Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:44:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 38m 18s left ) -> ETA: Wed Nov 29 02:22 XS = 1471.88 pb +- ( 1471.88 pb = 100 % ) Event 2 ( 1s elapsed / 2h 20m 48s left ) -> ETA: Wed Nov 29 00:05 XS = 1579.58 pb +- ( 1102.88 pb = 69 % ) Event 3 ( 1s elapsed / 1h 34m 24s left ) -> ETA: Tue Nov 28 23:18 XS = 2259.17 pb +- ( 1272.9 pb = 56 % ) Event 4 ( 1s elapsed / 1h 11m 13s left ) -> ETA: Tue Nov 28 22:55 XS = 2539.72 pb +- ( 1231.18 pb = 48 % ) Event 5 ( 1s elapsed / 56m 58s left ) -> ETA: Tue Nov 28 22:41 XS = 3113.6 pb +- ( 1336.72 pb = 42 % ) Event 6 ( 1s elapsed / 47m 44s left ) -> ETA: Tue Nov 28 22:32 XS = 2899.83 pb +- ( 1138.12 pb = 39 % ) Event 7 ( 1s elapsed / 41m 9s left ) -> ETA: Tue Nov 28 22:25 XS = 3105.07 pb +- ( 1123.64 pb = 36 % ) Event 8 ( 1s elapsed / 36m 13s left ) -> ETA: Tue Nov 28 22:20 XS = 3238.14 pb +- ( 1092.96 pb = 33 % ) Event 9 ( 1s elapsed / 32m 44s left ) -> ETA: Tue Nov 28 22:17 XS = 3597.94 pb +- ( 1137.77 pb = 31 % ) Event 10 ( 1s elapsed / 29m 28s left ) -> ETA: Tue Nov 28 22:13 XS = 3722 pb +- ( 1113.71 pb = 29 % ) Event 20 ( 1s elapsed / 15m 38s left ) -> ETA: Tue Nov 28 21:59 XS = 4073.14 pb +- ( 854.265 pb = 20 % ) Event 30 ( 1s elapsed / 10m 58s left ) -> ETA: Tue Nov 28 21:55 XS = 4014.23 pb +- ( 687.386 pb = 17 % ) Event 40 ( 2s elapsed / 8m 30s left ) -> ETA: Tue Nov 28 21:52 XS = 4151.47 pb +- ( 613.869 pb = 14 % ) Event 50 ( 2s elapsed / 7m 1s left ) -> ETA: Tue Nov 28 21:51 XS = 4047.68 pb +- ( 536.128 pb = 13 % ) Event 60 ( 2s elapsed / 6m 1s left ) -> ETA: Tue Nov 28 21:50 XS = 4022.54 pb +- ( 486.487 pb = 12 % ) Event 70 ( 2s elapsed / 5m 20s left ) -> ETA: Tue Nov 28 21:49 XS = 4252.72 pb +- ( 474.19 pb = 11 % ) Event 80 ( 2s elapsed / 4m 51s left ) -> ETA: Tue Nov 28 21:49 XS = 4346.5 pb +- ( 452.544 pb = 10 % ) Event 90 ( 2s elapsed / 4m 25s left ) -> ETA: Tue Nov 28 21:48 XS = 4266.95 pb +- ( 419.403 pb = 9 % ) Event 100 ( 2s elapsed / 4m 6s left ) -> ETA: Tue Nov 28 21:48 XS = 4027.54 pb +- ( 377.111 pb = 9 % ) Event 200 ( 3s elapsed / 2m 37s left ) -> ETA: Tue Nov 28 21:46 XS = 3681.8 pb +- ( 245.165 pb = 6 % ) Event 300 ( 4s elapsed / 2m 9s left ) -> ETA: Tue Nov 28 21:46 XS = 3713.47 pb +- ( 201.768 pb = 5 % ) Event 400 ( 4s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 21:46 XS = 3810.7 pb +- ( 178.999 pb = 4 % ) Event 500 ( 5s elapsed / 1m 44s left ) -> ETA: Tue Nov 28 21:46 XS = 3930.74 pb +- ( 164.794 pb = 4 % ) Event 600 ( 6s elapsed / 1m 37s left ) -> ETA: Tue Nov 28 21:46 XS = 3956.19 pb +- ( 151.339 pb = 3 % ) Event 700 ( 6s elapsed / 1m 32s left ) -> ETA: Tue Nov 28 21:45 XS = 3911.48 pb +- ( 138.636 pb = 3 % ) Event 800 ( 7s elapsed / 1m 28s left ) -> ETA: Tue Nov 28 21:45 XS = 3892.58 pb +- ( 129.097 pb = 3 % ) Event 900 ( 8s elapsed / 1m 23s left ) -> ETA: Tue Nov 28 21:45 XS = 3874.92 pb +- ( 121.198 pb = 3 % ) Event 1000 ( 8s elapsed / 1m 20s left ) -> ETA: Tue Nov 28 21:45 XS = 3896.68 pb +- ( 115.579 pb = 2 % ) Event 2000 ( 16s elapsed / 1m 5s left ) -> ETA: Tue Nov 28 21:45 XS = 3911.04 pb +- ( 82.0047 pb = 2 % ) Event 3000 ( 23s elapsed / 54s left ) -> ETA: Tue Nov 28 21:45 XS = 3850.5 pb +- ( 65.9896 pb = 1 % ) Event 4000 ( 30s elapsed / 45s left ) -> ETA: Tue Nov 28 21:45 XS = 3838.48 pb +- ( 56.982 pb = 1 % ) Event 5000 ( 37s elapsed / 37s left ) -> ETA: Tue Nov 28 21:45 XS = 3834.85 pb +- ( 50.921 pb = 1 % ) Event 6000 ( 44s elapsed / 29s left ) -> ETA: Tue Nov 28 21:45 XS = 3852.72 pb +- ( 46.6862 pb = 1 % ) Event 7000 ( 51s elapsed / 21s left ) -> ETA: Tue Nov 28 21:45 XS = 3848.13 pb +- ( 43.175 pb = 1 % ) Event 8000 ( 58s elapsed / 14s left ) -> ETA: Tue Nov 28 21:45 XS = 3846.35 pb +- ( 40.369 pb = 1 % ) Event 9000 ( 1m 5s elapsed / 7s left ) -> ETA: Tue Nov 28 21:45 XS = 3841.11 pb +- ( 38.0119 pb = 0 % ) Event 10000 ( 73 s total ) = 1.18812e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Zrecoil/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3827.41 0 % 35.9413 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 13s on Tue Nov 28 21:45:31 2023 (User: 1m 12s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:46:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 23m 18s left ) -> ETA: Wed Nov 29 02:09 XS = 1471.88 pb +- ( 1471.88 pb = 100 % ) Event 2 ( 1s elapsed / 2h 12m 28s left ) -> ETA: Tue Nov 28 23:58 XS = 1750.35 pb +- ( 1220.37 pb = 69 % ) Event 3 ( 1s elapsed / 1h 28m 18s left ) -> ETA: Tue Nov 28 23:14 XS = 2259.17 pb +- ( 1272.9 pb = 56 % ) Event 4 ( 1s elapsed / 1h 6m 38s left ) -> ETA: Tue Nov 28 22:52 XS = 2943.77 pb +- ( 1419.61 pb = 48 % ) Event 5 ( 1s elapsed / 53m 18s left ) -> ETA: Tue Nov 28 22:39 XS = 3519.72 pb +- ( 1502.48 pb = 42 % ) Event 6 ( 1s elapsed / 44m 41s left ) -> ETA: Tue Nov 28 22:31 XS = 3597.94 pb +- ( 1397.85 pb = 38 % ) Event 7 ( 1s elapsed / 38m 46s left ) -> ETA: Tue Nov 28 22:25 XS = 3597.94 pb +- ( 1292.42 pb = 35 % ) Event 8 ( 1s elapsed / 34m 8s left ) -> ETA: Tue Nov 28 22:20 XS = 3925.02 pb +- ( 1310.85 pb = 33 % ) Event 9 ( 1s elapsed / 30m 