Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:44:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 39m 58s left ) -> ETA: Wed Nov 29 02:24 XS = 16190.7 pb +- ( 16190.7 pb = 100 % ) Event 2 ( 1s elapsed / 2h 21m 38s left ) -> ETA: Wed Nov 29 00:05 XS = 12952.6 pb +- ( 7931.8 pb = 61 % ) Event 3 ( 1s elapsed / 1h 34m 24s left ) -> ETA: Tue Nov 28 23:18 XS = 10793.8 pb +- ( 5396.91 pb = 50 % ) Event 4 ( 1s elapsed / 1h 10m 48s left ) -> ETA: Tue Nov 28 22:55 XS = 6817.14 pb +- ( 3111.59 pb = 45 % ) Event 5 ( 1s elapsed / 56m 58s left ) -> ETA: Tue Nov 28 22:41 XS = 6227.2 pb +- ( 2552.39 pb = 40 % ) Event 6 ( 1s elapsed / 47m 28s left ) -> ETA: Tue Nov 28 22:31 XS = 7195.88 pb +- ( 2640.16 pb = 36 % ) Event 7 ( 1s elapsed / 40m 55s left ) -> ETA: Tue Nov 28 22:25 XS = 5528.54 pb +- ( 1926.51 pb = 34 % ) Event 8 ( 1s elapsed / 36m left ) -> ETA: Tue Nov 28 22:20 XS = 5181.03 pb +- ( 1695.89 pb = 32 % ) Event 9 ( 1s elapsed / 32m left ) -> ETA: Tue Nov 28 22:16 XS = 5204.16 pb +- ( 1603.6 pb = 30 % ) Event 10 ( 1s elapsed / 28m 58s left ) -> ETA: Tue Nov 28 22:13 XS = 3722 pb +- ( 1113.71 pb = 29 % ) Event 20 ( 1s elapsed / 15m 3s left ) -> ETA: Tue Nov 28 21:59 XS = 4151.47 pb +- ( 869.541 pb = 20 % ) Event 30 ( 1s elapsed / 10m 21s left ) -> ETA: Tue Nov 28 21:54 XS = 3457.09 pb +- ( 597.597 pb = 17 % ) Event 40 ( 1s elapsed / 7m 55s left ) -> ETA: Tue Nov 28 21:52 XS = 3607.96 pb +- ( 538.5 pb = 14 % ) Event 50 ( 1s elapsed / 6m 32s left ) -> ETA: Tue Nov 28 21:50 XS = 3713.47 pb +- ( 494.702 pb = 13 % ) Event 60 ( 2s elapsed / 5m 34s left ) -> ETA: Tue Nov 28 21:49 XS = 4030.88 pb +- ( 487.426 pb = 12 % ) Event 70 ( 2s elapsed / 4m 57s left ) -> ETA: Tue Nov 28 21:49 XS = 3962.76 pb +- ( 444.102 pb = 11 % ) Event 80 ( 2s elapsed / 4m 26s left ) -> ETA: Tue Nov 28 21:48 XS = 4035.07 pb +- ( 422.421 pb = 10 % ) Event 90 ( 2s elapsed / 4m 4s left ) -> ETA: Tue Nov 28 21:48 XS = 3779.93 pb +- ( 374.706 pb = 9 % ) Event 100 ( 2s elapsed / 3m 47s left ) -> ETA: Tue Nov 28 21:48 XS = 3809.58 pb +- ( 358.058 pb = 9 % ) Event 200 ( 3s elapsed / 2m 30s left ) -> ETA: Tue Nov 28 21:46 XS = 3769.67 pb +- ( 250.633 pb = 6 % ) Event 300 ( 3s elapsed / 1m 59s left ) -> ETA: Tue Nov 28 21:46 XS = 3896.68 pb +- ( 211.047 pb = 5 % ) Event 400 ( 4s elapsed / 1m 47s left ) -> ETA: Tue Nov 28 21:46 XS = 3621.07 pb +- ( 170.654 pb = 4 % ) Event 500 ( 5s elapsed / 1m 39s left ) -> ETA: Tue Nov 28 21:46 XS = 3699.89 pb +- ( 155.742 pb = 4 % ) Event 600 ( 5s elapsed / 1m 33s left ) -> ETA: Tue Nov 28 21:45 XS = 3703.56 pb +- ( 142.302 pb = 3 % ) Event 700 ( 6s elapsed / 1m 29s left ) -> ETA: Tue Nov 28 21:45 XS = 3682.1 pb +- ( 131.03 pb = 3 % ) Event 800 ( 7s elapsed / 1m 25s left ) -> ETA: Tue Nov 28 21:45 XS = 3620.57 pb +- ( 120.647 pb = 3 % ) Event 900 ( 8s elapsed / 1m 22s left ) -> ETA: Tue Nov 28 21:45 XS = 3642 pb +- ( 114.377 pb = 3 % ) Event 1000 ( 8s elapsed / 1m 19s left ) -> ETA: Tue Nov 28 21:45 XS = 3656.03 pb +- ( 108.898 pb = 2 % ) Event 2000 ( 16s elapsed / 1m 4s left ) -> ETA: Tue Nov 28 21:45 XS = 3753.93 pb +- ( 78.9274 pb = 2 % ) Event 3000 ( 23s elapsed / 53s left ) -> ETA: Tue Nov 28 21:45 XS = 3749.73 pb +- ( 64.3759 pb = 1 % ) Event 4000 ( 30s elapsed / 45s left ) -> ETA: Tue Nov 28 21:45 XS = 3745.36 pb +- ( 55.6902 pb = 1 % ) Event 5000 ( 36s elapsed / 36s left ) -> ETA: Tue Nov 28 21:45 XS = 3796 pb +- ( 50.4395 pb = 1 % ) Event 6000 ( 44s elapsed / 29s left ) -> ETA: Tue Nov 28 21:45 XS = 3766.74 pb +- ( 45.7131 pb = 1 % ) Event 7000 ( 51s elapsed / 21s left ) -> ETA: Tue Nov 28 21:45 XS = 3776.89 pb +- ( 42.4286 pb = 1 % ) Event 8000 ( 58s elapsed / 14s left ) -> ETA: Tue Nov 28 21:45 XS = 3762.28 pb +- ( 39.5448 pb = 1 % ) Event 9000 ( 1m 5s elapsed / 7s left ) -> ETA: Tue Nov 28 21:45 XS = 3798.71 pb +- ( 37.6202 pb = 0 % ) Event 10000 ( 72 s total ) = 1.18796e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Zrecoil/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3775.64 0 % 35.4873 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 13s on Tue Nov 28 21:45:31 2023 (User: 1m 12s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:46:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 43m 18s left ) -> ETA: Wed Nov 29 02:29 XS = 16190.7 pb +- ( 16190.7 pb = 100 % ) Event 2 ( 1s elapsed / 2h 22m 28s left ) -> ETA: Wed Nov 29 00:08 XS = 16190.7 pb +- ( 9347.72 pb = 57 % ) Event 3 ( 1s elapsed / 1h 35m 31s left ) -> ETA: Tue Nov 28 23:21 XS = 19428.9 pb +- ( 7931.8 pb = 40 % ) Event 4 ( 1s elapsed / 1h 11m 38s left ) -> ETA: Tue Nov 28 22:57 XS = 12952.6 pb +- ( 5287.87 pb = 40 % ) Event 5 ( 1s elapsed / 57m 38s left ) -> ETA: Tue Nov 28 22:43 XS = 12454.4 pb +- ( 4547.7 pb = 36 % ) Event 6 ( 1s elapsed / 48m 18s left ) -> ETA: Tue Nov 28 22:34 XS = 13877.8 pb +- ( 4444.44 pb = 32 % ) Event 7 ( 1s elapsed / 41m 23s left ) -> ETA: Tue Nov 28 22:27 XS = 11930 pb +- ( 3681.68 pb = 30 % ) Event 8 ( 1s elapsed / 36m 25s left ) -> ETA: Tue Nov 28 22:22 XS = 11775.1 pb +- ( 3399.17 pb = 28 % ) Event 9 ( 1s elapsed / 32m 33s left ) -> ETA: Tue Nov 28 22:18 XS = 12143 pb +- ( 3268.8 pb = 26 % ) Event 10 ( 1s elapsed / 29m 18s left ) -> ETA: Tue Nov 28 22:15 XS = 7530.57 pb +- ( 2110.86 pb = 28 % ) Event 20 ( 1s elapsed / 15m 23s left ) -> ETA: Tue Nov 28 22:01 XS = 4833.05 pb +- ( 1000.54 pb = 20 % ) Event 30 ( 1s elapsed / 10m 38s left ) -> ETA: Tue Nov 28 21:56 XS = 4116.28 pb +- ( 703.63 pb = 17 % ) Event 40 ( 2s elapsed / 8m 27s left ) -> ETA: Tue Nov 28 21:54 XS = 3776.26 pb +- ( 562.005 pb = 14 % ) Event 50 ( 2s elapsed / 7m 3s left ) -> ETA: Tue Nov 28 21:53 XS = 3864.13 pb +- ( 513.443 pb = 13 % ) Event 60 ( 2s elapsed / 6m 4s left ) -> ETA: Tue Nov 28 21:52 XS = 4125.02 pb +- ( 497.993 pb = 12 % ) Event 70 ( 2s elapsed / 5m 22s left ) -> ETA: Tue Nov 28 21:51 XS = 4062.19 pb +- ( 454.457 pb = 11 % ) Event 80 ( 2s elapsed / 4m 48s left ) -> ETA: Tue Nov 28 21:51 XS = 4296.04 pb +- ( 447.689 pb = 10 % ) Event 90 ( 2s elapsed / 4m 27s left ) -> ETA: Tue Nov 28 21:50 XS = 4122.11 pb +- ( 406.198 pb = 9 % ) Event 100 ( 2s elapsed / 4m 6s left ) -> ETA: Tue Nov 28 21:50 XS = 4277.6 pb +- ( 398.77 pb = 9 % ) Event 200 ( 3s elapsed / 2m 39s left ) -> ETA: Tue Nov 28 21:49 XS = 3892 pb +- ( 258.215 pb = 6 % ) Event 300 ( 4s elapsed / 2m 13s left ) -> ETA: Tue Nov 28 21:48 XS = 3865.67 pb +- ( 209.481 pb = 5 % ) Event 400 ( 4s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 21:48 XS = 3971.96 pb +- ( 186.048 pb = 4 % ) Event 500 ( 5s elapsed / 1m 45s left ) -> ETA: Tue Nov 28 21:48 XS = 3996.72 pb +- ( 167.366 pb = 4 % ) Event 600 ( 6s elapsed / 1m 39s left ) -> ETA: Tue Nov 28 21:48 XS = 3907.66 pb +- ( 149.609 pb = 3 % ) Event 700 ( 7s elapsed / 1m 34s left ) -> ETA: Tue Nov 28 21:47 XS = 3809.58 pb +- ( 135.265 pb = 3 % ) Event 800 ( 7s elapsed / 1m 31s left ) -> ETA: Tue Nov 28 21:47 XS = 3827.59 pb +- ( 127.086 pb = 3 % ) Event 900 ( 8s elapsed / 1m 27s left ) -> ETA: Tue Nov 28 21:47 XS = 3833.64 pb +- ( 119.993 pb = 3 % ) Event 1000 ( 9s elapsed / 1m 25s left ) -> ETA: Tue Nov 28 21:47 XS = 3807.79 pb +- ( 113.118 pb = 2 % ) Event 2000 ( 16s elapsed / 1m 7s left ) -> ETA: Tue Nov 28 21:47 XS = 3829.86 pb +- ( 80.4169 pb = 2 % ) Event 3000 ( 24s elapsed / 57s left ) -> ETA: Tue Nov 28 21:47 XS = 3807.19 pb +- ( 65.2968 pb = 1 % ) Event 4000 ( 32s elapsed / 48s left ) -> ETA: Tue Nov 28 21:47 XS = 3825.22 pb +- ( 56.7983 pb = 1 % ) Event 5000 ( 43s elapsed / 43s left ) -> ETA: Tue Nov 28 21:47 XS = 3874.58 pb +- ( 51.4129 pb = 1 % ) Event 6000 ( 1m elapsed / 40s left ) -> ETA: Tue Nov 28 21:47 XS = 3874.23 pb +- ( 46.9292 pb = 1 % ) Event 7000 ( 1m 13s elapsed / 31s left ) -> ETA: Tue Nov 28 21:48 XS = 3836.4 pb +- ( 43.0523 pb = 1 % ) Event 8000 ( 1m 21s elapsed / 20s left ) -> ETA: Tue Nov 28 21:47 XS = 3848.18 pb +- ( 40.3869 pb = 1 % ) Event 9000 ( 1m 29s elapsed / 9s left ) -> ETA: Tue Nov 28 21:47 XS = 3849.54 pb +- ( 38.0897 pb = 0 % ) Event 10000 ( 96 s total ) = 8.93023e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3850.07 0 % 36.1397 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 37s on Tue Nov 28 21:47:55 2023 (User: 1m 22s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:56:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 20m 48s left ) -> ETA: Wed Nov 29 