 32s left ) -> ETA: Tue Nov 28 22:24 XS = 3726.29 pb +- ( 202.419 pb = 5 % ) Event 400 ( 3s elapsed / 1m 16s left ) -> ETA: Tue Nov 28 22:23 XS = 3851.49 pb +- ( 180.787 pb = 4 % ) Event 500 ( 3s elapsed / 1m 7s left ) -> ETA: Tue Nov 28 22:23 XS = 3902.32 pb +- ( 163.684 pb = 4 % ) Event 600 ( 3s elapsed / 1m left ) -> ETA: Tue Nov 28 22:23 XS = 3886.55 pb +- ( 148.856 pb = 3 % ) Event 700 ( 4s elapsed / 55s left ) -> ETA: Tue Nov 28 22:23 XS = 3781.62 pb +- ( 134.338 pb = 3 % ) Event 800 ( 4s elapsed / 51s left ) -> ETA: Tue Nov 28 22:23 XS = 3728.97 pb +- ( 124.025 pb = 3 % ) Event 900 ( 4s elapsed / 47s left ) -> ETA: Tue Nov 28 22:23 XS = 3772.59 pb +- ( 118.209 pb = 3 % ) Event 1000 ( 5s elapsed / 45s left ) -> ETA: Tue Nov 28 22:23 XS = 3837.12 pb +- ( 113.931 pb = 2 % ) Event 2000 ( 7s elapsed / 31s left ) -> ETA: Tue Nov 28 22:23 XS = 3810.93 pb +- ( 80.0459 pb = 2 % ) Event 3000 ( 10s elapsed / 25s left ) -> ETA: Tue Nov 28 22:23 XS = 3799.3 pb +- ( 65.1705 pb = 1 % ) Event 4000 ( 13s elapsed / 20s left ) -> ETA: Tue Nov 28 22:23 XS = 3803.2 pb +- ( 56.4931 pb = 1 % ) Event 5000 ( 16s elapsed / 16s left ) -> ETA: Tue Nov 28 22:23 XS = 3817.67 pb +- ( 50.7081 pb = 1 % ) Event 6000 ( 19s elapsed / 13s left ) -> ETA: Tue Nov 28 22:23 XS = 3832.73 pb +- ( 46.4603 pb = 1 % ) Event 7000 ( 22s elapsed / 9s left ) -> ETA: Tue Nov 28 22:22 XS = 3846.62 pb +- ( 43.1593 pb = 1 % ) Event 8000 ( 25s elapsed / 6s left ) -> ETA: Tue Nov 28 22:22 XS = 3848.29 pb +- ( 40.388 pb = 1 % ) Event 9000 ( 28s elapsed / 3s left ) -> ETA: Tue Nov 28 22:22 XS = 3840.25 pb +- ( 38.004 pb = 0 % ) Event 10000 ( 31 s total ) = 2.8125e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3810.43 0 % 35.7925 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 31s on Tue Nov 28 22:22:58 2023 (User: 30s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:25:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 29m 58s left ) -> ETA: Wed Nov 29 02:55 XS = 590.178 pb +- ( 590.178 pb = 100 % ) Event 2 ( 1s elapsed / 2h 14m 58s left ) -> ETA: Wed Nov 29 00:40 XS = 983.631 pb +- ( 674.765 pb = 68 % ) Event 3 ( 1s elapsed / 1h 29m 58s left ) -> ETA: Tue Nov 28 23:55 XS = 1062.32 pb +- ( 587.22 pb = 55 % ) Event 4 ( 1s elapsed / 1h 7m 53s left ) -> ETA: Tue Nov 28 23:33 XS = 1106.58 pb +- ( 525.839 pb = 47 % ) Event 5 ( 1s elapsed / 54m 18s left ) -> ETA: Tue Nov 28 23:19 XS = 1341.31 pb +- ( 561.112 pb = 41 % ) Event 6 ( 1s elapsed / 45m 15s left ) -> ETA: Tue Nov 28 23:10 XS = 1295.51 pb +- ( 494.732 pb = 38 % ) Event 7 ( 1s elapsed / 38m 46s left ) -> ETA: Tue Nov 28 23:04 XS = 1377.08 pb +- ( 483.7 pb = 35 % ) Event 8 ( 1s elapsed / 34m 8s left ) -> ETA: Tue Nov 28 22:59 XS = 1388.65 pb +- ( 455.301 pb = 32 % ) Event 9 ( 1s elapsed / 30m 20s left ) -> ETA: Tue Nov 28 22:55 XS = 1373.69 pb +- ( 424.55 pb = 30 % ) Event 10 ( 1s elapsed / 27m 18s left ) -> ETA: Tue Nov 28 22:52 XS = 1451.26 pb +- ( 423.111 pb = 29 % ) Event 20 ( 1s elapsed / 13m 53s left ) -> ETA: Tue Nov 28 22:39 XS = 1825.29 pb +- ( 365.534 pb = 20 % ) Event 30 ( 1s elapsed / 9m 18s left ) -> ETA: Tue Nov 28 22:34 XS = 2042.93 pb +- ( 328.395 pb = 16 % ) Event 40 ( 1s elapsed / 7m 5s left ) -> ETA: Tue Nov 28 22:32 XS = 2000.6 pb +- ( 279.084 pb = 13 % ) Event 50 ( 1s elapsed / 5m 44s left ) -> ETA: Tue Nov 28 22:31 XS = 2107.78 pb +- ( 260.812 pb = 12 % ) Event 60 ( 1s elapsed / 4m 49s left ) -> ETA: Tue Nov 28 22:30 XS = 1870.28 pb +- ( 214.814 pb = 11 % ) Event 70 ( 1s elapsed / 4m 9s left ) -> ETA: Tue Nov 28 22:29 XS = 1979.83 pb +- ( 208.836 pb = 10 % ) Event 80 ( 1s elapsed / 3m 40s left ) -> ETA: Tue Nov 28 22:29 XS = 1983.79 pb +- ( 195.644 pb = 9 % ) Event 90 ( 1s elapsed / 3m 18s left ) -> ETA: Tue Nov 28 22:28 XS = 2017.07 pb +- ( 187.068 pb = 9 % ) Event 100 ( 1s elapsed / 3m 