42s left ) -> ETA: Tue Nov 28 22:17 XS = 4285.78 pb +- ( 1340.59 pb = 31 % ) Event 10 ( 1s elapsed / 27m 48s left ) -> ETA: Tue Nov 28 22:14 XS = 4692.96 pb +- ( 1382.35 pb = 29 % ) Event 20 ( 1s elapsed / 14m 48s left ) -> ETA: Tue Nov 28 22:01 XS = 4151.47 pb +- ( 869.541 pb = 20 % ) Event 30 ( 1s elapsed / 10m 24s left ) -> ETA: Tue Nov 28 21:56 XS = 3997.71 pb +- ( 684.751 pb = 17 % ) Event 40 ( 1s elapsed / 8m 3s left ) -> ETA: Tue Nov 28 21:54 XS = 3690.19 pb +- ( 550.003 pb = 14 % ) Event 50 ( 2s elapsed / 6m 39s left ) -> ETA: Tue Nov 28 21:52 XS = 3535.09 pb +- ( 472.376 pb = 13 % ) Event 60 ( 2s elapsed / 5m 51s left ) -> ETA: Tue Nov 28 21:52 XS = 3438.74 pb +- ( 420.078 pb = 12 % ) Event 70 ( 2s elapsed / 5m 9s left ) -> ETA: Tue Nov 28 21:51 XS = 3638.36 pb +- ( 410.038 pb = 11 % ) Event 80 ( 2s elapsed / 4m 36s left ) -> ETA: Tue Nov 28 21:50 XS = 3866.44 pb +- ( 405.956 pb = 10 % ) Event 90 ( 2s elapsed / 4m 14s left ) -> ETA: Tue Nov 28 21:50 XS = 3911.85 pb +- ( 386.897 pb = 9 % ) Event 100 ( 2s elapsed / 3m 56s left ) -> ETA: Tue Nov 28 21:50 XS = 3850.35 pb +- ( 361.634 pb = 9 % ) Event 200 ( 3s elapsed / 2m 35s left ) -> ETA: Tue Nov 28 21:48 XS = 3836.66 pb +- ( 254.79 pb = 6 % ) Event 300 ( 3s elapsed / 2m 7s left ) -> ETA: Tue Nov 28 21:48 XS = 4054.44 pb +- ( 218.984 pb = 5 % ) Event 400 ( 4s elapsed / 1m 52s left ) -> ETA: Tue Nov 28 21:48 XS = 3900.2 pb +- ( 182.917 pb = 4 % ) Event 500 ( 5s elapsed / 1m 42s left ) -> ETA: Tue Nov 28 21:48 XS = 3911.75 pb +- ( 164.052 pb = 4 % ) Event 600 ( 6s elapsed / 1m 36s left ) -> ETA: Tue Nov 28 21:48 XS = 3948.15 pb +- ( 151.053 pb = 3 % ) Event 700 ( 6s elapsed / 1m 31s left ) -> ETA: Tue Nov 28 21:47 XS = 3976.67 pb +- ( 140.785 pb = 3 % ) Event 800 ( 7s elapsed / 1m 27s left ) -> ETA: Tue Nov 28 21:47 XS = 3984.79 pb +- ( 131.941 pb = 3 % ) Event 900 ( 8s elapsed / 1m 24s left ) -> ETA: Tue Nov 28 21:47 XS = 3980.78 pb +- ( 124.278 pb = 3 % ) Event 1000 ( 9s elapsed / 1m 21s left ) -> ETA: Tue Nov 28 21:47 XS = 3969.77 pb +- ( 117.596 pb = 2 % ) Event 2000 ( 16s elapsed / 1m 6s left ) -> ETA: Tue Nov 28 21:47 XS = 3889.43 pb +- ( 81.5826 pb = 2 % ) Event 3000 ( 24s elapsed / 57s left ) -> ETA: Tue Nov 28 21:47 XS = 3870.14 pb +- ( 66.3033 pb = 1 % ) Event 4000 ( 32s elapsed / 49s left ) -> ETA: Tue Nov 28 21:47 XS = 3811.94 pb +- ( 56.6142 pb = 1 % ) Event 5000 ( 44s elapsed / 44s left ) -> ETA: Tue Nov 28 21:47 XS = 3842.67 pb +- ( 51.018 pb = 1 % ) Event 6000 ( 1m 2s elapsed / 41s left ) -> ETA: Tue Nov 28 21:48 