00:17 XS = 16190.7 pb +- ( 16190.7 pb = 100 % ) Event 2 ( 1s elapsed / 1h 10m 48s left ) -> ETA: Tue Nov 28 23:07 XS = 16190.7 pb +- ( 9347.72 pb = 57 % ) Event 3 ( 1s elapsed / 47m 28s left ) -> ETA: Tue Nov 28 22:43 XS = 10793.8 pb +- ( 5396.91 pb = 50 % ) Event 4 ( 1s elapsed / 35m 35s left ) -> ETA: Tue Nov 28 22:31 XS = 6167.89 pb +- ( 2843.26 pb = 46 % ) Event 5 ( 1s elapsed / 28m 38s left ) -> ETA: Tue Nov 28 22:24 XS = 3519.72 pb +- ( 1502.48 pb = 42 % ) Event 6 ( 1s elapsed / 23m 51s left ) -> ETA: Tue Nov 28 22:20 XS = 4133.8 pb +- ( 1593.26 pb = 38 % ) Event 7 ( 1s elapsed / 20m 33s left ) -> ETA: Tue Nov 28 22:16 XS = 4276.79 pb +- ( 1520.36 pb = 35 % ) Event 8 ( 1s elapsed / 17m 59s left ) -> ETA: Tue Nov 28 22:14 XS = 4466.41 pb +- ( 1478.97 pb = 33 % ) Event 9 ( 1s elapsed / 16m 4s left ) -> ETA: Tue Nov 28 22:12 XS = 4415.65 pb +- ( 1378.33 pb = 31 % ) Event 10 ( 1s elapsed / 14m 33s left ) -> ETA: Tue Nov 28 22:10 XS = 4833.05 pb +- ( 1420.32 pb = 29 % ) Event 20 ( 1s elapsed / 7m 38s left ) -> ETA: Tue Nov 28 22:03 XS = 4151.47 pb +- ( 869.541 pb = 20 % ) Event 30 ( 1s elapsed / 5m 14s left ) -> ETA: Tue Nov 28 22:01 XS = 3558.4 pb +- ( 614.063 pb = 17 % ) Event 40 ( 1s elapsed / 4m 1s left ) -> ETA: Tue Nov 28 22:00 XS = 3985.41 pb +- ( 591.007 pb = 14 % ) Event 50 ( 2s elapsed / 3m 18s left ) -> ETA: Tue Nov 28 21:59 XS = 3387.18 pb +- ( 453.749 pb = 13 % ) Event 60 ( 2s elapsed / 2m 50s left ) -> ETA: Tue Nov 28 21:59 XS = 3298.62 pb +- ( 403.92 pb = 12 % ) Event 70 ( 2s elapsed / 2m 32s left ) -> ETA: Tue Nov 28 21:58 XS = 3333.38 pb +- ( 377.63 pb = 11 % ) Event 80 ( 2s elapsed / 2m 17s left ) -> ETA: Tue Nov 28 21:58 XS = 3548.65 pb +- ( 374.637 pb = 10 % ) Event 90 ( 2s elapsed / 2m 5s left ) -> ETA: Tue Nov 28 21:58 XS = 3562.75 pb +- ( 354.502 pb = 9 % ) Event 100 ( 2s elapsed / 1m 55s left ) -> ETA: Tue Nov 28 21:58 XS = 3401.41 pb +- ( 321.95 pb = 9 % ) Event 200 ( 3s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 21:57 XS = 4050.21 pb +- ( 267.968 pb = 6 % ) Event 300 ( 3s elapsed / 1m 1s left ) -> ETA: Tue Nov 28 21:57 XS = 3752.19 pb +- ( 203.735 pb = 5 % ) Event 400 ( 4s elapsed / 53s left ) -> ETA: Tue Nov 28 21:57 XS = 3808.46 pb +- ( 178.901 pb = 4 % ) Event 500 ( 5s elapsed / 49s left ) -> ETA: Tue Nov 28 21:57 XS = 3753.06 pb +- ( 157.834 pb = 4 % ) Event 600 ( 6s elapsed / 45s left ) -> ETA: Tue Nov 28 21:57 XS = 3785.09 pb +- ( 145.228 pb = 3 % ) Event 700 ( 6s elapsed / 42s left ) -> ETA: Tue Nov 28 21:57 XS = 3827.59 pb +- ( 135.862 pb = 3 % ) Event 800 ( 7s elapsed / 40s left ) -> ETA: Tue Nov 28 21:57 XS = 3836.1 pb +- ( 127.349 pb = 3 % ) Event 900 ( 8s elapsed / 37s left ) -> ETA: Tue Nov 28 21:57 XS = 3850.35 pb +- ( 120.481 pb = 3 % ) Event 1000 ( 9s elapsed / 36s left ) -> ETA: Tue Nov 28 21:57 XS = 3830.31 pb +- ( 113.743 pb = 2 % ) Event 2000 ( 17s elapsed / 25s left ) -> ETA: Tue Nov 28 21:57 XS = 3819.47 pb +- ( 80.2133 pb = 2 % ) Event 3000 ( 25s elapsed / 16s left ) -> ETA: Tue Nov 28 21:57 XS = 3862.75 pb +- ( 66.1853 pb = 1 % ) Event 4000 ( 33s elapsed / 8s left ) -> ETA: Tue Nov 28 21:57 XS = 3846.58 pb +- ( 57.094 pb = 1 % ) Event 5000 ( 41 s total ) = 1.06038e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3879.22 0 % 51.4703 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 41s on Tue Nov 28 21:57:00 2023 (User: 40s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:59:11 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 28m 18s left ) -> ETA: Wed Nov 29 00:27 XS = 16190.7 pb +- ( 16190.7 pb = 100 % ) Event 2 ( 1s elapsed / 1h 14m 58s left ) -> ETA: Tue Nov 28 23:14 XS = 3408.57 pb +- ( 2342.32 pb = 68 % ) Event 3 ( 1s elapsed / 50m 14s left ) -> ETA: Tue Nov 28 22:49 XS = 3238.14 pb +- ( 1803.92 pb = 55 % ) Event 4 ( 1s elapsed / 37m 40s left ) -> ETA: Tue Nov 28 22:36 XS = 3238.14 pb +- ( 1555.55 pb = 48 % ) Event 5 ( 1s elapsed / 30m 18s left ) -> ETA: Tue Nov 28 22:29 XS = 3519.72 pb +- ( 1502.48 pb = 42 % ) Event 6 ( 1s elapsed / 25m 14s left ) -> ETA: Tue Nov 28 22:24 XS = 3665.82 pb +- ( 1422.8 pb = 38 % ) Event 7 ( 1s elapsed / 21m 45s left ) -> ETA: Tue Nov 28 22:20 XS = 4197.59 pb +- ( 1494.04 pb = 35 % ) Event 8 ( 1s elapsed / 19m 1s left ) -> ETA: Tue Nov 28 22:18 XS = 4047.68 pb +- ( 1349.23 pb = 33 % ) Event 9 ( 1s elapsed / 17m left ) -> ETA: Tue Nov 28 22:16 XS = 3736.32 pb +- ( 1178.97 pb = 31 % ) Event 10 ( 1s elapsed / 15m 23s left ) -> ETA: Tue Nov 28 22:14 XS = 3597.94 pb +- ( 1078.71 pb = 29 % ) Event 20 ( 1s elapsed / 8m 3s left ) -> ETA: Tue Nov 28 22:07 XS = 2643.38 pb +- ( 567.599 pb = 21 % ) Event 30 ( 2s elapsed / 5m 34s left ) -> ETA: Tue Nov 28 22:04 XS = 2676.15 pb +- ( 468.617 pb = 17 % ) Event 40 ( 2s elapsed / 4m 20s left ) -> ETA: Tue Nov 28 22:03 XS = 2803.59 pb +- ( 424.121 pb = 15 % ) Event 50 ( 2s elapsed / 3m 30s left ) -> ETA: Tue Nov 28 22:02 XS = 3206.08 pb +- ( 430.804 pb = 13 % ) Event 60 ( 2s elapsed / 2m 59s left ) -> ETA: Tue Nov 28 22:02 XS = 3438.74 pb +- ( 420.078 pb = 12 % ) Event 70 ( 2s elapsed / 2m 37s left ) -> ETA: Tue Nov 28 22:01 XS = 3722 pb +- ( 418.862 pb = 11 % ) Event 80 ( 2s elapsed / 2m 24s left ) -> ETA: Tue Nov 28 22:01 XS = 3832.12 pb +- ( 402.592 pb = 10 % ) Event 90 ( 2s elapsed / 2m 10s left ) -> ETA: Tue Nov 28 22:01 XS = 4008.71 pb +- ( 395.808 pb = 9 % ) Event 100 ( 2s elapsed / 2m 2s left ) -> ETA: Tue Nov 28 22:01 XS = 3901.38 pb +- ( 366.102 pb = 9 % ) Event 200 ( 3s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:00 XS = 3690.19 pb +- ( 245.688 pb = 6 % ) Event 300 ( 3s elapsed / 1m left ) -> ETA: Tue Nov 28 22:00 XS = 3907.66 pb +- ( 211.601 pb = 5 % ) Event 400 ( 4s elapsed / 53s left ) -> ETA: Tue Nov 28 22:00 XS = 3942.95 pb +- ( 184.783 pb = 4 % ) Event 500 ( 5s elapsed / 49s left ) -> ETA: Tue Nov 28 22:00 XS = 3871.53 pb +- ( 162.48 pb = 4 % ) Event 600 ( 6s elapsed / 45s left ) -> ETA: Tue Nov 28 22:00 XS = 3906.08 pb +- ( 149.553 pb = 3 % ) Event 700 ( 6s elapsed / 42s left ) -> ETA: Tue Nov 28 22:00 XS = 3969.01 pb +- ( 140.533 pb = 3 % ) Event 800 ( 7s elapsed / 39s left ) -> ETA: Tue Nov 28 21:59 XS = 4037.59 pb +- ( 133.565 pb = 3 % ) Event 900 ( 8s elapsed / 36s left ) -> ETA: Tue Nov 28 21:59 XS = 4025.32 pb +- ( 125.569 pb = 3 % ) Event 1000 ( 8s elapsed / 34s left ) -> ETA: Tue Nov 28 21:59 XS = 4072.11 pb +- ( 120.41 pb = 2 % ) Event 2000 ( 15s elapsed / 23s left ) -> ETA: Tue Nov 28 21:59 XS = 3837.8 pb +- ( 80.5725 pb = 2 % ) Event 3000 ( 22s elapsed / 15s left ) -> ETA: Tue Nov 28 21:59 XS = 3878.17 pb +- ( 66.4315 pb = 1 % ) Event 4000 ( 29s elapsed / 7s left ) -> ETA: Tue Nov 28 21:59 XS = 3893.64 pb +- ( 57.7449 pb = 1 % ) Event 5000 ( 35 s total ) = 1.20941e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3923.69 0 % 52.0196 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 36s on Tue Nov 28 21:59:48 2023 (User: 35s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:04:11 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 19m 8s left ) -> ETA: Wed Nov 29 00:23 XS = 16190.7 pb +- ( 16190.7 pb = 100 % ) Event 2 ( 1s elapsed / 1h 9m 33s left ) -> ETA: Tue Nov 28 23:13 XS = 10793.8 pb +- ( 6826.61 pb = 63 % ) Event 3 ( 1s elapsed / 46m 38s left ) -> ETA: Tue Nov 28 22:50 XS = 8095.36 pb +- ( 4227.66 pb = 52 % ) Event 4 ( 1s elapsed / 34m 58s left ) -> ETA: Tue Nov 28 22:39 XS = 5631.55 pb +- ( 2616.76 pb = 46 % ) Event 5 ( 1s elapsed / 27m 58s left ) -> ETA: Tue Nov 28 22:32 XS = 4906.28 pb +- ( 2052.44 pb = 41 % ) Event 6 ( 1s elapsed / 23m 26s left ) -> ETA: Tue Nov 28 22:27 XS = 5251.04 pb +- ( 1989.3 pb = 37 % ) Event 7 ( 1s elapsed / 20m 5s left ) -> ETA: Tue Nov 28 22:24 XS = 5151.59 pb +- ( 1806.17 pb = 35 % ) Event 8 ( 1s elapsed / 17m 34s left ) -> ETA: Tue Nov 28 22:21 XS = 5079.44 pb +- ( 1665.41 pb = 32 % ) Event 9 ( 1s elapsed / 15m 42s left ) -> ETA: Tue Nov 28 22:19 XS = 5204.16 pb +- ( 1603.6 pb = 30 % ) Event 10 ( 1s elapsed / 14m 8s left ) -> ETA: Tue Nov 28 22:18 XS = 5308.43 pb +- ( 1547.66 pb = 29 % ) Event 20 ( 1s elapsed / 7m 10s left ) -> ETA: Tue Nov 28 22:11 XS = 5583.01 pb +- ( 1140.62 pb = 20 % ) Event 30 ( 1s elapsed / 4m 53s left ) -> ETA: Tue Nov 28 22:09 XS = 4692.96 pb +- ( 794.217 pb = 16 % ) Event 40 ( 1s elapsed / 3m 44s left ) -> ETA: Tue Nov 28 22:07 XS = 4710.03 pb +- ( 689.687 pb = 14 % ) Event 50 ( 1s elapsed / 3m 2s left ) -> ETA: Tue Nov 28 22:07 XS = 4679.4 pb +- ( 612.973 pb = 13 % ) Event 60 ( 1s elapsed / 2m 34s left ) -> ETA: Tue Nov 28 22:06 XS = 4456.16 pb +- ( 534.853 pb = 12 % ) Event 70 ( 1s elapsed / 2m 15s left ) -> ETA: Tue Nov 28 22:06 XS = 3983.66 pb +- ( 446.282 pb = 11 % ) Event 80 ( 1s elapsed / 1m 59s left ) -> ETA: Tue Nov 28 22:06 XS = 4035.07 pb +- ( 422.421 pb = 10 % ) Event 90 ( 1s elapsed / 1m 48s left ) -> ETA: Tue Nov 28 22:06 XS = 3992.23 pb +- ( 394.295 pb = 9 % ) Event 100 ( 2s elapsed / 1m 39s left ) -> ETA: Tue Nov 28 22:05 XS = 4057.82 pb +- ( 379.745 pb = 9 % ) Event 200 ( 2s elapsed / 59s left ) -> ETA: Tue Nov 28 22:05 XS = 3737.04 pb +- ( 248.605 pb = 6 % ) Event 300 ( 3s elapsed / 47s left ) -> ETA: Tue Nov 28 22:05 XS = 3774.06 pb +- ( 204.844 pb = 5 % ) Event 400 ( 3s elapsed / 40s left ) -> ETA: Tue Nov 28 22:04 XS = 3787.3 pb +- ( 177.973 pb = 4 % ) Event 500 ( 4s elapsed / 36s left ) -> ETA: Tue Nov 28 22:04 XS = 3872.45 pb +- ( 162.516 pb = 4 % ) Event 600 ( 4s elapsed / 32s left ) -> ETA: Tue Nov 28 22:04 XS = 3940.15 pb +- ( 150.767 pb = 3 % ) Event 700 ( 4s elapsed / 29s left ) -> ETA: Tue Nov 28 22:04 XS = 4008.31 pb +- ( 141.826 pb = 3 % ) Event 800 ( 5s elapsed / 27s left ) -> ETA: Tue Nov 28 22:04 XS = 4012.57 pb +- ( 132.796 pb = 3 % ) Event 900 ( 5s elapsed / 26s left ) -> ETA: Tue Nov 28 22:04 XS = 4004.3 pb +- ( 124.96 pb = 3 % ) Event 1000 ( 6s elapsed / 24s left ) -> ETA: Tue Nov 28 22:04 XS = 3968.8 pb +- ( 117.569 pb = 2 % ) Event 2000 ( 11s elapsed / 16s left ) -> ETA: Tue Nov 28 22:04 XS = 3937.19 pb +- ( 82.5152 pb = 2 % ) Event 3000 ( 15s elapsed / 10s left ) -> ETA: Tue Nov 28 22:04 XS = 3926.61 pb +- ( 67.2041 pb = 1 % ) Event 4000 ( 20s elapsed / 5s left ) -> ETA: Tue Nov 28 22:04 XS = 3924.07 pb +- ( 58.1651 pb = 1 % ) Event 5000 ( 24 s total ) = 1.75182e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3895.18 0 % 51.6675 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 25s on Tue Nov 28 22:04:36 2023 (User: 24s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:06:33 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 14m 58s left ) -> ETA: Wed Nov 29 00:21 XS = 16190.7 pb +- ( 16190.7 pb = 100 % ) Event 2 ( 1s elapsed / 1h 7m 53s left ) -> ETA: Tue Nov 28 23:14 XS = 10793.8 pb +- ( 6826.61 pb = 63 % ) Event 3 ( 1s elapsed / 45m 15s left ) -> ETA: Tue Nov 28 22:51 XS = 13877.8 pb +- ( 6542.04 pb = 47 % ) Event 4 ( 1s elapsed / 34m 8s left ) -> ETA: Tue Nov 28 22:40 XS = 9963.52 pb +- ( 4314.33 pb = 43 % ) Event 5 ( 1s elapsed / 27m 18s left ) -> ETA: Tue Nov 28 22:33 XS = 8521.43 pb +- ( 3360.9 pb = 39 % ) Event 6 ( 1s elapsed / 22m 53s left ) -> ETA: Tue Nov 28 22:29 XS = 9714.43 pb +- ( 3404.31 pb = 35 % ) Event 7 ( 1s elapsed / 19m 36s left ) -> ETA: Tue Nov 28 22:26 XS = 9855.22 pb +- ( 3176.63 pb = 32 % ) Event 8 ( 1s elapsed / 17m 9s left ) -> ETA: Tue Nov 28 22:23 XS = 8932.81 pb +- ( 2735.1 pb = 30 % ) Event 9 ( 1s elapsed / 15m 20s left ) -> ETA: Tue Nov 28 22:21 XS = 8095.36 pb +- ( 2370.08 pb = 29 % ) Event 10 ( 1s elapsed / 13m 48s left ) -> ETA: Tue Nov 28 22:20 XS = 8521.43 pb +- ( 2344.18 pb = 27 % ) Event 20 ( 1s elapsed / 7m left ) -> ETA: Tue Nov 28 22:13 XS = 5887.53 pb +- ( 1196.26 pb = 20 % ) Event 30 ( 1s elapsed / 4m 46s left ) -> ETA: Tue Nov 28 22:11 XS = 5194.88 pb +- ( 871.382 pb = 16 % ) Event 40 ( 1s elapsed / 3m 39s left ) -> ETA: Tue Nov 28 22:10 XS = 4232.87 pb +- ( 625.022 pb = 14 % ) Event 50 ( 1s elapsed / 2m 59s left ) -> ETA: Tue Nov 28 22:09 XS = 3882.67 pb +- ( 515.741 pb = 13 % ) Event 60 ( 1s elapsed / 2m 32s left ) -> ETA: Tue Nov 28 22:09 XS = 3901.38 pb +- ( 472.826 pb = 12 % ) Event 70 ( 1s elapsed / 2m 14s left ) -> ETA: Tue Nov 28 22:08 XS = 3620.93 pb +- ( 408.195 pb = 11 % ) Event 80 ( 1s elapsed / 1m 59s left ) -> ETA: Tue Nov 28 22:08 XS = 3832.12 pb +- ( 402.592 pb = 10 % ) Event 90 ( 1s elapsed / 1m 48s left ) -> ETA: Tue Nov 28 22:08 XS = 3865.16 pb +- ( 382.589 pb = 9 % ) Event 100 ( 2s elapsed / 1m 39s left ) -> ETA: Tue Nov 28 22:08 XS = 4007.6 pb +- ( 375.374 pb = 9 % ) Event 200 ( 2s elapsed / 56s left ) -> ETA: Tue Nov 28 22:07 XS = 4151.47 pb +- ( 274.178 pb = 6 % ) Event 300 ( 2s elapsed / 44s left ) -> ETA: Tue Nov 28 22:07 XS = 3979.69 pb +- ( 215.23 pb = 5 % ) Event 400 ( 3s elapsed / 36s left ) -> ETA: Tue Nov 28 22:07 XS = 4023.79 pb +- ( 188.304 pb = 4 % ) Event 500 ( 3s elapsed / 32s left ) -> ETA: Tue Nov 28 22:07 XS = 4015.56 pb +- ( 168.099 pb = 4 % ) Event 600 ( 4s elapsed / 29s left ) -> ETA: Tue Nov 28 22:07 XS = 3903.73 pb +- ( 149.469 pb = 3 % ) Event 700 ( 4s elapsed / 27s left ) -> ETA: Tue Nov 28 22:07 XS = 3924.34 pb +- ( 139.06 pb = 3 % ) Event 800 ( 4s elapsed / 26s left ) -> ETA: Tue Nov 28 22:07 XS = 3948.35 pb +- ( 130.818 pb = 3 % ) Event 900 ( 5s elapsed / 24s left ) -> ETA: Tue Nov 28 22:07 XS = 3953.24 pb +- ( 123.478 pb = 3 % ) Event 1000 ( 5s elapsed / 23s left ) -> ETA: Tue Nov 28 22:07 XS = 3955.23 pb +- ( 117.195 pb = 2 % ) Event 2000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:06 XS = 3956.92 pb +- ( 82.8999 pb = 2 % ) Event 3000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:06 XS = 3978.23 pb +- ( 68.0258 pb = 1 % ) Event 4000 ( 18s elapsed / 4s left ) -> ETA: Tue Nov 28 22:06 XS = 3959.7 pb +- ( 58.6565 pb = 1 % ) Event 5000 ( 22 s total ) = 1.90813e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3983.74 0 % 52.76 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:06:56 2023 (User: 22s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:11:50 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 26m 38s left ) -> ETA: Wed Nov 29 00:38 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 1h 13m 43s left ) -> ETA: Tue Nov 28 23:25 XS = 4426.34 pb +- ( 2555.55 pb = 57 % ) Event 3 ( 1s elapsed / 49m 24s left ) -> ETA: Tue Nov 28 23:01 XS = 1397.79 pb +- ( 760.861 pb = 54 % ) Event 4 ( 1s elapsed / 37m 3s left ) -> ETA: Tue Nov 28 22:48 XS = 1311.51 pb +- ( 616.763 pb = 47 % ) Event 5 ( 1s elapsed / 29m 38s left ) -> ETA: Tue Nov 28 22:41 XS = 1580.83 pb +- ( 652.505 pb = 41 % ) Event 6 ( 1s elapsed / 24m 41s left ) -> ETA: Tue Nov 28 22:36 XS = 1831.59 pb +- ( 677.699 pb = 37 % ) Event 7 ( 1s elapsed / 21m 16s left ) -> ETA: Tue Nov 28 22:33 XS = 1822.61 pb +- ( 623.117 pb = 34 % ) Event 8 ( 1s elapsed / 18m 43s left ) -> ETA: Tue Nov 28 22:30 XS = 2023.47 pb +- ( 637.52 pb = 31 % ) Event 9 ( 1s elapsed / 16m 38s left ) -> ETA: Tue Nov 28 22:28 XS = 2213.17 pb +- ( 647.949 pb = 29 % ) Event 10 ( 1s elapsed / 15m 3s left ) -> ETA: Tue Nov 28 22:26 XS = 2392.61 pb +- ( 655.245 pb = 27 % ) Event 20 ( 1s elapsed / 7m 45s left ) -> ETA: Tue Nov 28 22:19 XS = 2241.18 pb +- ( 435.854 pb = 19 % ) Event 30 ( 1s elapsed / 5m 18s left ) -> ETA: Tue Nov 28 22:17 XS = 2553.66 pb +- ( 395.184 pb = 15 % ) Event 40 ( 1s elapsed / 4m 3s left ) -> ETA: Tue Nov 28 22:15 XS = 2425.39 pb +- ( 327.884 pb = 13 % ) Event 50 ( 2s elapsed / 3m 18s left ) -> ETA: Tue Nov 28 22:15 XS = 2529.34 pb +- ( 303.181 pb = 11 % ) Event 60 ( 2s elapsed / 2m 51s left ) -> ETA: Tue Nov 28 22:14 XS = 2260.26 pb +- ( 252.344 pb = 11 % ) Event 70 ( 2s elapsed / 2m 32s left ) -> ETA: Tue Nov 28 22:14 XS = 2129.51 pb +- ( 222.192 pb = 10 % ) Event 80 ( 2s elapsed / 2m 15s left ) -> ETA: Tue Nov 28 22:14 XS = 2199.42 pb +- ( 213.51 pb = 9 % ) Event 90 ( 2s elapsed / 2m 3s left ) -> ETA: Tue Nov 28 22:13 XS = 2017.07 pb +- ( 187.068 pb = 9 % ) Event 100 ( 2s elapsed / 1m 52s left ) -> ETA: Tue Nov 28 22:13 XS = 2068.38 pb +- ( 181.282 pb = 8 % ) Event 200 ( 2s elapsed / 1m 9s left ) -> ETA: Tue Nov 28 22:13 XS = 2035.1 pb +- ( 126.357 pb = 6 % ) Event 300 ( 3s elapsed / 53s left ) -> ETA: Tue Nov 28 22:12 XS = 2030.43 pb +- ( 102.948 pb = 5 % ) Event 400 ( 3s elapsed / 44s left ) -> ETA: Tue Nov 28 22:12 XS = 2008.55 pb +- ( 88.3278 pb = 4 % ) Event 500 ( 4s elapsed / 40s left ) -> ETA: Tue Nov 28 22:12 XS = 1967.26 pb +- ( 77.6071 pb = 3 % ) Event 600 ( 5s elapsed / 37s left ) -> ETA: Tue Nov 28 22:12 XS = 1959.28 pb +- ( 70.596 pb = 3 % ) Event 700 ( 5s elapsed / 34s left ) -> ETA: Tue Nov 28 22:12 XS = 1943.81 pb +- ( 64.9142 pb = 3 % ) Event 800 ( 6s elapsed / 32s left ) -> ETA: Tue Nov 28 22:12 XS = 1944.57 pb +- ( 60.7409 pb = 3 % ) Event 900 ( 6s elapsed / 30s left ) -> ETA: Tue Nov 28 22:12 XS = 1930.09 pb +- ( 56.8991 pb = 2 % ) Event 1000 ( 7s elapsed / 29s left ) -> ETA: Tue Nov 28 22:12 XS = 1963.33 pb +- ( 54.7765 pb = 2 % ) Event 2000 ( 13s elapsed / 19s left ) -> ETA: Tue Nov 28 22:12 XS = 1945.43 pb +- ( 38.4273 pb = 1 % ) Event 3000 ( 18s elapsed / 12s left ) -> ETA: Tue Nov 28 22:12 XS = 1917.82 pb +- ( 30.9917 pb = 1 % ) Event 4000 ( 24s elapsed / 6s left ) -> ETA: Tue Nov 28 22:12 XS = 1924.81 pb +- ( 26.9235 pb = 1 % ) Event 5000 ( 29 s total ) = 1.44918e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1942.91 0 % 24.2757 1.24 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 30s on Tue Nov 28 22:12:20 2023 (User: 29s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:13:56 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 56m 38s left ) -> ETA: Wed Nov 29 03:10 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 29m 8s left ) -> ETA: Wed Nov 29 00:43 XS = 4426.34 pb +- ( 2555.55 pb = 57 % ) Event 3 ( 1s elapsed / 1h 39m 58s left ) -> ETA: Tue Nov 28 23:53 XS = 1397.79 pb +- ( 760.861 pb = 54 % ) Event 4 ( 1s elapsed / 1h 15m 23s left ) -> ETA: Tue Nov 28 23:29 XS = 1311.51 pb +- ( 616.763 pb = 47 % ) Event 5 ( 1s elapsed / 1h 18s left ) -> ETA: Tue Nov 28 23:14 XS = 1580.83 pb +- ( 652.505 pb = 41 % ) Event 6 ( 1s elapsed / 50m 31s left ) -> ETA: Tue Nov 28 23:04 XS = 1831.59 pb +- ( 677.699 pb = 37 % ) Event 7 ( 1s elapsed / 43m 18s left ) -> ETA: Tue Nov 28 22:57 XS = 1822.61 pb +- ( 623.117 pb = 34 % ) Event 8 ( 1s elapsed / 38m 18s left ) -> ETA: Tue Nov 28 22:52 XS = 2023.47 pb +- ( 637.52 pb = 31 % ) Event 9 ( 1s elapsed / 34m 13s left ) -> ETA: Tue Nov 28 22:48 XS = 2213.17 pb +- ( 647.949 pb = 29 % ) Event 10 ( 1s elapsed / 30m 48s left ) -> ETA: Tue Nov 28 22:44 XS = 2392.61 pb +- ( 655.245 pb = 27 % ) Event 20 ( 1s elapsed / 16m 3s left ) -> ETA: Tue Nov 28 22:30 XS = 2241.18 pb +- ( 435.854 pb = 19 % ) Event 30 ( 1s elapsed / 11m 1s left ) -> ETA: Tue Nov 28 22:25 XS = 2553.66 pb +- ( 395.184 pb = 15 % ) Event 40 ( 2s elapsed / 8m 27s left ) -> ETA: Tue Nov 28 22:22 XS = 2425.39 pb +- ( 327.884 pb = 13 % ) Event 50 ( 2s elapsed / 6m 57s left ) -> ETA: Tue Nov 28 22:20 XS = 2529.34 pb +- ( 303.181 pb = 11 % ) Event 60 ( 2s elapsed / 6m 1s left ) -> ETA: Tue Nov 28 22:20 XS = 2260.26 pb +- ( 252.344 pb = 11 % ) Event 70 ( 2s elapsed / 5m 19s left ) -> ETA: Tue Nov 28 22:19 XS = 2129.51 pb +- ( 222.192 pb = 10 % ) Event 80 ( 2s elapsed / 4m 43s left ) -> ETA: Tue Nov 28 22:18 XS = 2199.42 pb +- ( 213.51 pb = 9 % ) Event 90 ( 2s elapsed / 4m 19s left ) -> ETA: Tue Nov 28 22:18 XS = 2017.07 pb +- ( 187.068 pb = 9 % ) Event 100 ( 2s elapsed / 3m 58s left ) -> ETA: Tue Nov 28 22:17 XS = 2068.38 pb +- ( 181.282 pb = 8 % ) Event 200 ( 2s elapsed / 2m 26s left ) -> ETA: Tue Nov 28 22:16 XS = 2035.1 pb +- ( 126.357 pb = 6 % ) Event 300 ( 3s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 22:15 XS = 2030.43 pb +- ( 102.948 pb = 5 % ) Event 400 ( 4s elapsed / 1m 38s left ) -> ETA: Tue Nov 28 22:15 XS = 2008.55 pb +- ( 88.3278 pb = 4 % ) Event 500 ( 4s elapsed / 1m 30s left ) -> ETA: Tue Nov 28 22:15 XS = 1967.26 pb +- ( 77.6071 pb = 3 % ) Event 600 ( 5s elapsed / 1m 24s left ) -> ETA: Tue Nov 28 22:15 XS = 1959.28 pb +- ( 70.596 pb = 3 % ) Event 700 ( 6s elapsed / 1m 21s left ) -> ETA: Tue Nov 28 22:15 XS = 1943.81 pb +- ( 64.9142 pb = 3 % ) Event 800 ( 6s elapsed / 1m 17s left ) -> ETA: Tue Nov 28 22:15 XS = 1944.57 pb +- ( 60.7409 pb = 3 % ) Event 900 ( 7s elapsed / 1m 13s left ) -> ETA: Tue Nov 28 22:15 XS = 1930.09 pb +- ( 56.8991 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 9s left ) -> ETA: Tue Nov 28 22:15 XS = 1963.33 pb +- ( 54.7765 pb = 2 % ) Event 2000 ( 13s elapsed / 53s left ) -> ETA: Tue Nov 28 22:15 XS = 1945.43 pb +- ( 38.4273 pb = 1 % ) Event 3000 ( 18s elapsed / 44s left ) -> ETA: Tue Nov 28 22:15 XS = 1917.82 pb +- ( 30.9917 pb = 1 % ) Event 4000 ( 24s elapsed / 37s left ) -> ETA: Tue Nov 28 22:14 XS = 1924.81 pb +- ( 26.9235 pb = 1 % ) Event 5000 ( 30s elapsed / 30s left ) -> ETA: Tue Nov 28 22:14 XS = 1942.91 pb +- ( 24.2757 pb = 1 % ) Event 6000 ( 36s elapsed / 24s left ) -> ETA: Tue Nov 28 22:14 XS = 1932.05 pb +- ( 22.054 pb = 1 % ) Event 7000 ( 41s elapsed / 17s left ) -> ETA: Tue Nov 28 22:14 XS = 1940.65 pb +- ( 20.496 pb = 1 % ) Event 8000 ( 47s elapsed / 11s left ) -> ETA: Tue Nov 28 22:14 XS = 1941.8 pb +- ( 19.1821 pb = 0 % ) Event 9000 ( 53s elapsed / 5s left ) -> ETA: Tue Nov 28 22:14 XS = 1948.88 pb +- ( 18.1416 pb = 0 % ) Event 10000 ( 58 s total ) = 1.46989e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1940.65 0 % 17.1482 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 59s on Tue Nov 28 22:14:55 2023 (User: 58s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:21:09 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 41m 38s left ) -> ETA: Wed Nov 29 03:02 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 20m 48s left ) -> ETA: Wed Nov 29 00:41 XS = 1967.26 pb +- ( 1301.22 pb = 66 % ) Event 3 ( 1s elapsed / 1h 34m 24s left ) -> ETA: Tue Nov 28 23:55 XS = 2213.17 pb +- ( 1155.79 pb = 52 % ) Event 4 ( 1s elapsed / 1h 10m 48s left ) -> ETA: Tue Nov 28 23:31 XS = 1416.43 pb +- ( 662.474 pb = 46 % ) Event 5 ( 1s elapsed / 56m 38s left ) -> ETA: Tue Nov 28 23:17 XS = 1580.83 pb +- ( 652.505 pb = 41 % ) Event 6 ( 1s elapsed / 47m 11s left ) -> ETA: Tue Nov 28 23:08 XS = 1659.88 pb +- ( 620.592 pb = 37 % ) Event 7 ( 1s elapsed / 40m 26s left ) -> ETA: Tue Nov 28 23:01 XS = 1877.84 pb +- ( 639.766 pb = 34 % ) Event 8 ( 1s elapsed / 35m 35s left ) -> ETA: Tue Nov 28 22:56 XS = 1770.54 pb +- ( 567.025 pb = 32 % ) Event 9 ( 1s elapsed / 31m 38s left ) -> ETA: Tue Nov 28 22:52 XS = 1659.88 pb +- ( 504.009 pb = 30 % ) Event 10 ( 1s elapsed / 28m 28s left ) -> ETA: Tue Nov 28 22:49 XS = 1670.32 pb +- ( 480.321 pb = 28 % ) Event 20 ( 1s elapsed / 14m 28s left ) -> ETA: Tue Nov 28 22:35 XS = 1686.22 pb +- ( 340.873 pb = 20 % ) Event 30 ( 1s elapsed / 9m 44s left ) -> ETA: Tue Nov 28 22:30 XS = 1782.42 pb +- ( 291.804 pb = 16 % ) Event 40 ( 1s elapsed / 7m 20s left ) -> ETA: Tue Nov 28 22:28 XS = 1788.42 pb +- ( 253.241 pb = 14 % ) Event 50 ( 1s elapsed / 5m 58s left ) -> ETA: Tue Nov 28 22:27 XS = 1883.55 pb +- ( 236.848 pb = 12 % ) Event 60 ( 1s elapsed / 5m 1s left ) -> ETA: Tue Nov 28 22:26 XS = 2019.62 pb +- ( 229.505 pb = 11 % ) Event 70 ( 1s elapsed / 4m 22s left ) -> ETA: Tue Nov 28 22:25 XS = 2065.62 pb +- ( 216.536 pb = 10 % ) Event 80 ( 1s elapsed / 3m 50s left ) -> ETA: Tue Nov 28 22:25 XS = 2152.63 pb +- ( 209.694 pb = 9 % ) Event 90 ( 1s elapsed / 3m 27s left ) -> ETA: Tue Nov 28 22:24 XS = 2176.89 pb +- ( 199.537 pb = 9 % ) Event 100 ( 1s elapsed / 3m 8s left ) -> ETA: Tue Nov 28 22:24 XS = 2138.33 pb +- ( 186.451 pb = 8 % ) Event 200 ( 2s elapsed / 1m 42s left ) -> ETA: Tue Nov 28 22:22 XS = 2082.98 pb +- ( 128.876 pb = 6 % ) Event 300 ( 2s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:22 XS = 1937.13 pb +- ( 98.8854 pb = 5 % ) Event 400 ( 2s elapsed / 1m left ) -> ETA: Tue Nov 28 22:22 XS = 1955.31 pb +- ( 86.3198 pb = 4 % ) Event 500 ( 2s elapsed / 52s left ) -> ETA: Tue Nov 28 22:22 XS = 1932.9 pb +- ( 76.4412 pb = 3 % ) Event 600 ( 3s elapsed / 47s left ) -> ETA: Tue Nov 28 22:21 XS = 1864.38 pb +- ( 67.6367 pb = 3 % ) Event 700 ( 3s elapsed / 43s left ) -> ETA: Tue Nov 28 22:21 XS = 1896.81 pb +- ( 63.5593 pb = 3 % ) Event 800 ( 3s elapsed / 39s left ) -> ETA: Tue Nov 28 22:21 XS = 1896.16 pb +- ( 59.4355 pb = 3 % ) Event 900 ( 3s elapsed / 37s left ) -> ETA: Tue Nov 28 22:21 XS = 1854.61 pb +- ( 54.971 pb = 2 % ) Event 1000 ( 3s elapsed / 35s left ) -> ETA: Tue Nov 28 22:21 XS = 1837.04 pb +- ( 51.7201 pb = 2 % ) Event 2000 ( 6s elapsed / 24s left ) -> ETA: Tue Nov 28 22:21 XS = 1815.19 pb +- ( 36.191 pb = 1 % ) Event 3000 ( 8s elapsed / 19s left ) -> ETA: Tue Nov 28 22:21 XS = 1854.87 pb +- ( 30.1101 pb = 1 % ) Event 4000 ( 10s elapsed / 16s left ) -> ETA: Tue Nov 28 22:21 XS = 1882.75 pb +- ( 26.415 pb = 1 % ) Event 5000 ( 12s elapsed / 12s left ) -> ETA: Tue Nov 28 22:21 XS = 1916.91 pb +- ( 23.9958 pb = 1 % ) Event 6000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:21 XS = 1906.81 pb +- ( 21.8055 pb = 1 % ) Event 7000 ( 17s elapsed / 7s