1s left ) -> ETA: Tue Nov 28 22:28 XS = 2049.23 pb +- ( 179.854 pb = 8 % ) Event 200 ( 2s elapsed / 1m 38s left ) -> ETA: Tue Nov 28 22:26 XS = 2070.8 pb +- ( 128.238 pb = 6 % ) Event 300 ( 2s elapsed / 1m 11s left ) -> ETA: Tue Nov 28 22:26 XS = 2053.99 pb +- ( 103.963 pb = 5 % ) Event 400 ( 2s elapsed / 58s left ) -> ETA: Tue Nov 28 22:26 XS = 1988.25 pb +- ( 87.5644 pb = 4 % ) Event 500 ( 2s elapsed / 50s left ) -> ETA: Tue Nov 28 22:26 XS = 2052.08 pb +- ( 80.4537 pb = 3 % ) Event 600 ( 2s elapsed / 46s left ) -> ETA: Tue Nov 28 22:26 XS = 1954.95 pb +- ( 70.4622 pb = 3 % ) Event 700 ( 3s elapsed / 42s left ) -> ETA: Tue Nov 28 22:26 XS = 1925.69 pb +- ( 64.3932 pb = 3 % ) Event 800 ( 3s elapsed / 40s left ) -> ETA: Tue Nov 28 22:26 XS = 1929.74 pb +- ( 60.3421 pb = 3 % ) Event 900 ( 3s elapsed / 37s left ) -> ETA: Tue Nov 28 22:26 XS = 1931.49 pb +- ( 56.9347 pb = 2 % ) Event 1000 ( 3s elapsed / 35s left ) -> ETA: Tue Nov 28 22:25 XS = 1928.69 pb +- ( 53.9449 pb = 2 % ) Event 2000 ( 6s elapsed / 25s left ) -> ETA: Tue Nov 28 22:25 XS = 1943.08 pb +- ( 38.3874 pb = 1 % ) Event 3000 ( 8s elapsed / 19s left ) -> ETA: Tue Nov 28 22:25 XS = 1933.32 pb +- ( 31.2072 pb = 1 % ) Event 4000 ( 10s elapsed / 16s left ) -> ETA: Tue Nov 28 22:25 XS = 1918.66 pb +- ( 26.8494 pb = 1 % ) Event 5000 ( 12s elapsed / 12s left ) -> ETA: Tue Nov 28 22:25 XS = 1924.16 pb +- ( 24.074 pb = 1 % ) Event 6000 ( 15s elapsed / 10s left ) -> ETA: Tue Nov 28 22:25 XS = 1913.4 pb +- ( 21.8705 pb = 1 % ) Event 7000 ( 17s elapsed / 7s left ) -> ETA: Tue Nov 28 22:25 XS = 1922.23 pb +- ( 20.3285 pb = 1 % ) Event 8000 ( 19s elapsed / 4s left ) -> ETA: Tue Nov 28 22:25 XS = 1924.91 pb +- ( 19.0384 pb = 0 % ) Event 9000 ( 21s elapsed / 2s left ) -> ETA: Tue Nov 28 22:25 XS = 1927.01 pb +- ( 17.9664 pb = 0 % ) Event 10000 ( 23 s total ) = 3.6425e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1918.28 0 % 16.9779 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 24s on Tue Nov 28 22:25:43 2023 (User: 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:27:00 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nlo_hessian_pdfas + NNPDF31_nlo_hessian_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 1 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 29m 58s left ) -> ETA: Wed Nov 29 02:57 XS = 590.178 pb +- ( 590.178 pb = 100 % ) Event 2 ( 1s elapsed / 2h 15m 48s left ) -> ETA: Wed Nov 29 00:42 XS = 931.861 pb +- ( 640.36 pb = 68 % ) Event 3 ( 1s elapsed / 1h 30m 31s left ) -> ETA: Tue Nov 28 23:57 XS = 1264.67 pb +- ( 692.687 pb = 54 % ) Event 4 ( 1s elapsed / 1h 8m 18s left ) -> ETA: Tue Nov 28 23:35 XS = 1311.51 pb +- ( 616.763 pb = 47 % ) Event 5 ( 1s elapsed / 54m 58s left ) -> ETA: Tue Nov 28 23:22 XS = 1196.31 pb +- ( 504.408 pb = 42 % ) Event 6 ( 1s elapsed / 45m 48s left ) -> ETA: Tue Nov 28 23:12 XS = 1397.79 pb +- ( 530.69 pb = 37 % ) Event 7 ( 1s elapsed / 39m 29s left ) -> ETA: Tue Nov 28 23:06 XS = 1511.43 pb +- ( 526.683 pb = 34 % ) Event 8 ( 1s elapsed / 34m 33s left ) -> ETA: Tue Nov 28 23:01 XS = 1475.45 pb +- ( 481.237 pb = 32 % ) Event 9 ( 1s elapsed / 30m 53s left ) -> ETA: Tue Nov 28 22:57 XS = 1503.28 pb +- ( 460.94 pb = 30 % ) Event 10 ( 1s elapsed / 27m 58s left ) -> ETA: Tue Nov 28 22:55 XS = 1639.38 pb +- ( 472.356 pb = 28 % ) Event 20 ( 1s elapsed / 14m 18s left ) -> ETA: Tue Nov 28 22:41 XS = 2082.98 pb +- ( 409.72 pb = 19 % ) Event 30 ( 1s elapsed / 9m 48s left ) -> ETA: Tue Nov 28 22:36 XS = 1938.54 pb +- ( 313.933 pb = 16 % ) Event 40 ( 1s elapsed / 7m 33s left ) -> ETA: Tue Nov 28 22:34 XS = 1989.37 pb +- ( 277.739 pb = 13 % ) Event 50 ( 1s elapsed / 6m 10s left ) -> ETA: Tue Nov 28 22:33 XS = 2097.79 pb +- ( 259.765 pb = 12 % ) Event 60 ( 1s elapsed / 5m 19s left ) -> ETA: Tue Nov 28 22:32 XS = 1981.94 pb +- ( 225.835 