XS = 3884.53 pb +- ( 47.0455 pb = 1 % ) Event 7000 ( 1m 15s elapsed / 32s left ) -> ETA: Tue Nov 28 21:48 XS = 3872.45 pb +- ( 43.4294 pb = 1 % ) Event 8000 ( 1m 23s elapsed / 20s left ) -> ETA: Tue Nov 28 21:48 XS = 3876.68 pb +- ( 40.6658 pb = 1 % ) Event 9000 ( 1m 30s elapsed / 10s left ) -> ETA: Tue Nov 28 21:47 XS = 3868.54 pb +- ( 38.265 pb = 0 % ) Event 10000 ( 98 s total ) = 8.83616e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3868.57 0 % 36.3015 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 38s on Tue Nov 28 21:47:56 2023 (User: 1m 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:56:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 12m 28s left ) -> ETA: Wed Nov 29 00:08 XS = 1471.88 pb +- ( 1471.88 pb = 100 % ) Event 2 ( 1s elapsed / 1h 6m 38s left ) -> ETA: Tue Nov 28 23:02 XS = 1750.35 pb +- ( 1220.37 pb = 69 % ) Event 3 ( 1s elapsed / 44m 25s left ) -> ETA: Tue Nov 28 22:40 XS = 2259.17 pb +- ( 1272.9 pb = 56 % ) Event 4 ( 1s elapsed / 33m 30s left ) -> ETA: Tue Nov 28 22:29 XS = 2943.77 pb +- ( 1419.61 pb = 48 % ) Event 5 ( 1s elapsed / 26m 58s left ) -> ETA: Tue Nov 28 22:23 XS = 3519.72 pb +- ( 1502.48 pb = 42 % ) Event 6 ( 1s elapsed / 22m 28s left ) -> ETA: Tue Nov 28 22:18 XS = 3597.94 pb +- ( 1397.85 pb = 38 % ) Event 7 ( 1s elapsed / 19m 22s left ) -> ETA: Tue Nov 28 22:15 XS = 3597.94 pb +- ( 1292.42 pb = 35 % ) Event 8 ( 1s elapsed / 17m 3s left ) -> ETA: Tue Nov 28 22:13 XS = 3925.02 pb +- ( 1310.85 pb = 33 % ) Event 9 ( 1s elapsed / 15m 26s left ) -> ETA: Tue Nov 28 22:11 XS = 4285.78 pb +- ( 1340.59 pb = 31 % ) Event 10 ( 1s elapsed / 13m 58s left ) -> ETA: Tue Nov 28 22:10 XS = 4692.96 pb +- ( 1382.35 pb = 29 % ) Event 20 ( 1s elapsed / 7m 20s left ) -> ETA: Tue Nov 28 22:03 XS = 3809.58 pb +- ( 802.536 pb = 21 % ) Event 30 ( 1s elapsed / 5m 3s left ) -> ETA: Tue Nov 28 22:01 XS = 4415.65 pb +- ( 750.912 pb = 17 % ) Event 40 ( 1s elapsed / 3m 58s left ) -> ETA: Tue Nov 28 22:00 XS = 4513.09 pb +- ( 663.147 pb = 14 % ) Event 50 ( 1s elapsed / 3m 16s left ) -> ETA: Tue Nov 28 21:59 XS = 4652.51 pb +- ( 609.741 pb = 13 % ) Event 60 ( 2s elapsed / 2m 47s left ) -> ETA: Tue Nov 28 21:59 XS = 4845.1 pb +- ( 577.53 pb = 11 % ) Event 70 ( 2s elapsed / 2m 25s left ) -> ETA: Tue Nov 28 21:58 XS = 4782.07 pb +- ( 528.235 pb = 11 % ) Event 80 ( 2s elapsed / 2m 10s left ) -> ETA: Tue Nov 28 21:58 XS = 4701.48 pb +- ( 486.428 pb = 10 % ) Event 90 ( 2s elapsed / 1m 59s left ) -> ETA: Tue Nov 28 21:58 XS = 4857.22 pb +- ( 472.43 pb = 9 % ) Event 