left ) -> ETA: Tue Nov 28 22:21 XS = 1895.59 pb +- ( 20.0853 pb = 1 % ) Event 8000 ( 19s elapsed / 4s left ) -> ETA: Tue Nov 28 22:21 XS = 1901.35 pb +- ( 18.8373 pb = 0 % ) Event 9000 ( 21s elapsed / 2s left ) -> ETA: Tue Nov 28 22:21 XS = 1902.8 pb +- ( 17.7717 pb = 0 % ) Event 10000 ( 23 s total ) = 3.78947e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_1em/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1905.15 0 % 16.8777 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:21:33 2023 (User: 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:22:27 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 13m 18s left ) -> ETA: Wed Nov 29 02:35 XS = 16190.7 pb +- ( 16190.7 pb = 100 % ) Event 2 ( 1s elapsed / 2h 7m 28s left ) -> ETA: Wed Nov 29 00:29 XS = 3238.14 pb +- ( 2228.64 pb = 68 % ) Event 3 ( 1s elapsed / 1h 24m 58s left ) -> ETA: Tue Nov 28 23:47 XS = 4625.92 pb +- ( 2533.72 pb = 54 % ) Event 4 ( 1s elapsed / 1h 3m 43s left ) -> ETA: Tue Nov 28 23:26 XS = 4625.92 pb +- ( 2180.68 pb = 47 % ) Event 5 ( 1s elapsed / 51m 18s left ) -> ETA: Tue Nov 28 23:13 XS = 4906.28 pb +- ( 2052.44 pb = 41 % ) Event 6 ( 1s elapsed / 42m 45s left ) -> ETA: Tue Nov 28 23:05 XS = 5714.37 pb +- ( 2148.89 pb = 37 % ) Event 7 ( 1s elapsed / 36m 38s left ) -> ETA: Tue Nov 28 22:59 XS = 6126.22 pb +- ( 2113.75 pb = 34 % ) Event 8 ( 1s elapsed / 32m 3s left ) -> ETA: Tue Nov 28 22:54 XS = 5887.53 pb +- ( 1904.61 pb = 32 % ) Event 9 ( 1s elapsed / 28m 40s left ) -> ETA: Tue Nov 28 22:51 XS = 5604.48 pb +- ( 1715.39 pb = 30 % ) Event 10 ( 1s elapsed / 25m 48s left ) -> ETA: Tue Nov 28 22:48 XS = 4375.87 pb +- ( 1295.67 pb = 29 % ) Event 20 ( 1s elapsed / 13m 13s left ) -> ETA: Tue Nov 28 22:35 XS = 4625.92 pb +- ( 961.095 pb = 20 % ) Event 30 ( 1s elapsed / 8m 58s left ) -> ETA: Tue Nov 28 22:31 XS = 4435.81 pb +- ( 754.076 pb = 16 % ) Event 40 ( 1s elapsed / 6m 50s left ) -> ETA: Tue Nov 28 22:29 XS = 4451.06 pb +- ( 654.743 pb = 14 % ) Event 50 ( 1s elapsed / 5m 36s left ) -> ETA: Tue Nov 28 22:28 XS = 3987.86 pb +- ( 528.753 pb = 13 % ) Event 60 ( 1s elapsed / 4m 44s left ) -> ETA: Tue Nov 28 22:27 XS = 4187.25 pb +- ( 504.956 pb = 12 % ) Event 70 ( 1s elapsed / 4m 9s left ) -> ETA: Tue Nov 28 22:26 XS = 4121.27 pb +- ( 460.593 pb = 11 % ) Event 80 ( 1s elapsed / 3m 43s left ) -> ETA: Tue Nov 28 22:26 XS = 4054.01 pb +- ( 424.264 pb = 10 % ) Event 90 ( 1s elapsed / 3m 21s left ) -> ETA: Tue Nov 28 22:25 XS = 4070.29 pb +- ( 401.457 pb = 9 % ) Event 100 ( 1s elapsed / 3m 4s left ) -> ETA: Tue Nov 28 22:25 XS = 4162.14 pb +- ( 388.795 pb = 9 % ) Event 200 ( 2s elapsed / 1m 45s left ) -> ETA: Tue Nov 28 22:24 XS = 3908.44 pb +- ( 259.232 pb = 6 % ) Event 300 ( 2s elapsed / 1m 19s left ) -> ETA: Tue Nov 28 22:23 XS = 3838.18 pb +- ( 208.091 pb = 5 % ) Event 400 ( 2s elapsed / 1m 5s left ) -> ETA: Tue Nov 28 22:23 XS = 3970.75 pb +- ( 185.995 pb = 4 % ) Event 500 ( 2s elapsed / 56s left ) -> ETA: Tue Nov 28 22:23 XS = 4023.54 pb +- ( 168.409 pb = 4 % ) Event 600 ( 3s elapsed / 50s left ) -> ETA: Tue Nov 28 22:23 XS = 3957.8 pb +- ( 151.396 pb = 3 % ) Event 700 ( 3s elapsed / 46s left ) -> ETA: Tue Nov 28 22:23 XS = 3987.16 pb +- ( 141.13 pb = 3 % ) Event 800 ( 3s elapsed / 44s left ) -> ETA: Tue Nov 28 22:23 XS = 4043.89 pb +- ( 133.758 pb = 3 % ) Event 900 ( 4s elapsed / 41s left ) -> ETA: Tue Nov 28 22:23 XS = 3991.69 pb +- ( 124.594 pb = 3 % ) Event 1000 ( 4s elapsed / 39s left ) -> ETA: Tue Nov 28 22:23 XS = 3938.87 pb +- ( 116.744 pb = 2 % ) Event 2000 ( 7s elapsed / 28s left ) -> ETA: Tue Nov 28 22:23 XS = 3825.78 pb +- ( 80.3371 pb = 2 % ) Event 3000 ( 9s elapsed / 23s left ) -> ETA: Tue Nov 28 22:23 XS = 3828.2 pb +- ( 65.6329 pb = 1 % ) Event 4000 ( 12s elapsed / 19s left ) -> ETA: Tue Nov 28 22:22 XS = 3769.12 pb +- ( 56.0202 pb = 1 % ) Event 5000 ( 15s elapsed / 15s left ) -> ETA: Tue Nov 28 22:22 XS = 3802.07 pb +- ( 50.5147 pb = 1 % ) Event 6000 ( 18s elapsed / 12s left ) -> ETA: Tue Nov 28 22:22 XS = 3818.42 pb +- ( 46.2984 pb = 1 % ) Event 7000 ( 21s elapsed / 9s left ) -> ETA: Tue Nov 28 22:22 XS = 3814.52 pb +- ( 42.8231 pb = 1 % ) Event 8000 ( 24s elapsed / 6s left ) -> ETA: Tue Nov 28 22:22 XS = 3806.61 pb +- ( 39.9798 pb = 1 % ) Event 9000 ( 27s elapsed / 3s left ) -> ETA: Tue Nov 28 22:22 XS = 3808.68 pb +- ( 37.7124 pb = 0 % ) Event 10000 ( 30 s total ) = 2.81525e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3810.7 0 % 35.7948 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 31s on Tue Nov 28 22:22:58 2023 (User: 30s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:25:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 48m 18s left ) -> ETA: Wed Nov 29 03:13 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 24m 8s left ) -> ETA: Wed Nov 29 00:49 XS = 4426.34 pb +- ( 2555.55 pb = 57 % ) Event 3 ( 1s elapsed / 1h 36m 38s left ) -> ETA: Wed Nov 29 00:01 XS = 2950.89 pb +- ( 1475.45 pb = 50 % ) Event 4 ( 1s elapsed / 1h 12m 28s left ) -> ETA: Tue Nov 28 23:37 XS = 3541.07 pb +- ( 1445.64 pb = 40 % ) Event 5 ( 1s elapsed / 57m 58s left ) -> ETA: Tue Nov 28 23:23 XS = 3688.61 pb +- ( 1315.92 pb = 35 % ) Event 6 ( 1s elapsed / 48m 18s left ) -> ETA: Tue Nov 28 23:13 XS = 3319.75 pb +- ( 1106.58 pb = 33 % ) Event 7 ( 1s elapsed / 41m 23s left ) -> ETA: Tue Nov 28 23:06 XS = 3645.22 pb +- ( 1089.22 pb = 29 % ) Event 8 ( 1s elapsed / 36m 25s left ) -> ETA: Tue Nov 28 23:01 XS = 3541.07 pb +- ( 994.955 pb = 28 % ) Event 9 ( 1s elapsed / 32m 22s left ) -> ETA: Tue Nov 28 22:57 XS = 2950.89 pb +- ( 818.43 pb = 27 % ) Event 10 ( 1s elapsed / 29m 8s left ) -> ETA: Tue Nov 28 22:54 XS = 3052.65 pb +- ( 795.196 pb = 26 % ) Event 20 ( 1s elapsed / 14m 43s left ) -> ETA: Tue Nov 28 22:40 XS = 2269.92 pb +- ( 440.518 pb = 19 % ) Event 30 ( 1s elapsed / 9m 51s left ) -> ETA: Tue Nov 28 22:35 XS = 2436.52 pb +- ( 380.461 pb = 15 % ) Event 40 ( 1s elapsed / 7m 28s left ) -> ETA: Tue Nov 28 22:32 XS = 2314.42 pb +- ( 315.523 pb = 13 % ) Event 50 ( 1s elapsed / 6m 4s left ) -> ETA: Tue Nov 28 22:31 XS = 2087.9 pb +- ( 258.726 pb = 12 % ) Event 60 ( 1s elapsed / 5m 8s left ) -> ETA: Tue Nov 28 22:30 XS = 1989.37 pb +- ( 226.56 pb = 11 % ) Event 70 ( 1s elapsed / 4m 26s left ) -> ETA: Tue Nov 28 22:29 XS = 1906.73 pb +- ( 202.18 pb = 10 % ) Event 80 ( 1s elapsed / 3m 55s left ) -> ETA: Tue Nov 28 22:29 XS = 1748.68 pb +- ( 175.354 pb = 10 % ) Event 90 ( 1s elapsed / 3m 31s left ) -> ETA: Tue Nov 28 22:28 XS = 1778.44 pb +- ( 167.767 pb = 9 % ) Event 100 ( 1s elapsed / 3m 12s left ) -> ETA: Tue Nov 28 22:28 XS = 1756.48 pb +- ( 157.417 pb = 8 % ) Event 200 ( 2s elapsed / 1m 43s left ) -> ETA: Tue Nov 28 22:27 XS = 1867.65 pb +- ( 117.37 pb = 6 % ) Event 300 ( 2s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:26 XS = 1824.04 pb +- ( 93.8688 pb = 5 % ) Event 400 ( 2s elapsed / 1m 2s left ) -> ETA: Tue Nov 28 22:26 XS = 1905.85 pb +- ( 84.4368 pb = 4 % ) Event 500 ( 2s elapsed / 53s left ) -> ETA: Tue Nov 28 22:26 XS = 1973.4 pb +- ( 77.8146 pb = 3 % ) Event 600 ( 3s elapsed / 47s left ) -> ETA: Tue Nov 28 22:26 XS = 1925.89 pb +- ( 69.5606 pb = 3 % ) Event 700 ( 3s elapsed / 42s left ) -> ETA: Tue Nov 28 22:26 XS = 1916.76 pb +- ( 64.1357 pb = 3 % ) Event 800 ( 3s elapsed / 38s left ) -> ETA: Tue Nov 28 22:26 XS = 1875.07 pb +- ( 58.8635 pb = 3 % ) Event 900 ( 3s elapsed / 36s left ) -> ETA: Tue Nov 28 22:25 XS = 1885.78 pb +- ( 55.7703 pb = 2 % ) Event 1000 ( 3s elapsed / 33s left ) -> ETA: Tue Nov 28 22:25 XS = 1911.61 pb +- ( 53.5331 pb = 2 % ) Event 2000 ( 5s elapsed / 23s left ) -> ETA: Tue Nov 28 22:25 XS = 1886.96 pb +- ( 37.4297 pb = 1 % ) Event 3000 ( 7s elapsed / 18s left ) -> ETA: Tue Nov 28 22:25 XS = 1895.92 pb +- ( 30.686 pb = 1 % ) Event 4000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:25 XS = 1898.7 pb +- ( 26.6083 pb = 1 % ) Event 5000 ( 12s elapsed / 12s left ) -> ETA: Tue Nov 28 22:25 XS = 1912.27 pb +- ( 23.9458 pb = 1 % ) Event 6000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:25 XS = 1922.27 pb +- ( 21.9578 pb = 1 % ) Event 7000 ( 16s elapsed / 6s left ) -> ETA: Tue Nov 28 22:25 XS = 1908.26 pb +- ( 20.2011 pb = 1 % ) Event 8000 ( 18s elapsed / 4s left ) -> ETA: Tue Nov 28 22:25 XS = 1912.9 pb +- ( 18.936 pb = 0 % ) Event 9000 ( 19s elapsed / 2s left ) -> ETA: Tue Nov 28 