pb = 11 % ) Event 70 ( 2s elapsed / 4m 43s left ) -> ETA: Tue Nov 28 22:31 XS = 1979.83 pb +- ( 208.836 pb = 10 % ) Event 80 ( 2s elapsed / 4m 12s left ) -> ETA: Tue Nov 28 22:31 XS = 1967.26 pb +- ( 194.245 pb = 9 % ) Event 90 ( 2s elapsed / 3m 50s left ) -> ETA: Tue Nov 28 22:30 XS = 2074.85 pb +- ( 191.619 pb = 9 % ) Event 100 ( 2s elapsed / 3m 32s left ) -> ETA: Tue Nov 28 22:30 XS = 2117.86 pb +- ( 184.946 pb = 8 % ) Event 200 ( 2s elapsed / 2m 11s left ) -> ETA: Tue Nov 28 22:29 XS = 1982.68 pb +- ( 123.573 pb = 6 % ) Event 300 ( 3s elapsed / 1m 47s left ) -> ETA: Tue Nov 28 22:28 XS = 2068.38 pb +- ( 104.581 pb = 5 % ) Event 400 ( 3s elapsed / 1m 34s left ) -> ETA: Tue Nov 28 22:28 XS = 2033.93 pb +- ( 89.2782 pb = 4 % ) Event 500 ( 4s elapsed / 1m 27s left ) -> ETA: Tue Nov 28 22:28 XS = 1924.49 pb +- ( 76.155 pb = 3 % ) Event 600 ( 5s elapsed / 1m 20s left ) -> ETA: Tue Nov 28 22:28 XS = 1908.59 pb +- ( 69.0216 pb = 3 % ) Event 700 ( 5s elapsed / 1m 16s left ) -> ETA: Tue Nov 28 22:28 XS = 1929.29 pb +- ( 64.4967 pb = 3 % ) Event 800 ( 6s elapsed / 1m 14s left ) -> ETA: Tue Nov 28 22:28 XS = 1941.38 pb +- ( 60.655 pb = 3 % ) Event 900 ( 7s elapsed / 1m 11s left ) -> ETA: Tue Nov 28 22:28 XS = 1929.62 pb +- ( 56.8873 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 9s left ) -> ETA: Tue Nov 28 22:28 XS = 1937.98 pb +- ( 54.1683 pb = 2 % ) Event 2000 ( 13s elapsed / 55s left ) -> ETA: Tue Nov 28 22:28 XS = 1919.71 pb +- ( 37.9899 pb = 1 % ) Event 3000 ( 20s elapsed / 46s left ) -> ETA: Tue Nov 28 22:28 XS = 1905.45 pb +- ( 30.8192 pb = 1 % ) Event 4000 ( 26s elapsed / 39s left ) -> ETA: Tue Nov 28 22:28 XS = 1915.73 pb +- ( 26.8294 pb = 1 % ) Event 5000 ( 32s elapsed / 32s left ) -> ETA: Tue Nov 28 22:28 XS = 1899.81 pb +- ( 23.8436 pb = 1 % ) Event 6000 ( 39s elapsed / 26s left ) -> ETA: Tue Nov 28 22:28 XS = 1908.2 pb +- ( 21.844 pb = 1 % ) Event 7000 ( 45s elapsed / 19s left ) -> ETA: Tue Nov 28 22:28 XS = 1908.31 pb +- ( 20.2279 pb = 1 % ) Event 8000 ( 51s elapsed / 12s left ) -> ETA: Tue Nov 28 22:28 XS = 1908.66 pb +- ( 18.9267 pb = 0 % ) Event 9000 ( 57s elapsed / 6s left ) -> ETA: Tue Nov 28 22:28 XS = 1906.78 pb +- ( 17.8308 pb = 0 % ) Event 10000 ( 62 s total ) = 1.39851e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_NNPDF/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1905.4 0 % 16.9065 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 2s on Tue Nov 28 22:28:03 2023 (User: 1m 1s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:31:35 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 31m 38s left ) -> ETA: Wed Nov 29 03:03 XS = 590.178 pb +- ( 590.178 pb = 100 % ) Event 2 ( 1s elapsed / 2h 15m 48s left ) -> ETA: Wed Nov 29 00:47 XS = 983.631 pb +- ( 674.765 pb = 68 % ) Event 3 ( 1s elapsed / 1h 31m 5s left ) -> ETA: Wed Nov 29 00:02 XS = 1207.18 pb +- ( 662.948 pb = 54 % ) Event 4 ( 1s elapsed / 1h 8m 18s left ) -> ETA: Tue Nov 28 23:39 XS = 1416.43 pb +- ( 662.474 pb = 46 % ) Event 5 ( 1s elapsed / 54m 58s left ) -> ETA: Tue Nov 28 23:26 XS = 1639.38 pb +- ( 674.404 pb = 41 % ) Event 6 ( 1s elapsed / 45m 48s left ) -> ETA: Tue Nov 28 23:17 XS = 1659.88 pb +- ( 620.592 pb = 37 % ) Event 7 ( 1s elapsed / 39m 29s left ) -> ETA: Tue Nov 28 23:11 XS = 1770.54 pb +- ( 607.289 pb = 34 % ) Event 8 ( 1s elapsed / 34m 45s left ) -> ETA: Tue Nov 28 23:06 XS = 1416.43 pb +- ( 463.635 pb = 32 % ) Event 9 ( 1s elapsed / 30m 53s left ) -> ETA: Tue Nov 28 23:02 XS = 1422.75 pb +- ( 438.405 pb = 30 % ) Event 10 ( 1s elapsed / 27m 48s left ) -> ETA: Tue Nov 28 22:59 XS = 1451.26 pb +- ( 423.111 pb = 29 % ) Event 20 ( 1s elapsed / 14m 13s left ) -> ETA: Tue Nov 28 22:45 XS = 1753.01 pb +- ( 352.785 pb = 20 % ) Event 30 ( 1s elapsed / 9m 44s left ) -> ETA: Tue Nov 28 22:41 XS = 1857.2 pb +- ( 302.478 