100 ( 2s elapsed / 1m 50s left ) -> ETA: Tue Nov 28 21:58 XS = 4679.4 pb +- ( 433.124 pb = 9 % ) Event 200 ( 2s elapsed / 1m 10s left ) -> ETA: Tue Nov 28 21:57 XS = 4205.38 pb +- ( 277.475 pb = 6 % ) Event 300 ( 3s elapsed / 57s left ) -> ETA: Tue Nov 28 21:57 XS = 4123.27 pb +- ( 222.432 pb = 5 % ) Event 400 ( 4s elapsed / 49s left ) -> ETA: Tue Nov 28 21:57 XS = 4179.6 pb +- ( 195.059 pb = 4 % ) Event 500 ( 5s elapsed / 45s left ) -> ETA: Tue Nov 28 21:57 XS = 4260.72 pb +- ( 177.591 pb = 4 % ) Event 600 ( 5s elapsed / 43s left ) -> ETA: Tue Nov 28 21:57 XS = 4158.58 pb +- ( 158.514 pb = 3 % ) Event 700 ( 6s elapsed / 40s left ) -> ETA: Tue Nov 28 21:57 XS = 4082.67 pb +- ( 144.268 pb = 3 % ) Event 800 ( 7s elapsed / 38s left ) -> ETA: Tue Nov 28 21:57 XS = 4016.3 pb +- ( 132.911 pb = 3 % ) Event 900 ( 8s elapsed / 36s left ) -> ETA: Tue Nov 28 21:57 XS = 3907.13 pb +- ( 122.136 pb = 3 % ) Event 1000 ( 8s elapsed / 35s left ) -> ETA: Tue Nov 28 21:57 XS = 3913.64 pb +- ( 116.047 pb = 2 % ) Event 2000 ( 16s elapsed / 25s left ) -> ETA: Tue Nov 28 21:57 XS = 3897.62 pb +- ( 81.7427 pb = 2 % ) Event 3000 ( 24s elapsed / 16s left ) -> ETA: Tue Nov 28 21:57 XS = 3884.22 pb +- ( 66.5281 pb = 1 % ) Event 4000 ( 32s elapsed / 8s left ) -> ETA: Tue Nov 28 21:57 XS = 3878.83 pb +- ( 57.5402 pb = 1 % ) Event 5000 ( 40 s total ) = 1.08597e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3902.22 0 % 51.7545 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 40s on Tue Nov 28 21:57:00 2023 (User: 40s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:59:11 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 26m 38s left ) -> ETA: Wed Nov 29 00:25 XS = 1471.88 pb +- ( 1471.88 pb = 100 % ) Event 2 ( 1s elapsed / 1h 13m 43s left ) -> ETA: Tue Nov 28 23:12 XS = 2590.52 pb +- ( 1793.2 pb = 69 % ) Event 3 ( 1s elapsed / 49m 24s left ) -> ETA: Tue Nov 28 22:48 XS = 2943.77 pb +- ( 1645.62 pb = 55 % ) Event 4 ( 1s elapsed / 37m 3s left ) -> ETA: Tue Nov 28 22:36 XS = 3408.57 pb +- ( 1633.73 pb = 47 % ) Event 5 ( 1s elapsed / 29m 38s left ) -> ETA: Tue Nov 28 22:28 XS = 4047.68 pb +- ( 1714.84 pb = 42 % ) Event 6 ( 1s elapsed / 24m 49s left ) -> ETA: Tue Nov 28 22:24 XS = 3885.77 pb +- ( 1503.25 pb = 38 % ) Event 7 ( 1s elapsed / 21m 16s left ) -> ETA: Tue Nov 28 22:20 XS = 3777.83 pb +- ( 1353.34 pb = 35 % ) Event 8 ( 1s elapsed / 18m 43s left ) -> ETA: Tue Nov 28 22:17 XS = 3548.65 pb +- ( 1192.09 pb = 33 % ) Event 9 ( 1s elapsed / 16m 43s left ) -> ETA: Tue Nov 28 22:15 XS = 3885.77 pb +- ( 1223.24 pb = 31 % ) Event 10 ( 1s elapsed / 15m 3s left ) -> ETA: Tue Nov 28 22:14 XS = 4260.72 pb +- ( 1263.93 pb = 29 % ) Event 20 ( 1s elapsed / 7m 45s left ) -> ETA: Tue Nov 28 22:06 XS = 4260.72 pb +- ( 890.771 pb = 20 % ) Event 30 ( 1s elapsed / 5m 21s left ) -> ETA: Tue Nov 28 22:04 XS = 4604 pb +- ( 780.376 pb = 16 % ) Event 40 ( 1s elapsed / 4m 7s left ) -> ETA: Tue Nov 28 22:03 XS = 4481.86 pb +- ( 658.919 pb = 14 % ) Event 50 ( 2s elapsed / 3m 24s left ) -> ETA: Tue Nov 28 22:02 XS = 4818.67 pb +- ( 629.655 pb = 13 % ) Event 60 ( 2s elapsed / 2m 55s left ) -> ETA: Tue Nov 28 22:02 XS = 4833.05 pb +- ( 576.218 pb = 11 % ) Event 70 ( 2s elapsed / 2m 34s left ) -> ETA: Tue Nov 28 22:01 XS = 4802.33 pb +- ( 530.281 pb = 11 % ) Event 80 ( 2s elapsed / 2m 18s left ) -> ETA: Tue Nov 28 22:01 XS = 4625.92 pb +- ( 479.256 pb = 10 % ) Event 90 ( 2s elapsed / 2m 4s left ) -> ETA: Tue Nov 28 22:01 XS = 4692.96 pb +- ( 457.801 pb = 9 % ) Event 100 ( 2s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 22:01 XS = 4672.65 pb +- ( 432.551 pb = 9 % ) Event 200 ( 2s elapsed / 1m 11s left ) -> ETA: Tue Nov 28 22:00 XS = 4252.32 pb +- ( 280.339 pb = 6 % ) Event 300 ( 3s elapsed / 55s left ) -> ETA: Tue Nov 28 22:00 XS = 4090.29 pb +- ( 220.781 pb = 5 % ) Event 400 ( 4s elapsed / 48s left ) -> ETA: Tue Nov 28 22:00 XS = 4266.33 pb +- ( 198.801 pb = 4 % ) Event 500 ( 4s elapsed / 44s left ) -> ETA: Tue Nov 28 22:00 XS = 4162.14 pb +- ( 173.785 pb = 4 % ) Event 600 ( 5s elapsed / 40s left ) -> ETA: Tue Nov 28 21:59 XS = 4070.58 pb +- ( 155.401 pb = 3 % ) Event 700 ( 6s elapsed / 38s left ) -> ETA: Tue Nov 28 21:59 XS = 3985.06 pb +- ( 141.061 pb = 3 % ) Event 800 ( 6s elapsed / 36s left ) -> ETA: Tue Nov 28 21:59 XS = 3940.55 pb +- ( 130.577 pb = 3 % ) Event 900 ( 7s elapsed / 34s left ) -> ETA: Tue Nov 28 21:59 XS = 3881.12 pb +- ( 121.378 pb = 3 % ) Event 1000 ( 8s elapsed / 33s left ) -> ETA: Tue Nov 28 21:59 XS = 3883.6 pb +- ( 115.217 pb = 2 % ) Event 2000 ( 15s elapsed / 23s left ) -> ETA: Tue Nov 28 21:59 XS = 3876.16 pb +- ( 81.3232 pb = 2 % ) Event 3000 ( 22s elapsed / 14s left ) -> ETA: Tue Nov 28 21:59 XS = 3879.41 pb +- ( 66.4513 pb = 1 % ) Event 4000 ( 29s elapsed / 7s left ) -> ETA: Tue Nov 28 21:59 XS = 3910.92 pb +- ( 57.9836 pb = 1 % ) Event 5000 ( 36 s total ) = 1.20941e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3890.6 0 % 51.6109 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 36s on Tue Nov 28 21:59:48 2023 (User: 36s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:04:11 