22:25 XS = 1911.98 pb +- ( 17.8456 pb = 0 % ) Event 10000 ( 21 s total ) = 3.97973e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1907.49 0 % 16.8955 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 22s on Tue Nov 28 22:25:41 2023 (User: 21s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:27:00 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nlo_hessian_pdfas + NNPDF31_nlo_hessian_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 1 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 29m 58s left ) -> ETA: Wed Nov 29 02:57 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 14m 58s left ) -> ETA: Wed Nov 29 00:42 XS = 5901.78 pb +- ( 2950.89 pb = 50 % ) Event 3 ( 1s elapsed / 1h 30m 31s left ) -> ETA: Tue Nov 28 23:57 XS = 2655.8 pb +- ( 1352.27 pb = 50 % ) Event 4 ( 1s elapsed / 1h 8m 18s left ) -> ETA: Tue Nov 28 23:35 XS = 2950.89 pb +- ( 1258.26 pb = 42 % ) Event 5 ( 1s elapsed / 54m 38s left ) -> ETA: Tue Nov 28 23:21 XS = 2213.17 pb +- ( 879.424 pb = 39 % ) Event 6 ( 1s elapsed / 45m 48s left ) -> ETA: Tue Nov 28 23:12 XS = 1609.58 pb +- ( 603.592 pb = 37 % ) Event 7 ( 1s elapsed / 39m 15s left ) -> ETA: Tue Nov 28 23:06 XS = 1674.83 pb +- ( 577.871 pb = 34 % ) Event 8 ( 1s elapsed / 34m 20s left ) -> ETA: Tue Nov 28 23:01 XS = 1388.65 pb +- ( 455.301 pb = 32 % ) Event 9 ( 1s elapsed / 30m 42s left ) -> ETA: Tue Nov 28 22:57 XS = 1532.19 pb +- ( 468.966 pb = 30 % ) Event 10 ( 1s elapsed / 27m 38s left ) -> ETA: Tue Nov 28 22:54 XS = 1670.32 pb +- ( 480.321 pb = 28 % ) Event 20 ( 1s elapsed / 14m 23s left ) -> ETA: Tue Nov 28 22:41 XS = 1273.77 pb +- ( 264.49 pb = 20 % ) Event 30 ( 1s elapsed / 9m 48s left ) -> ETA: Tue Nov 28 22:36 XS = 1376.06 pb +- ( 231.484 pb = 16 % ) Event 40 ( 1s elapsed / 7m 35s left ) -> ETA: Tue Nov 28 22:34 XS = 1475.45 pb +- ( 213.407 pb = 14 % ) Event 50 ( 1s elapsed / 6m 14s left ) -> ETA: Tue Nov 28 22:33 XS = 1465.67 pb +- ( 189.657 pb = 12 % ) Event 60 ( 1s elapsed / 5m 19s left ) -> ETA: Tue Nov 28 22:32 XS = 1553.1 pb +- ( 182.336 pb = 11 % ) Event 70 ( 1s elapsed / 4m 42s left ) -> ETA: Tue Nov 28 22:31 XS = 1665.83 pb +- ( 179.638 pb = 10 % ) Event 80 ( 2s elapsed / 4m 11s left ) -> ETA: Tue Nov 28 22:31 XS = 1735.82 pb +- ( 174.22 pb = 10 % ) Event 90 ( 2s elapsed / 3m 47s left ) -> ETA: Tue Nov 28 22:30 XS = 1802.58 pb +- ( 169.756 pb = 9 % ) Event 100 ( 2s elapsed / 3m 29s left ) -> ETA: Tue Nov 28 22:30 XS = 1735.82 pb +- ( 155.789 pb = 8 % ) Event 200 ( 2s elapsed / 2m 8s left ) -> ETA: Tue Nov 28 22:29 XS = 1840.47 pb +- ( 115.886 pb = 6 % ) Event 300 ( 3s elapsed / 1m 42s left ) -> ETA: Tue Nov 28 22:28 XS = 1934.31 pb +- ( 98.7614 pb = 5 % ) Event 400 ( 3s elapsed / 1m 30s left ) -> ETA: Tue Nov 28 22:28 XS = 1908.93 pb +- ( 84.5546 pb = 4 % ) Event 500 ( 4s elapsed / 1m 24s left ) -> ETA: Tue Nov 28 22:28 XS = 1939.67 pb +- ( 76.6717 pb = 3 % ) Event 600 ( 5s elapsed / 1m 19s left ) -> ETA: Tue Nov 28 22:28 XS = 1962.9 pb +- ( 70.7079 pb = 3 % ) Event 700 ( 5s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:28 XS = 1926.78 pb +- ( 64.6347 pb = 3 % ) Event 800 ( 6s elapsed / 1m 12s left ) -> ETA: Tue Nov 28 22:28 XS = 1927.54 pb +- ( 60.4551 pb = 3 % ) Event 900 ( 6s elapsed / 1m 10s left ) -> ETA: Tue Nov 28 22:28 XS = 1907.78 pb +- ( 56.4745 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 8s left ) -> ETA: Tue Nov 28 22:28 XS = 1914.82 pb +- ( 53.7328 pb = 2 % ) Event 2000 ( 13s elapsed / 55s left ) -> ETA: Tue Nov 28 22:28 XS = 1929.91 pb +- ( 38.2071 pb = 1 % ) Event 3000 ( 20s elapsed / 47s left ) -> ETA: Tue Nov 28 22:28 XS = 1944.33 pb +- ( 31.4077 pb = 1 % ) Event 4000 ( 26s elapsed / 40s left ) -> ETA: Tue Nov 28 22:28 XS = 1970.55 pb +- ( 27.5036 pb = 1 % ) Event 5000 ( 33s elapsed / 33s left ) -> ETA: Tue Nov 28 22:28 XS = 1952.83 pb +- ( 24.4267 pb = 1 % ) Event 6000 ( 39s elapsed / 26s left ) -> ETA: Tue Nov 28 22:28 XS = 1954.64 pb +- ( 22.3178 pb = 1 % ) Event 7000 ( 45s elapsed / 19s left ) -> ETA: Tue Nov 28 22:28 XS = 1959.54 pb +- ( 20.701 pb = 1 % ) Event 8000 ( 52s elapsed / 13s left ) -> ETA: Tue Nov 28 22:28 XS = 1947.01 pb +- ( 19.2537 pb = 0 % ) Event 9000 ( 58s elapsed / 6s left ) -> ETA: Tue Nov 28 22:28 XS = 1939.31 pb +- ( 18.088 pb = 0 % ) Event 10000 ( 63 s total ) = 1.37909e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_NNPDF/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1933.08 0 % 17.1101 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 3s on Tue Nov 28 22:28:04 2023 (User: 1m 2s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:31:35 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 49m 58s left ) -> ETA: Wed Nov 29 03:21 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 25m 48s left ) -> ETA: Wed Nov 29 00:57 XS = 4426.34 pb +- ( 2555.55 pb = 57 % ) Event 3 ( 1s elapsed / 1h 37m 44s left ) -> ETA: Wed Nov 29 00:09 XS = 1397.79 pb +- ( 760.861 pb = 54 % ) Event 4 ( 1s elapsed / 1h 13m 18s left ) -> ETA: Tue Nov 28 23:44 XS = 1311.51 pb +- ( 616.763 pb = 47 % ) Event 5 ( 1s elapsed / 58m 58s left ) -> ETA: Tue Nov 28 23:30 XS = 1580.83 pb +- ( 652.505 pb = 41 % ) Event 6 ( 1s elapsed / 49m 8s left ) -> ETA: Tue Nov 28 23:20 XS = 1831.59 pb +- ( 677.699 pb = 37 % ) Event 7 ( 1s elapsed / 42m 6s left ) -> ETA: Tue Nov 28 23:13 XS = 1822.61 pb +- ( 623.117 pb = 34 % ) Event 8 ( 1s elapsed / 37m 3s left ) -> ETA: Tue Nov 28 23:08 XS = 2023.47 pb +- ( 637.52 pb = 31 % ) Event 9 ( 1s elapsed / 33m 18s left ) -> ETA: Tue Nov 28 23:04 XS = 2213.17 pb +- ( 647.949 pb = 29 % ) Event 10 ( 1s elapsed / 29m 58s left ) -> ETA: Tue Nov 28 23:01 XS = 2392.61 pb +- ( 655.245 pb = 27 % ) Event 20 ( 1s elapsed / 15m 28s left ) -> ETA: Tue Nov 28 22:47 XS = 2241.18 pb +- ( 435.854 pb = 19 % ) Event 30 ( 1s elapsed / 10m 31s left ) -> ETA: Tue Nov 28 22:42 XS = 2553.66 pb +- ( 395.184 pb = 15 % ) Event 40 ( 1s elapsed / 8m left ) -> ETA: Tue Nov 28 22:39 XS = 2425.39 pb +- ( 327.884 pb = 13 % ) Event 50 ( 1s elapsed / 6m 34s left ) -> ETA: Tue Nov 28 22:38 XS = 2529.34 pb +- ( 303.181 pb = 11 % ) Event 60 ( 2s elapsed / 5m 39s left ) -> ETA: Tue Nov 28 22:37 XS = 2260.26 pb +- ( 252.344 pb = 11 % ) Event 70 ( 2s elapsed / 5m 2s left ) -> ETA: Tue Nov 28 22:36 XS = 2129.51 pb +- ( 222.192 pb = 10 % ) Event 80 ( 2s elapsed / 4m 29s left ) -> ETA: Tue Nov 28 22:36 XS = 2199.42 pb +- ( 213.51 pb = 9 % ) Event 90 ( 2s elapsed / 4m 5s left ) -> ETA: Tue Nov 28 22:35 XS = 2017.07 pb +- ( 187.068 pb = 9 % ) Event 100 ( 2s elapsed / 3m 47s left ) -> ETA: Tue Nov 28 22:35 XS = 2068.38 pb +- ( 181.282 pb = 8 % ) Event 200 ( 2s elapsed / 2m 19s left ) -> ETA: Tue Nov 28 22:33 XS = 2049.23 pb +- ( 127.103 pb = 6 % ) Event 300 ( 3s elapsed / 1m 48s left ) -> ETA: Tue Nov 28 22:33 XS = 1987.88 pb +- ( 101.104 pb = 5 % ) Event 400 ( 3s elapsed / 1m 34s left ) -> ETA: Tue Nov 28 22:33 XS = 1993.85 pb +- ( 87.7752 pb = 4 % ) Event 500 ( 4s elapsed / 1m 25s left ) -> ETA: Tue Nov 28 22:33 XS = 2000.15 pb +- ( 78.7162 pb = 3 % ) Event 600 ( 5s elapsed / 1m 20s left ) -> ETA: Tue Nov 28 22:33 XS = 1962.9 pb +- ( 70.7079 pb = 3 % ) Event 700 ( 5s elapsed / 1m 17s left ) -> ETA: Tue Nov 28 22:32 XS = 1949.32 pb +- ( 65.072 pb = 3 % ) Event 800 ( 6s elapsed / 1m 14s left ) -> ETA: Tue Nov 28 22:32 XS = 1963.99 pb +- ( 61.2611 pb = 3 % ) Event 900 ( 7s elapsed / 1m 12s left ) -> ETA: Tue Nov 28 22:32 XS = 1981.94 pb +- ( 58.2087 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 10s left ) -> ETA: Tue Nov 28 22:32 XS = 1983.57 pb +- ( 55.2598 pb = 2 % ) Event 2000 ( 13s elapsed / 54s left ) -> ETA: Tue Nov 28 22:32 XS = 1940.74 pb +- ( 38.3476 pb = 1 % ) Event 3000 ( 19s elapsed / 45s left ) -> ETA: Tue Nov 28 22:32 XS = 1958.99 pb +- ( 31.5628 pb = 1 % ) Event 4000 ( 25s elapsed / 38s left ) -> ETA: Tue Nov 28 22:32 XS = 1933.11 pb +- ( 27.0234 pb = 1 % ) Event 5000 ( 31s elapsed / 31s left ) -> ETA: Tue Nov 28 22:32 XS = 1933.49 pb +- ( 24.1744 pb = 1 % ) Event 6000 ( 38s elapsed / 25s left ) -> ETA: Tue Nov 28 22:32 XS = 1929.6 pb +- ( 22.0298 pb = 1 % ) Event 7000 ( 44s elapsed / 19s left ) -> ETA: Tue Nov 28 22:32 XS = 1932.05 pb +- ( 20.418 pb = 1 % ) Event 8000 ( 50s elapsed / 12s left ) -> ETA: Tue Nov 28 22:32 XS = 1945.17 pb +- ( 19.2106 pb = 0 % ) Event 9000 ( 57s elapsed / 6s left ) -> ETA: Tue Nov 28 