pb = 16 % ) Event 40 ( 1s elapsed / 7m 30s left ) -> ETA: Tue Nov 28 22:39 XS = 1989.37 pb +- ( 277.739 pb = 13 % ) Event 50 ( 1s elapsed / 6m 14s left ) -> ETA: Tue Nov 28 22:37 XS = 1715.63 pb +- ( 218.275 pb = 12 % ) Event 60 ( 1s elapsed / 5m 18s left ) -> ETA: Tue Nov 28 22:36 XS = 1697 pb +- ( 197.283 pb = 11 % ) Event 70 ( 2s elapsed / 4m 43s left ) -> ETA: Tue Nov 28 22:36 XS = 1801.42 pb +- ( 192.439 pb = 10 % ) Event 80 ( 2s elapsed / 4m 14s left ) -> ETA: Tue Nov 28 22:35 XS = 1727.35 pb +- ( 173.473 pb = 10 % ) Event 90 ( 2s elapsed / 3m 50s left ) -> ETA: Tue Nov 28 22:35 XS = 1790.43 pb +- ( 168.756 pb = 9 % ) Event 100 ( 2s elapsed / 3m 36s left ) -> ETA: Tue Nov 28 22:35 XS = 1825.29 pb +- ( 162.795 pb = 8 % ) Event 200 ( 2s elapsed / 2m 25s left ) -> ETA: Tue Nov 28 22:34 XS = 1881.55 pb +- ( 118.126 pb = 6 % ) Event 300 ( 3s elapsed / 1m 58s left ) -> ETA: Tue Nov 28 22:33 XS = 1831.59 pb +- ( 94.2067 pb = 5 % ) Event 400 ( 4s elapsed / 1m 42s left ) -> ETA: Tue Nov 28 22:33 XS = 1845.27 pb +- ( 82.1077 pb = 4 % ) Event 500 ( 4s elapsed / 1m 30s left ) -> ETA: Tue Nov 28 22:33 XS = 1835.89 pb +- ( 73.1112 pb = 3 % ) Event 600 ( 5s elapsed / 1m 23s left ) -> ETA: Tue Nov 28 22:33 XS = 1856.56 pb +- ( 67.3906 pb = 3 % ) Event 700 ( 5s elapsed / 1m 17s left ) -> ETA: Tue Nov 28 22:32 XS = 1830.15 pb +- ( 61.6184 pb = 3 % ) Event 800 ( 6s elapsed / 1m 13s left ) -> ETA: Tue Nov 28 22:32 XS = 1860.78 pb +- ( 58.4747 pb = 3 % ) Event 900 ( 6s elapsed / 1m 9s left ) -> ETA: Tue Nov 28 22:32 XS = 1883.99 pb +- ( 55.7247 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 6s left ) -> ETA: Tue Nov 28 22:32 XS = 1879.95 pb +- ( 52.7662 pb = 2 % ) Event 2000 ( 13s elapsed / 54s left ) -> ETA: Tue Nov 28 22:32 XS = 1888.57 pb +- ( 37.4573 pb = 1 % ) Event 3000 ( 19s elapsed / 45s left ) -> ETA: Tue Nov 28 22:32 XS = 1931.63 pb +- ( 31.1837 pb = 1 % ) Event 4000 ( 25s elapsed / 38s left ) -> ETA: Tue Nov 28 22:32 XS = 1925.23 pb +- ( 26.9286 pb = 1 % ) Event 5000 ( 31s elapsed / 31s left ) -> ETA: Tue Nov 28 22:32 XS = 1933.83 pb +- ( 24.1781 pb = 1 % ) Event 6000 ( 37s elapsed / 25s left ) -> ETA: Tue Nov 28 22:32 XS = 1938.61 pb +- ( 22.1184 pb = 1 % ) Event 7000 ( 43s elapsed / 18s left ) -> ETA: Tue Nov 28 22:32 XS = 1935.19 pb +- ( 20.4465 pb = 1 % ) Event 8000 ( 49s elapsed / 12s left ) -> ETA: Tue Nov 28 22:32 XS = 1928 pb +- ( 19.0648 pb = 0 % ) Event 9000 ( 55s elapsed / 6s left ) -> ETA: Tue Nov 28 22:32 XS = 1923.24 pb +- ( 17.9361 pb = 0 % ) Event 10000 ( 60 s total ) = 1.42129e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_v2/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1921.32 0 % 17.0011 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 1s on Tue Nov 28 22:32:36 2023 (User: 1m, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:41:55 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 41m 38s left ) -> ETA: Wed Nov 29 03:23 XS = 590.178 pb +- ( 590.178 pb = 100 % ) Event 2 ( 1s elapsed / 2h 21m 38s left ) -> ETA: Wed Nov 29 01:03 XS = 983.631 pb +- ( 674.765 pb = 68 % ) Event 3 ( 1s elapsed / 1h 34m 24s left ) -> ETA: Wed Nov 29 00:16 XS = 1062.32 pb +- ( 587.22 pb = 55 % ) Event 4 ( 1s elapsed / 1h 10m 48s left ) -> ETA: Tue Nov 28 23:52 XS = 1106.58 pb +- ( 525.839 pb = 47 % ) Event 5 ( 1s elapsed / 56m 38s left ) -> ETA: Tue Nov 28 23:38 XS = 1341.31 pb +- ( 561.112 pb = 41 % ) Event 6 ( 1s elapsed / 47m 11s left ) -> ETA: Tue Nov 28 23:29 XS = 1295.51 pb +- ( 494.732 pb = 38 % ) Event 7 ( 1s elapsed / 40m 41s left ) -> ETA: Tue Nov 28 23:22 XS = 1377.08 pb +- ( 483.7 pb = 35 % ) Event 8 ( 1s elapsed / 35m 35s left ) -> ETA: Tue Nov 28 23:17 XS = 1388.65 pb +- ( 455.301 pb = 32 % ) Event 9 ( 1s elapsed / 31m 38s left ) -> ETA: Tue Nov 28 23:13 XS = 1373.69 pb +- ( 424.55 pb = 30 % ) Event 10 ( 1s elapsed / 28m 28s left ) -> ETA: Tue Nov 28 23:10 XS = 1451.26 pb +- ( 423.111 pb = 29 % ) Event 20 ( 1s elapsed / 14m 23s left ) -> ETA: Tue Nov 28 22:56 XS = 1825.29 pb +- ( 365.534 pb = 20 % ) Event 30 ( 1s elapsed / 9m 41s left ) -> ETA: Tue Nov 28 22:51 XS = 2042.93 pb +- ( 328.395 pb = 16 % ) Event 40 ( 1s elapsed / 7m 20s left ) -> ETA: Tue Nov 28 22:49 XS = 2000.6 pb +- ( 279.084 pb = 13 % ) Event 50 ( 1s elapsed / 5m 56s left ) -> ETA: Tue Nov 28 22:47 XS = 2107.78 pb +- ( 260.812 pb = 12 % ) Event 60 ( 1s elapsed / 5m 1s left ) -> ETA: Tue Nov 28 22:46 XS = 1870.28 pb +- ( 214.814 pb = 11 % ) Event 70 ( 1s elapsed / 4m 19s left ) -> ETA: Tue Nov 28 22:46 XS = 1979.83 pb +- ( 208.836 pb = 10 % ) Event 80 ( 1s elapsed / 3m 49s left ) -> ETA: Tue Nov 28 22:45 XS = 1983.79 pb +- ( 195.644 pb = 9 % ) Event 90 ( 1s elapsed / 3m 25s left ) -> ETA: Tue Nov 28 22:45 XS = 2017.07 pb +- ( 187.068 pb = 9 % ) Event 100 ( 1s elapsed / 3m 6s left ) -> ETA: Tue Nov 28 22:45 XS = 2049.23 pb +- ( 179.854 pb = 8 % ) Event 200 ( 2s elapsed / 1m 40s left ) -> ETA: Tue Nov 28 22:43 XS = 2070.8 pb +- ( 128.238 pb = 6 % ) Event 300 ( 2s elapsed / 1m 12s left ) -> ETA: Tue Nov 28 22:43 XS = 2053.99 pb +- ( 103.963 pb = 5 % ) Event 400 ( 2s elapsed / 58s left ) -> ETA: Tue Nov 28 22:42 XS = 1988.25 pb +- ( 87.5644 pb = 4 % ) Event 500 ( 2s elapsed / 49s left ) -> ETA: Tue Nov 28 22:42 XS = 2052.08 pb +- ( 80.4537 pb = 3 % ) Event 600 ( 2s elapsed / 44s left ) -> ETA: Tue Nov 28 22:42 XS = 1954.95 pb +- ( 70.4622 pb = 3 % ) Event 700 ( 3s elapsed / 40s left ) -> ETA: Tue Nov 28 22:42 XS = 1925.69 pb +- ( 64.3932 pb = 3 % ) Event 800 ( 3s elapsed / 37s left ) -> ETA: Tue Nov 28 22:42 XS = 1929.74 pb +- ( 60.3421 pb = 3 % ) Event 900 ( 3s elapsed / 34s left ) -> ETA: Tue Nov 28 22:42 XS = 1931.49 pb +- ( 56.9347 pb = 2 % ) Event 1000 ( 3s elapsed / 32s left ) -> ETA: Tue Nov 28 22:42 XS = 1928.69 pb +- ( 53.9449 pb = 2 % ) Event 2000 ( 5s elapsed / 21s left ) -> ETA: Tue Nov 28 22:42 XS = 1943.08 pb +- ( 38.3874 pb = 1 % ) Event 3000 ( 7s elapsed / 17s left ) -> ETA: Tue Nov 28 22:42 XS = 1933.32 pb +- ( 31.2072 pb = 1 % ) Event 4000 ( 9s elapsed / 14s left ) -> ETA: Tue Nov 28 22:42 XS = 1918.66 pb +- ( 26.8494 pb = 1 % ) Event 5000 ( 11s elapsed / 11s left ) -> ETA: Tue Nov 28 22:42 XS = 1924.16 pb +- ( 24.074 pb = 1 % ) Event 6000 ( 13s elapsed / 9s left ) -> ETA: Tue Nov 28 22:42 XS = 1913.4 pb +- ( 21.8705 pb = 1 % ) Event 7000 ( 15s elapsed / 6s left ) -> ETA: Tue Nov 28 22:42 XS = 1922.23 pb +- ( 20.3285 pb = 1 % ) Event 8000 ( 17s elapsed / 4s left ) -> ETA: Tue Nov 28 22:42 XS = 1924.91 pb +- ( 19.0384 pb = 0 % ) Event 9000 ( 19s elapsed / 2s left ) -> ETA: Tue Nov 28 22:42 XS = 1927.01 pb +- ( 17.9664 pb = 0 % ) Event 10000 ( 21 s total ) = 4.16988e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1918.28 0 % 16.9779 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 21s on Tue Nov 28 22:42:16 2023 (User: 21s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:37:24 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 38m 18s left ) -> ETA: Wed Nov 29 23:15 XS = 1373.13 pb +- ( 1373.13 pb = 100 % ) Event 2 ( 1s elapsed / 2h 19m 8s left ) -> ETA: Wed Nov 29 20:56 XS = 2174.12 pb +- ( 1503.54 pb = 69 % ) Event 3 ( 1s elapsed / 1h 32m 44s left ) -> ETA: Wed Nov 29 20:10 XS = 3130.73 pb +- ( 1730.58 pb = 55 % ) Event 4 ( 1s elapsed / 1h 9m 58s left ) -> ETA: Wed Nov 29 19:47 XS = 2371.76 pb +- ( 1143.77 pb = 48 % ) Event 5 ( 1s elapsed / 55m 58s left ) -> ETA: Wed Nov 29 19:33 XS = 2835.81 pb +- ( 1210.53 pb = 42 % ) Event 6 ( 1s elapsed / 46m 38s left ) -> ETA: Wed Nov 29 19:24 XS = 3069.34 pb +- ( 1188.75 pb = 38 % ) Event 7 ( 1s elapsed / 39m 58s left ) -> ETA: Wed Nov 29 19:17 XS = 3320.47 pb +- ( 1183.24 pb = 35 % ) Event 8 ( 1s elapsed / 35m 10s left ) -> ETA: Wed Nov 29 19:12 XS = 3537.55 pb +- ( 1172.81 pb = 33 % ) Event 9 ( 1s elapsed / 31m 16s left ) -> ETA: Wed Nov 29 19:08 XS = 3010.32 pb +- ( 949.883 pb = 31 % ) Event 10 ( 1s elapsed / 28m 8s left ) -> ETA: Wed Nov 29 19:05 XS = 3261.18 pb +- ( 970.755 pb = 29 % ) Event 20 ( 1s elapsed / 14m 28s left ) -> ETA: Wed Nov 29 18:51 XS = 3143.3 pb +- ( 661.159 pb = 21 % ) Event 30 ( 1s elapsed / 9m 54s left ) -> ETA: Wed Nov 29 18:47 XS = 3220.92 pb +- ( 551.697 pb = 17 % ) Event 40 ( 1s elapsed / 7m 33s left ) -> ETA: Wed Nov 29 18:44 XS = 3421.56 pb +- ( 505.104 pb = 14 % ) Event 50 ( 1s elapsed / 6m 8s left ) -> ETA: Wed Nov 29 18:43 XS = 3379.46 pb +- ( 446.479 pb = 13 % ) Event 60 ( 1s elapsed / 5m 11s left ) -> ETA: Wed Nov 29 18:42 XS = 3344.8 pb +- ( 403.614 pb = 12 % ) Event 70 ( 1s elapsed / 4m 30s left ) -> ETA: Wed Nov 29 18:41 XS = 3326.52 pb +- ( 371.722 pb = 11 % ) Event 80 ( 1s elapsed / 4m 1s left ) -> ETA: Wed Nov 29 18:41 XS = 3323.49 pb +- ( 347.381 pb = 10 % ) Event 90 ( 1s elapsed / 3m 36s left ) -> ETA: Wed Nov 29 18:41 XS = 3473.44 pb +- ( 341.142 pb = 9 % ) Event 100 ( 2s elapsed / 3m 18s left ) -> ETA: Wed Nov 29 18:40 XS = 3569 pb +- ( 331.818 pb = 9 % ) Event 200 ( 2s elapsed / 1m 57s left ) -> ETA: Wed Nov 29 18:39 XS = 3664.24 pb +- ( 240.302 pb = 6 % ) Event 300 ( 2s elapsed / 1m 28s left ) -> ETA: Wed Nov 29 18:38 XS = 3557.65 pb +- ( 190.927 pb = 5 % ) Event 400 ( 3s elapsed / 1m 15s left ) -> ETA: Wed Nov 29 18:38 XS = 3391.54 pb +- ( 158.197 pb = 4 % ) Event 500 ( 3s elapsed / 1m 6s left ) -> ETA: Wed Nov 29 18:38 XS = 3469.34 pb +- ( 144.489 pb = 4 % ) Event 600 ( 3s elapsed / 59s left ) -> ETA: Wed Nov 29 18:38 XS = 3617.67 pb +- ( 137.085 pb = 3 % ) Event 700 ( 4s elapsed / 55s left ) -> ETA: Wed Nov 29 18:38 XS = 3585.82 pb +- ( 125.886 pb = 3 % ) Event 800 ( 4s elapsed / 52s left ) -> ETA: Wed Nov 29 18:38 XS = 3563.52 pb +- ( 117.079 pb = 3 % ) Event 900 ( 4s elapsed / 50s left ) -> ETA: Wed Nov 29 18:38 XS = 3546.36 pb +- ( 109.893 pb = 3 % ) Event 1000 ( 5s elapsed / 49s left ) -> ETA: Wed Nov 29 18:38 XS = 3547.65 pb +- ( 104.287 pb = 2 % ) Event 2000 ( 9s elapsed / 38s left ) -> ETA: Wed Nov 29 18:38 XS = 3528.93 pb +- ( 73.3813 pb = 2 % ) Event 3000 ( 13s elapsed / 32s left ) -> ETA: Wed Nov 29 18:38 XS = 3541.23 pb +- ( 60.1072 pb = 1 % ) Event 4000 ( 17s elapsed / 25s left ) -> ETA: Wed Nov 29 18:38 XS = 3564.74 pb +- ( 52.3723 pb = 1 % ) Event 5000 ( 21s elapsed / 21s left ) -> ETA: Wed Nov 29 18:38 XS = 3534.29 pb +- ( 46.4744 pb = 1 % ) Event 6000 ( 25s elapsed / 17s left ) -> ETA: Wed Nov 29 18:38 XS = 3521.47 pb +- ( 42.2831 pb = 1 % ) Event 7000 ( 29s elapsed / 12s left ) -> ETA: Wed Nov 29 18:38 XS = 3517.38 pb +- ( 39.1046 pb = 1 % ) Event 8000 ( 33s elapsed / 8s left ) -> ETA: Wed Nov 29 18:38 XS = 3499.18 pb +- ( 36.4043 pb = 1 % ) Event 9000 ( 37s elapsed / 4s left ) -> ETA: Wed Nov 29 18:38 XS = 3480.44 pb +- ( 34.1527 pb = 0 % ) Event 10000 ( 41 s total ) = 2.11921e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3465.54 0 % 32.272 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 41s on Wed Nov 29 18:38:06 2023 (User: 40s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:43:36 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 3h 36m 38s left ) -> ETA: Wed Nov 29 22:20 XS = 1373.13 pb +- ( 1373.13 pb = 100 % ) Event 2 ( 1s elapsed / 1h 48m 18s left ) -> ETA: Wed Nov 29 20:31 XS = 2174.12 pb +- ( 1503.54 pb = 69 % ) Event 3 ( 1s elapsed / 1h 12m 45s left ) -> ETA: Wed Nov 29 19:56 XS = 3130.73 pb +- ( 1730.58 pb = 55 % ) Event 4 ( 1s elapsed / 54m 33s left ) -> ETA: Wed Nov 29 19:38 XS = 2371.76 pb +- ( 1143.77 pb = 48 % ) Event 5 ( 1s elapsed / 43m 58s left ) -> ETA: Wed Nov 29 19:27 XS = 2835.81 pb +- ( 1210.53 