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 27m 28s left ) -> ETA: Wed Nov 29 00:31 XS = 1471.88 pb +- ( 1471.88 pb = 100 % ) Event 2 ( 1s elapsed / 1h 14m 8s left ) -> ETA: Tue Nov 28 23:18 XS = 1962.51 pb +- ( 1365.85 pb = 69 % ) Event 3 ( 1s elapsed / 49m 24s left ) -> ETA: Tue Nov 28 22:53 XS = 2857.19 pb +- ( 1598.83 pb = 55 % ) Event 4 ( 1s elapsed / 37m 15s left ) -> ETA: Tue Nov 28 22:41 XS = 3321.17 pb +- ( 1593.69 pb = 47 % ) Event 5 ( 1s elapsed / 29m 48s left ) -> ETA: Tue Nov 28 22:34 XS = 3765.28 pb +- ( 1601.7 pb = 42 % ) Event 6 ( 1s elapsed / 24m 49s left ) -> ETA: Tue Nov 28 22:29 XS = 4133.8 pb +- ( 1593.26 pb = 38 % ) Event 7 ( 1s elapsed / 21m 23s left ) -> ETA: Tue Nov 28 22:25 XS = 3105.07 pb +- ( 1123.64 pb = 36 % ) Event 8 ( 1s elapsed / 18m 43s left ) -> ETA: Tue Nov 28 22:22 XS = 3408.57 pb +- ( 1147.5 pb = 33 % ) Event 9 ( 1s elapsed / 16m 43s left ) -> ETA: Tue Nov 28 22:20 XS = 2556.43 pb +- ( 821.425 pb = 32 % ) Event 10 ( 1s elapsed / 15m 3s left ) -> ETA: Tue Nov 28 22:19 XS = 2744.19 pb +- ( 833.745 pb = 30 % ) Event 20 ( 1s elapsed / 7m 38s left ) -> ETA: Tue Nov 28 22:11 XS = 3787.3 pb +- ( 798.14 pb = 21 % ) Event 30 ( 1s elapsed / 5m 9s left ) -> ETA: Tue Nov 28 22:09 XS = 4187.25 pb +- ( 714.889 pb = 17 % ) Event 40 ( 1s elapsed / 3m 58s left ) -> ETA: Tue Nov 28 22:08 XS = 4288.93 pb +- ( 632.684 pb = 14 % ) Event 50 ( 1s elapsed / 3m 15s left ) -> ETA: Tue Nov 28 22:07 XS = 4329.07 pb +- ( 570.595 pb = 13 % ) Event 60 ( 2s elapsed / 2m 45s left ) -> ETA: Tue Nov 28 22:06 XS = 4169.28 pb +- ( 502.947 pb = 12 % ) Event 70 ( 2s elapsed / 2m 23s left ) -> ETA: Tue Nov 28 22:06 XS = 4069.48 pb +- ( 455.215 pb = 11 % ) Event 80 ( 2s elapsed / 2m 7s left ) -> ETA: Tue Nov 28 22:06 XS = 4054.01 pb +- ( 424.264 pb = 10 % ) Event 90 ( 2s elapsed / 1m 55s left ) -> ETA: Tue Nov 28 22:06 XS = 4157.39 pb +- ( 409.422 pb = 9 % ) Event 100 ( 2s elapsed / 1m 45s left ) -> ETA: Tue Nov 28 22:05 XS = 4109.32 pb +- ( 384.217 pb = 9 % ) Event 200 ( 2s elapsed / 1m 1s left ) -> ETA: Tue Nov 28 22:05 XS = 3985.41 pb +- ( 263.981 pb = 6 % ) Event 300 ( 2s elapsed / 46s left ) -> ETA: Tue Nov 28 22:05 XS = 3996.06 pb +- ( 216.053 pb = 5 % ) Event 400 ( 3s elapsed / 38s left ) -> ETA: Tue Nov 28 22:04 XS = 3941.75 pb +- ( 184.731 pb = 4 % ) Event 500 ( 3s elapsed / 34s left ) -> ETA: Tue Nov 28 22:04 XS = 3775.82 pb +- ( 158.728 pb = 4 % ) Event 600 ( 4s elapsed / 30s left ) -> ETA: Tue Nov 28 22:04 XS = 3748.57 pb +- ( 143.919 pb = 