22:32 XS = 1937.74 pb +- ( 18.0525 pb = 0 % ) Event 10000 ( 61 s total ) = 1.42082e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_v2/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1927.18 0 % 17.0457 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 1s on Tue Nov 28 22:32:37 2023 (User: 1m 1s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:41:55 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 5h 3m 18s left ) -> ETA: Wed Nov 29 03:45 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 31m 38s left ) -> ETA: Wed Nov 29 01:13 XS = 4426.34 pb +- ( 2555.55 pb = 57 % ) Event 3 ( 1s elapsed / 1h 41m 38s left ) -> ETA: Wed Nov 29 00:23 XS = 2950.89 pb +- ( 1475.45 pb = 50 % ) Event 4 ( 1s elapsed / 1h 16m 13s left ) -> ETA: Tue Nov 28 23:58 XS = 3541.07 pb +- ( 1445.64 pb = 40 % ) Event 5 ( 1s elapsed / 1h 58s left ) -> ETA: Tue Nov 28 23:42 XS = 3688.61 pb +- ( 1315.92 pb = 35 % ) Event 6 ( 1s elapsed / 50m 48s left ) -> ETA: Tue Nov 28 23:32 XS = 3319.75 pb +- ( 1106.58 pb = 33 % ) Event 7 ( 1s elapsed / 43m 32s left ) -> ETA: Tue Nov 28 23:25 XS = 3645.22 pb +- ( 1089.22 pb = 29 % ) Event 8 ( 1s elapsed / 38m 5s left ) -> ETA: Tue Nov 28 23:20 XS = 3541.07 pb +- ( 994.955 pb = 28 % ) Event 9 ( 1s elapsed / 33m 51s left ) -> ETA: Tue Nov 28 23:15 XS = 2950.89 pb +- ( 818.43 pb = 27 % ) Event 10 ( 1s elapsed / 30m 28s left ) -> ETA: Tue Nov 28 23:12 XS = 3052.65 pb +- ( 795.196 pb = 26 % ) Event 20 ( 1s elapsed / 15m 28s left ) -> ETA: Tue Nov 28 22:57 XS = 2269.92 pb +- ( 440.518 pb = 19 % ) Event 30 ( 1s elapsed / 10m 24s left ) -> ETA: Tue Nov 28 22:52 XS = 2436.52 pb +- ( 380.461 pb = 15 % ) Event 40 ( 1s elapsed / 7m 53s left ) -> ETA: Tue Nov 28 22:49 XS = 2314.42 pb +- ( 315.523 pb = 13 % ) Event 50 ( 1s elapsed / 6m 24s left ) -> ETA: Tue Nov 28 22:48 XS = 2087.9 pb +- ( 258.726 pb = 12 % ) Event 60 ( 1s elapsed / 5m 24s left ) -> ETA: Tue Nov 28 22:47 XS = 1989.37 pb +- ( 226.56 pb = 11 % ) Event 70 ( 1s elapsed / 4m 42s left ) -> ETA: Tue Nov 28 22:46 XS = 1906.73 pb +- ( 202.18 pb = 10 % ) Event 80 ( 2s elapsed / 4m 10s left ) -> ETA: Tue Nov 28 22:46 XS = 1748.68 pb +- ( 175.354 pb = 10 % ) Event 90 ( 2s elapsed / 3m 44s left ) -> ETA: Tue Nov 28 22:45 XS = 1778.44 pb +- ( 167.767 pb = 9 % ) Event 100 ( 2s elapsed / 3m 22s left ) -> ETA: Tue Nov 28 22:45 XS = 1756.48 pb +- ( 157.417 pb = 8 % ) Event 200 ( 2s elapsed / 1m 50s left ) -> ETA: Tue Nov 28 22:43 XS = 1867.65 pb +- ( 117.37 pb = 6 % ) Event 300 ( 2s elapsed / 1m 19s left ) -> ETA: Tue Nov 28 22:43 XS = 1824.04 pb +- ( 93.8688 pb = 5 % ) Event 400 ( 2s elapsed / 1m 3s left ) -> ETA: Tue Nov 28 22:43 XS = 1905.85 pb +- ( 84.4368 pb = 4 % ) Event 500 ( 2s elapsed / 53s left ) -> ETA: Tue Nov 28 22:42 XS = 1973.4 pb +- ( 77.8146 pb = 3 % ) Event 600 ( 2s elapsed / 46s left ) -> ETA: Tue Nov 28 22:42 XS = 1925.89 pb +- ( 69.5606 pb = 3 % ) Event 700 ( 3s elapsed / 41s left ) -> ETA: Tue Nov 28 22:42 XS = 1916.76 pb +- ( 64.1357 pb = 3 % ) Event 800 ( 3s elapsed / 38s left ) -> ETA: Tue Nov 28 22:42 XS = 1875.07 pb +- ( 58.8635 pb = 3 % ) Event 900 ( 3s elapsed / 35s left ) -> ETA: Tue Nov 28 22:42 XS = 1885.78 pb +- ( 55.7703 pb = 2 % ) Event 1000 ( 3s elapsed / 33s left ) -> ETA: Tue Nov 28 22:42 XS = 1911.61 pb +- ( 53.5331 pb = 2 % ) Event 2000 ( 5s elapsed / 22s left ) -> ETA: Tue Nov 28 22:42 XS = 1886.96 pb +- ( 37.4297 pb = 1 % ) Event 3000 ( 7s elapsed / 17s left ) -> ETA: Tue Nov 28 22:42 XS = 1895.92 pb +- ( 30.686 pb = 1 % ) Event 4000 ( 9s elapsed / 14s left ) -> ETA: Tue Nov 28 22:42 XS = 1898.7 pb +- ( 26.6083 pb = 1 % ) Event 5000 ( 12s elapsed / 12s left ) -> ETA: Tue Nov 28 22:42 XS = 1912.27 pb +- ( 23.9458 pb = 1 % ) Event 6000 ( 13s elapsed / 9s left ) -> ETA: Tue Nov 28 22:42 XS = 1922.27 pb +- ( 21.9578 pb = 1 % ) Event 7000 ( 15s elapsed / 6s left ) -> ETA: Tue Nov 28 22:42 XS = 1908.26 pb +- ( 20.2011 pb = 1 % ) Event 8000 ( 17s elapsed / 4s left ) -> ETA: Tue Nov 28 22:42 XS = 1912.9 pb +- ( 18.936 pb = 0 % ) Event 9000 ( 19s elapsed / 2s left ) -> ETA: Tue Nov 28 22:42 XS = 1911.98 pb +- ( 17.8456 pb = 0 % ) Event 10000 ( 21 s total ) = 4.1719e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1907.49 0 % 16.8955 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 21s on Tue Nov 28 22:42:16 2023 (User: 21s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:37:24 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 2s elapsed / 5h 33m 18s left ) -> ETA: Thu Nov 30 00:10 XS = 13044.7 pb +- ( 13044.7 pb = 100 % ) Event 2 ( 2s elapsed / 2h 47m 27s left ) -> ETA: Wed Nov 29 21:24 XS = 17392.9 pb +- ( 8696.47 pb = 50 % ) Event 3 ( 2s elapsed / 1h 52m 11s left ) -> ETA: Wed Nov 29 20:29 XS = 9783.53 pb +- ( 4773.87 pb = 48 % ) Event 4 ( 2s elapsed / 1h 24m 7s left ) -> ETA: Wed Nov 29 20:01 XS = 3478.59 pb +- ( 1646.88 pb = 47 % ) Event 5 ( 2s elapsed / 1h 7m 37s left ) -> ETA: Wed Nov 29 19:45 XS = 4207.97 pb +- ( 1751.92 pb = 41 % ) Event 6 ( 2s elapsed / 56m 21s left ) -> ETA: Wed Nov 29 19:33 XS = 3727.06 pb +- ( 1425.77 pb = 38 % ) Event 7 ( 2s elapsed / 48m 32s left ) -> ETA: Wed Nov 29 19:25 XS = 3804.71 pb +- ( 1343.12 pb = 35 % ) Event 8 ( 2s elapsed / 42m 27s left ) -> ETA: Wed Nov 29 19:19 XS = 3478.59 pb +- ( 1154.61 pb = 33 % ) Event 9 ( 2s elapsed / 37m 55s left ) -> ETA: Wed Nov 29 19:15 XS = 3612.38 pb +- ( 1126.36 pb = 31 % ) Event 10 ( 2s elapsed / 34m 7s left ) -> ETA: Wed Nov 29 19:11 XS = 3478.59 pb +- ( 1030.96 pb = 29 % ) Event 20 ( 2s elapsed / 17m 22s left ) -> ETA: Wed Nov 29 18:54 XS = 4348.24 pb +- ( 891.301 pb = 20 % ) Event 30 ( 2s elapsed / 11m 51s left ) -> ETA: Wed Nov 29 18:49 XS = 4472.47 pb +- ( 745.412 pb = 16 % ) Event 40 ( 2s elapsed / 9m 5s left ) -> ETA: Wed Nov 29 18:46 XS = 4348.24 pb +- ( 628.925 pb = 14 % ) Event 50 ( 2s elapsed / 7m 25s left ) -> ETA: Wed Nov 29 18:44 XS = 4305.18 pb +- ( 557.267 pb = 12 % ) Event 60 ( 2s elapsed / 6m 22s left ) -> ETA: Wed Nov 29 18:43 XS = 3817.96 pb +- ( 455.962 pb = 11 % ) Event 70 ( 2s elapsed / 5m 33s left ) -> ETA: Wed Nov 29 18:43 XS = 3828.63 pb +- ( 423.144 pb = 11 % ) Event 80 ( 2s elapsed / 4m 56s left ) -> ETA: Wed Nov 29 18:42 XS = 3938.02 pb +- ( 406.08 pb = 10 % ) Event 90 ( 2s elapsed / 4m 28s left ) -> ETA: Wed Nov 29 18:41 XS = 3775 pb +- ( 368.303 pb = 9 % ) Event 100 ( 2s elapsed / 4m 6s left ) -> ETA: Wed Nov 29 18:41 XS = 3705.88 pb +- ( 343.505 pb = 9 % ) Event 200 ( 2s elapsed / 2m 22s left ) -> ETA: Wed Nov 29 18:39 XS = 3623.53 pb +- ( 237.847 pb = 6 % ) Event 300 ( 3s elapsed / 1m 48s left ) -> ETA: Wed Nov 29 18:39 XS = 3600.19 pb +- ( 193.028 pb = 5 % ) Event 400 ( 3s elapsed / 1m 31s left ) -> ETA: Wed Nov 29 18:38 XS = 3497.24 pb +- ( 162.748 pb = 4 % ) Event 500 ( 4s elapsed / 1m 20s left ) -> ETA: Wed Nov 29 18:38 XS = 3464.73 pb +- ( 144.312 pb = 4 % ) Event 600 ( 4s elapsed / 1m 11s left ) -> ETA: Wed Nov 29 18:38 XS = 3416.78 pb +- ( 130.051 pb = 3 % ) Event 700 ( 5s elapsed / 1m 6s left ) -> ETA: Wed Nov 29 18:38 XS = 3348.24 pb +- ( 118.164 pb = 3 % ) Event 800 ( 5s elapsed / 1m 2s left ) -> ETA: Wed Nov 29 18:38 XS = 3374.32 pb +- ( 111.329 pb = 3 % ) Event 900 ( 5s elapsed / 58s left ) -> ETA: Wed Nov 29 18:38 XS = 3403.76 pb +- ( 105.808 pb = 3 % ) Event 1000 ( 6s elapsed / 56s left ) -> ETA: Wed Nov 29 18:38 XS = 3418.24 pb +- ( 100.772 pb = 2 % ) Event 2000 ( 10s elapsed / 41s left ) -> ETA: Wed Nov 29 18:38 XS = 3488.03 pb +- ( 72.5967 pb = 2 % ) Event 3000 ( 14s elapsed / 33s left ) -> ETA: Wed Nov 29 18:38 XS = 3394.2 pb +- ( 57.7993 pb = 1 % ) Event 4000 ( 18s elapsed / 27s left ) -> ETA: Wed Nov 29 18:38 XS = 3413.46 pb +- ( 50.318 pb = 1 % ) Event 5000 ( 22s elapsed / 22s left ) -> ETA: Wed Nov 29 18:38 XS = 3386.71 pb +- ( 44.6792 pb = 1 % ) Event 6000 ( 27s elapsed / 18s left ) -> ETA: Wed Nov 29 18:38 XS = 3382.71 pb +- ( 40.7418 pb = 1 % ) Event 7000 ( 31s elapsed / 13s left ) -> ETA: Wed Nov 29 18:38 XS = 3391.73 pb +- ( 37.8126 pb = 1 % ) Event 8000 ( 34s elapsed / 8s left ) -> ETA: Wed Nov 29 18:38 XS = 3382.13 pb +- ( 35.2776 pb = 1 % ) Event 9000 ( 38s elapsed / 4s left ) -> ETA: Wed Nov 29 18:38 XS = 3386.37 pb +- ( 33.2986 pb = 0 % ) Event 10000 ( 41 s total ) = 2.06847e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3380.54 0 % 31.5395 