pb = 42 % ) Event 6 ( 1s elapsed / 36m 38s left ) -> ETA: Wed Nov 29 19:20 XS = 3069.34 pb +- ( 1188.75 pb = 38 % ) Event 7 ( 1s elapsed / 31m 24s left ) -> ETA: Wed Nov 29 19:15 XS = 3320.47 pb +- ( 1183.24 pb = 35 % ) Event 8 ( 1s elapsed / 27m 41s left ) -> ETA: Wed Nov 29 19:11 XS = 3537.55 pb +- ( 1172.81 pb = 33 % ) Event 9 ( 1s elapsed / 24m 36s left ) -> ETA: Wed Nov 29 19:08 XS = 3010.32 pb +- ( 949.883 pb = 31 % ) Event 10 ( 1s elapsed / 22m 8s left ) -> ETA: Wed Nov 29 19:05 XS = 3261.18 pb +- ( 970.755 pb = 29 % ) Event 20 ( 1s elapsed / 11m 23s left ) -> ETA: Wed Nov 29 18:55 XS = 3143.3 pb +- ( 661.159 pb = 21 % ) Event 30 ( 1s elapsed / 7m 48s left ) -> ETA: Wed Nov 29 18:51 XS = 3220.92 pb +- ( 551.697 pb = 17 % ) Event 40 ( 1s elapsed / 5m 56s left ) -> ETA: Wed Nov 29 18:49 XS = 3421.56 pb +- ( 505.104 pb = 14 % ) Event 50 ( 1s elapsed / 4m 52s left ) -> ETA: Wed Nov 29 18:48 XS = 3379.46 pb +- ( 446.479 pb = 13 % ) Event 60 ( 1s elapsed / 4m 8s left ) -> ETA: Wed Nov 29 18:47 XS = 3344.8 pb +- ( 403.614 pb = 12 % ) Event 70 ( 1s elapsed / 3m 38s left ) -> ETA: Wed Nov 29 18:47 XS = 3326.52 pb +- ( 371.722 pb = 11 % ) Event 80 ( 1s elapsed / 3m 14s left ) -> ETA: Wed Nov 29 18:46 XS = 3323.49 pb +- ( 347.381 pb = 10 % ) Event 90 ( 1s elapsed / 2m 55s left ) -> ETA: Wed Nov 29 18:46 XS = 3473.44 pb +- ( 341.142 pb = 9 % ) Event 100 ( 1s elapsed / 2m 39s left ) -> ETA: Wed Nov 29 18:46 XS = 3569 pb +- ( 331.818 pb = 9 % ) Event 200 ( 1s elapsed / 1m 36s left ) -> ETA: Wed Nov 29 18:45 XS = 3664.24 pb +- ( 240.302 pb = 6 % ) Event 300 ( 2s elapsed / 1m 14s left ) -> ETA: Wed Nov 29 18:44 XS = 3557.65 pb +- ( 190.927 pb = 5 % ) Event 400 ( 2s elapsed / 1m 4s left ) -> ETA: Wed Nov 29 18:44 XS = 3391.54 pb +- ( 158.197 pb = 4 % ) Event 500 ( 3s elapsed / 58s left ) -> ETA: Wed Nov 29 18:44 XS = 3469.34 pb +- ( 144.489 pb = 4 % ) Event 600 ( 3s elapsed / 52s left ) -> ETA: Wed Nov 29 18:44 XS = 3617.67 pb +- ( 137.085 pb = 3 % ) Event 700 ( 3s elapsed / 49s left ) -> ETA: Wed Nov 29 18:44 XS = 3585.82 pb +- ( 125.886 pb = 3 % ) Event 800 ( 4s elapsed / 46s left ) -> ETA: Wed Nov 29 18:44 XS = 3563.52 pb +- ( 117.079 pb = 3 % ) Event 900 ( 4s elapsed / 44s left ) -> ETA: Wed Nov 29 18:44 XS = 3546.36 pb +- ( 109.893 pb = 3 % ) Event 1000 ( 4s elapsed / 42s left ) -> ETA: Wed Nov 29 18:44 XS = 3547.65 pb +- ( 104.287 pb = 2 % ) Event 2000 ( 8s elapsed / 34s left ) -> ETA: Wed Nov 29 18:44 XS = 3528.93 pb +- ( 73.3813 pb = 2 % ) Event 3000 ( 11s elapsed / 27s left ) -> ETA: Wed Nov 29 18:44 XS = 3541.23 pb +- ( 60.1072 pb = 1 % ) Event 4000 ( 14s elapsed / 22s left ) -> ETA: Wed Nov 29 18:44 XS = 3564.74 pb +- ( 52.3723 pb = 1 % ) Event 5000 ( 18s elapsed / 18s left ) -> ETA: Wed Nov 29 18:44 XS = 3534.29 pb +- ( 46.4744 pb = 1 % ) Event 6000 ( 21s elapsed / 14s left ) -> ETA: Wed Nov 29 18:44 XS = 3521.47 pb +- ( 42.2831 pb = 1 % ) Event 7000 ( 25s elapsed / 10s left ) -> ETA: Wed Nov 29 18:44 XS = 3517.38 pb +- ( 39.1046 pb = 1 % ) Event 8000 ( 28s elapsed / 7s left ) -> ETA: Wed Nov 29 18:44 XS = 3499.18 pb +- ( 36.4043 pb = 1 % ) Event 9000 ( 31s elapsed / 3s left ) -> ETA: Wed Nov 29 18:44 XS = 3480.44 pb +- ( 34.1527 pb = 0 % ) Event 10000 ( 35 s total ) = 2.48776e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3465.54 0 % 32.272 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 35s on Wed Nov 29 18:44:11 2023 (User: 34s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 19:45:49 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8041 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 46m 38s left ) -> ETA: Thu Nov 30 00:32 XS = 1373.13 pb +- ( 1373.13 pb = 100 % ) Event 2 ( 1s elapsed / 2h 24m 8s left ) -> ETA: Wed Nov 29 22:09 XS = 2174.12 pb +- ( 1503.54 pb = 69 % ) Event 3 ( 1s elapsed / 1h 36m 4s