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 42s on Wed Nov 29 18:38:07 2023 (User: 41s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:43:36 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 3h 38m 18s left ) -> ETA: Wed Nov 29 22:21 XS = 13044.7 pb +- ( 13044.7 pb = 100 % ) Event 2 ( 1s elapsed / 1h 49m 58s left ) -> ETA: Wed Nov 29 20:33 XS = 17392.9 pb +- ( 8696.47 pb = 50 % ) Event 3 ( 1s elapsed / 1h 13m 18s left ) -> ETA: Wed Nov 29 19:56 XS = 9783.53 pb +- ( 4773.87 pb = 48 % ) Event 4 ( 1s elapsed / 55m 23s left ) -> ETA: Wed Nov 29 19:39 XS = 3478.59 pb +- ( 1646.88 pb = 47 % ) Event 5 ( 1s elapsed / 44m 18s left ) -> ETA: Wed Nov 29 19:27 XS = 4207.97 pb +- ( 1751.92 pb = 41 % ) Event 6 ( 1s elapsed / 36m 55s left ) -> ETA: Wed Nov 29 19:20 XS = 3727.06 pb +- ( 1425.77 pb = 38 % ) Event 7 ( 1s elapsed / 31m 38s left ) -> ETA: Wed Nov 29 19:15 XS = 3804.71 pb +- ( 1343.12 pb = 35 % ) Event 8 ( 1s elapsed / 27m 53s left ) -> ETA: Wed Nov 29 19:11 XS = 3478.59 pb +- ( 1154.61 pb = 33 % ) Event 9 ( 1s elapsed / 24m 47s left ) -> ETA: Wed Nov 29 19:08 XS = 3612.38 pb +- ( 1126.36 pb = 31 % ) Event 10 ( 1s elapsed / 22m 18s left ) -> ETA: Wed Nov 29 19:05 XS = 3478.59 pb +- ( 1030.96 pb = 29 % ) Event 20 ( 1s elapsed / 11m 18s left ) -> ETA: Wed Nov 29 18:54 XS = 4348.24 pb +- ( 891.301 pb = 20 % ) Event 30 ( 1s elapsed / 7m 41s left ) -> ETA: Wed Nov 29 18:51 XS = 4472.47 pb +- ( 745.412 pb = 16 % ) Event 40 ( 1s elapsed / 5m 53s left ) -> ETA: Wed Nov 29 18:49 XS = 4348.24 pb +- ( 628.925 pb = 14 % ) Event 50 ( 1s elapsed / 4m 46s left ) -> ETA: Wed Nov 29 18:48 XS = 4305.18 pb +- ( 557.267 pb = 12 % ) Event 60 ( 1s elapsed / 4m 5s left ) -> ETA: Wed Nov 29 18:47 XS = 3817.96 pb +- ( 455.962 pb = 11 % ) Event 70 ( 1s elapsed / 3m 37s left ) -> ETA: Wed Nov 29 18:47 XS = 3828.63 pb +- ( 423.144 pb = 11 % ) Event 80 ( 1s elapsed / 3m 13s left ) -> ETA: Wed Nov 29 18:46 XS = 3938.02 pb +- ( 406.08 pb = 10 % ) Event 90 ( 1s elapsed / 2m 57s left ) -> ETA: Wed Nov 29 18:46 XS = 3775 pb +- ( 368.303 pb = 9 % ) Event 100 ( 1s elapsed / 2m 43s left ) -> ETA: Wed Nov 29 18:46 XS = 3705.88 pb +- ( 343.505 pb = 9 % ) Event 200 ( 2s elapsed / 1m 42s left ) -> ETA: Wed Nov 29 18:45 XS = 3623.53 pb +- ( 237.847 pb = 6 % ) Event 300 ( 2s elapsed / 1m 20s left ) -> ETA: Wed Nov 29 18:44 XS = 3600.19 pb +- ( 193.028 pb = 5 % ) Event 400 ( 2s elapsed / 1m 9s left ) -> ETA: Wed Nov 29 18:44 XS = 3497.24 pb +- ( 162.748 pb = 4 % ) Event 500 ( 3s elapsed / 1m 2s left ) -> ETA: Wed Nov 29 18:44 XS = 3464.73 pb +- ( 144.312 pb = 4 % ) Event 600 ( 3s elapsed / 57s left ) -> ETA: Wed Nov 29 18:44 XS = 3416.78 pb +- ( 130.051 pb = 3 % ) Event 700 ( 3s elapsed / 52s left ) -> ETA: Wed Nov 29 18:44 XS = 3348.24 pb +- ( 118.164 pb = 3 % ) Event 800 ( 4s elapsed / 49s left ) -> ETA: Wed Nov 29 18:44 XS = 3374.32 pb +- ( 111.329 pb = 3 % ) Event 900 ( 4s elapsed / 47s left ) -> ETA: Wed Nov 29 18:44 XS = 3403.76 pb +- ( 105.808 pb = 3 % ) Event 1000 ( 5s elapsed / 45s left ) -> ETA: Wed Nov 29 18:44 XS = 3418.24 pb +- ( 100.772 pb = 2 % ) Event 2000 ( 8s elapsed / 33s left ) -> ETA: Wed Nov 29 18:44 XS = 3488.03 pb +- ( 72.5967 pb = 2 % ) Event 3000 ( 11s elapsed / 27s left ) -> ETA: Wed Nov 29 18:44 XS = 3394.2 pb +- ( 57.7993 pb = 1 % ) Event 4000 ( 15s elapsed / 23s left ) -> ETA: Wed Nov 29 18:44 XS = 3413.46 pb +- ( 50.318 pb = 1 % ) Event 5000 ( 19s elapsed / 19s left ) -> ETA: Wed Nov 29 18:44 XS = 3386.71 pb +- ( 44.6792 pb = 1 % ) Event 6000 ( 23s elapsed / 15s left ) -> ETA: Wed Nov 29 18:44 XS = 3382.71 pb +- ( 40.7418 pb = 1 % ) Event 7000 ( 26s elapsed / 11s left ) -> ETA: Wed Nov 29 18:44 XS = 3391.73 pb +- ( 37.8126 pb = 1 % ) Event 8000 ( 30s elapsed / 7s left ) -> ETA: Wed Nov 29 18:44 XS = 3382.13 pb +- ( 35.2776 pb = 1 % ) Event 9000 ( 33s elapsed / 3s left ) -> ETA: Wed Nov 29 18:44 XS = 3386.37 pb +- ( 33.2986 pb = 0 % ) Event 10000 ( 37 s total ) = 2.34719e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3380.54 0 % 31.5395 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 37s on Wed Nov 29 18:44:13 2023 (User: 36s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 19:45:50 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8028 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 6m 38s left ) -> ETA: Wed Nov 29 23:52 XS = 13044.7 pb +- ( 13044.7 pb = 100 % ) Event 2 ( 1s elapsed / 2h 4m 8s left ) -> ETA: Wed Nov 29 21:49 XS = 17392.9 pb +- ( 8696.47 pb = 50 % ) Event 3 ( 1s elapsed / 1h 22m 45s left ) -> ETA: Wed Nov 29 21:08 XS = 9783.53 pb +- ( 4773.87 pb = 48 % ) Event 4 ( 1s elapsed / 1h 2m 28s left ) -> ETA: Wed Nov 29 20:48 XS = 3478.59 pb +- ( 1646.88 pb = 47 % ) Event 5 ( 1s elapsed / 49m 58s left ) -> ETA: Wed Nov 29 20:35 XS = 4207.97 pb +- ( 1751.92 pb = 41 % ) Event 6 ( 1s elapsed / 41m 55s left ) -> ETA: Wed Nov 29 20:27 XS = 3727.06 pb +- ( 1425.77 pb = 38 % ) Event 7 ( 1s elapsed / 35m 55s left ) -> ETA: Wed Nov 29 20:21 XS = 3804.71 pb +- ( 1343.12 pb = 35 % ) Event 8 ( 1s elapsed / 31m 38s left ) -> ETA: Wed Nov 29 20:17 XS = 3478.59 pb +- ( 1154.61 pb = 33 % ) Event 9 ( 1s elapsed / 28m 7s left ) -> ETA: Wed Nov 29 20:13 XS = 3612.38 pb +- ( 1126.36 pb = 31 % ) Event 10 ( 1s elapsed / 25m 18s left ) -> ETA: Wed Nov 29 20:11 XS = 3478.59 pb +- ( 1030.96 pb = 29 % ) Event 20 ( 1s elapsed / 12m 58s left ) -> ETA: Wed Nov 29 19:58 XS = 4348.24 pb +- ( 891.301 pb = 20 % ) Event 30 ( 1s elapsed / 8m 55s left ) -> ETA: Wed Nov 29 19:54 XS = 4472.47 pb +- ( 745.412 pb = 16 % ) Event 40 ( 1s elapsed / 6m 48s left ) -> ETA: Wed Nov 29 19:52 XS = 4348.24 pb +- ( 628.925 pb = 14 % ) Event 50 ( 1s elapsed / 5m 30s left ) -> ETA: Wed Nov 29 19:51 XS = 4305.18 pb +- ( 557.267 pb = 12 % ) Event 60 ( 1s elapsed / 4m 43s left ) -> ETA: Wed Nov 29 19:50 XS = 3817.96 pb +- ( 455.962 pb = 11 % ) Event 70 ( 1s elapsed / 4m 6s left ) -> ETA: Wed Nov 29 19:49 XS = 3828.63 pb +- ( 423.144 pb = 11 % ) Event 80 ( 1s elapsed / 3m 38s left ) -> ETA: Wed Nov 29 19:49 XS = 3938.02 pb +- ( 406.08 pb = 10 % ) Event 90 ( 1s elapsed / 3m 19s left ) -> ETA: Wed Nov 29 19:49 XS = 3775 pb +- ( 368.303 pb = 9 % ) Event 100 ( 1s elapsed / 3m 4s left ) -> ETA: Wed Nov 29 19:48 XS = 3705.88 pb +- ( 343.505 pb = 9 % ) Event 200 ( 2s elapsed / 1m 51s left ) -> ETA: Wed Nov 29 19:47 XS = 3623.53 pb +- ( 237.847 pb = 6 % ) Event 300 ( 2s elapsed / 1m 27s left ) -> ETA: Wed Nov 29 19:47 XS = 3600.19 pb +- ( 193.028 pb = 5 % ) Event 400 ( 3s elapsed / 1m 15s left ) -> ETA: Wed Nov 29 19:47 XS = 3497.24 pb +- ( 162.748 pb = 4 % ) Event 500 ( 3s elapsed / 1m 8s left ) -> ETA: Wed Nov 29 19:47 XS = 3464.73 pb +- ( 144.312 pb = 4 % ) Event 600 ( 3s elapsed / 1m 2s left ) -> ETA: Wed Nov 29 19:46 XS = 3416.78 pb +- ( 130.051 pb = 3 % ) Event 700 ( 4s elapsed / 58s left ) -> ETA: Wed Nov 29 19:46 XS = 3348.24 pb +- ( 118.164 pb = 3 % ) Event 800 ( 4s elapsed / 54s left ) -> ETA: Wed Nov 29 19:46 XS = 3374.32 pb +- ( 111.329 pb = 3 % ) Event 900 ( 5s elapsed / 51s left ) -> ETA: Wed Nov 29 19:46 XS = 3403.76 pb +- ( 105.808 pb = 3 % ) Event 1000 ( 5s elapsed / 49s left ) -> ETA: Wed Nov 29 19:46 XS = 3418.24 pb +- ( 100.772 pb = 2 % ) Event 2000 ( 10s elapsed / 40s left ) -> ETA: Wed Nov 29 19:46 XS = 3488.03 pb +- ( 72.5967 pb = 2 % ) Event 3000 ( 14s elapsed / 34s left ) -> ETA: Wed Nov 29 19:46 XS = 3394.2 pb +- ( 57.7993 pb = 1 % ) Event 4000 ( 18s elapsed / 28s left ) -> ETA: Wed Nov 29 19:46 XS = 3413.46 pb +- ( 50.318 pb = 1 % ) Event 5000 ( 23s elapsed / 23s left ) -> ETA: Wed Nov 29 19:46 XS = 3386.71 pb +- ( 44.6792 pb = 1 % ) Event 6000 ( 27s elapsed / 18s left ) -> ETA: Wed Nov 29 19:46 XS = 3382.71 pb +- ( 40.7418 pb = 1 % ) Event 7000 ( 32s elapsed / 13s left ) -> ETA: Wed Nov 29 19:46 XS = 3391.73 pb +- ( 37.8126 pb = 1 % ) Event 8000 ( 35s elapsed / 8s left ) -> ETA: Wed Nov 29 19:46 XS = 3382.13 pb +- ( 35.2776 pb = 1 % ) Event 9000 ( 37s elapsed / 4s left ) -> ETA: Wed Nov 29 19:46 XS = 3386.37 pb +- ( 33.2986 pb = 0 % ) Event 10000 ( 39 s total ) = 2.23256e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8028){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3380.54 0 % 31.5395 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 39s on Wed Nov 29 19:46:29 2023 (User: 39s, System: 0s, Children User: 0s, Children System: 0s)