left ) -> ETA: Wed Nov 29 21:21 XS = 3130.73 pb +- ( 1730.58 pb = 55 % ) Event 4 ( 1s elapsed / 1h 12m 28s left ) -> ETA: Wed Nov 29 20:58 XS = 2371.76 pb +- ( 1143.77 pb = 48 % ) Event 5 ( 1s elapsed / 57m 58s left ) -> ETA: Wed Nov 29 20:43 XS = 2835.81 pb +- ( 1210.53 pb = 42 % ) Event 6 ( 1s elapsed / 48m 18s left ) -> ETA: Wed Nov 29 20:34 XS = 3069.34 pb +- ( 1188.75 pb = 38 % ) Event 7 ( 1s elapsed / 41m 38s left ) -> ETA: Wed Nov 29 20:27 XS = 3320.47 pb +- ( 1183.24 pb = 35 % ) Event 8 ( 1s elapsed / 36m 25s left ) -> ETA: Wed Nov 29 20:22 XS = 3537.55 pb +- ( 1172.81 pb = 33 % ) Event 9 ( 1s elapsed / 32m 33s left ) -> ETA: Wed Nov 29 20:18 XS = 3010.32 pb +- ( 949.883 pb = 31 % ) Event 10 ( 1s elapsed / 29m 18s left ) -> ETA: Wed Nov 29 20:15 XS = 3261.18 pb +- ( 970.755 pb = 29 % ) Event 20 ( 1s elapsed / 15m 8s left ) -> ETA: Wed Nov 29 20:00 XS = 3143.3 pb +- ( 661.159 pb = 21 % ) Event 30 ( 1s elapsed / 10m 24s left ) -> ETA: Wed Nov 29 19:56 XS = 3220.92 pb +- ( 551.697 pb = 17 % ) Event 40 ( 1s elapsed / 7m 58s left ) -> ETA: Wed Nov 29 19:53 XS = 3421.56 pb +- ( 505.104 pb = 14 % ) Event 50 ( 1s elapsed / 6m 32s left ) -> ETA: Wed Nov 29 19:52 XS = 3379.46 pb +- ( 446.479 pb = 13 % ) Event 60 ( 2s elapsed / 5m 32s left ) -> ETA: Wed Nov 29 19:51 XS = 3344.8 pb +- ( 403.614 pb = 12 % ) Event 70 ( 2s elapsed / 4m 49s left ) -> ETA: Wed Nov 29 19:50 XS = 3326.52 pb +- ( 371.722 pb = 11 % ) Event 80 ( 2s elapsed / 4m 16s left ) -> ETA: Wed Nov 29 19:50 XS = 3323.49 pb +- ( 347.381 pb = 10 % ) Event 90 ( 2s elapsed / 3m 50s left ) -> ETA: Wed Nov 29 19:49 XS = 3473.44 pb +- ( 341.142 pb = 9 % ) Event 100 ( 2s elapsed / 3m 29s left ) -> ETA: Wed Nov 29 19:49 XS = 3569 pb +- ( 331.818 pb = 9 % ) Event 200 ( 2s elapsed / 2m 6s left ) -> ETA: Wed Nov 29 19:47 XS = 3664.24 pb +- ( 240.302 pb = 6 % ) Event 300 ( 2s elapsed / 1m 35s left ) -> ETA: Wed Nov 29 19:47 XS = 3557.65 pb +- ( 190.927 pb = 5 % ) Event 400 ( 3s elapsed / 1m 22s left ) -> ETA: Wed Nov 29 19:47 XS = 3391.54 pb +- ( 158.197 pb = 4 % ) Event 500 ( 3s elapsed / 1m 13s left ) -> ETA: Wed Nov 29 19:47 XS = 3469.34 pb +- ( 144.489 pb = 4 % ) Event 600 ( 4s elapsed / 1m 6s left ) -> ETA: Wed Nov 29 19:47 XS = 3617.67 pb +- ( 137.085 pb = 3 % ) Event 700 ( 4s elapsed / 1m 2s left ) -> ETA: Wed Nov 29 19:46 XS = 3585.82 pb +- ( 125.886 pb = 3 % ) Event 800 ( 5s elapsed / 59s left ) -> ETA: Wed Nov 29 19:46 XS = 3563.52 pb +- ( 117.079 pb = 3 % ) Event 900 ( 5s elapsed / 56s left ) -> ETA: Wed Nov 29 19:46 XS = 3546.36 pb +- ( 109.893 pb = 3 % ) Event 1000 ( 6s elapsed / 54s left ) -> ETA: Wed Nov 29 19:46 XS = 3547.65 pb +- ( 104.287 pb = 2 % ) Event 2000 ( 9s elapsed / 39s left ) -> ETA: Wed Nov 29 19:46 XS = 3528.93 pb +- ( 73.3813 pb = 2 % ) Event 3000 ( 13s elapsed / 32s left ) -> ETA: Wed Nov 29 19:46 XS = 3541.23 pb +- ( 60.1072 pb = 1 % ) Event 4000 ( 17s elapsed / 26s left ) -> ETA: Wed Nov 29 19:46 XS = 3564.74 pb +- ( 52.3723 pb = 1 % ) Event 5000 ( 21s elapsed / 21s left ) -> ETA: Wed Nov 29 19:46 XS = 3534.29 pb +- ( 46.4744 pb = 1 % ) Event 6000 ( 25s elapsed / 17s left ) -> ETA: Wed Nov 29 19:46 XS = 3521.47 pb +- ( 42.2831 pb = 1 % ) Event 7000 ( 29s elapsed / 12s left ) -> ETA: Wed Nov 29 19:46 XS = 3517.38 pb +- ( 39.1046 pb = 1 % ) Event 8000 ( 33s elapsed / 8s left ) -> ETA: Wed Nov 29 19:46 XS = 3499.18 pb +- ( 36.4043 pb = 1 % ) Event 9000 ( 37s elapsed / 4s left ) -> ETA: Wed Nov 29 19:46 XS = 3480.44 pb +- ( 34.1527 pb = 0 % ) Event 10000 ( 40 s total ) = 2.17031e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8041){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3465.54 0 % 32.272 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 40s on Wed Nov 29 19:46:30 2023 (User: 39s, System: 0s, Children User: 0s, Children System: 0s)