3 % ) Event 700 ( 4s elapsed / 28s left ) -> ETA: Tue Nov 28 22:04 XS = 3739.2 pb +- ( 132.929 pb = 3 % ) Event 800 ( 5s elapsed / 26s left ) -> ETA: Tue Nov 28 22:04 XS = 3632.75 pb +- ( 121.027 pb = 3 % ) Event 900 ( 5s elapsed / 25s left ) -> ETA: Tue Nov 28 22:04 XS = 3650.21 pb +- ( 114.618 pb = 3 % ) Event 1000 ( 5s elapsed / 23s left ) -> ETA: Tue Nov 28 22:04 XS = 3655.62 pb +- ( 108.886 pb = 2 % ) Event 2000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:04 XS = 3826.24 pb +- ( 80.346 pb = 2 % ) Event 3000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:04 XS = 3878.64 pb +- ( 66.439 pb = 1 % ) Event 4000 ( 18s elapsed / 4s left ) -> ETA: Tue Nov 28 22:04 XS = 3813.84 pb +- ( 56.6406 pb = 1 % ) Event 5000 ( 23 s total ) = 1.90813e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3783.76 0 % 50.2876 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:04:34 2023 (User: 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:06:33 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 24m 8s left ) -> ETA: Wed Nov 29 00:30 XS = 1471.88 pb +- ( 1471.88 pb = 100 % ) Event 2 ( 1s elapsed / 1h 12m 28s left ) -> ETA: Tue Nov 28 23:19 XS = 2158.76 pb +- ( 1499.93 pb = 69 % ) Event 3 ( 1s elapsed / 48m 18s left ) -> ETA: Tue Nov 28 22:54 XS = 3133.69 pb +- ( 1747.89 pb = 55 % ) Event 4 ( 1s elapsed / 36m 25s left ) -> ETA: Tue Nov 28 22:43 XS = 3321.17 pb +- ( 1593.69 pb = 47 % ) Event 5 ( 1s elapsed / 29m 8s left ) -> ETA: Tue Nov 28 22:35 XS = 3304.23 pb +- ( 1414.79 pb = 42 % ) Event 6 ( 1s elapsed / 24m 24s left ) -> ETA: Tue Nov 28 22:30 XS = 3885.77 pb +- ( 1503.25 pb = 38 % ) Event 7 ( 1s elapsed / 20m 55s left ) -> ETA: Tue Nov 28 22:27 XS = 4047.68 pb +- ( 1444.02 pb = 35 % ) Event 8 ( 1s elapsed / 18m 24s left ) -> ETA: Tue Nov 28 22:24 XS = 3754.37 pb +- ( 1257.19 pb = 33 % ) Event 9 ( 1s elapsed / 16m 27s left ) -> ETA: Tue Nov 28 22:23 XS = 2943.77 pb +- ( 940.352 pb = 31 % ) Event 10 ( 1s elapsed / 14m 53s left ) -> ETA: Tue Nov 28 22:21 XS = 2611.41 pb +- ( 795.013 pb = 30 % ) Event 20 ( 1s elapsed / 7m 33s left ) -> ETA: Tue Nov 28 22:14 XS = 3287.46 pb +- ( 698.56 pb = 21 % ) Event 30 ( 1s elapsed / 5m 8s left ) -> ETA: Tue Nov 28 22:11 XS = 3174.65 pb +- ( 551.366 pb = 17 % ) Event 40 ( 1s elapsed / 3m 56s left ) -> ETA: Tue Nov 28 22:10 XS = 3113.6 pb +- ( 468.6 pb = 15 % ) Event 50 ( 1s elapsed / 3m 12s left ) -> ETA: Tue Nov 28 22:09 XS = 3401.41 pb +- ( 455.546 pb = 13 % ) Event 60 ( 1s elapsed / 2m 43s left ) -> ETA: Tue Nov 28 22:09 XS = 3414.56 pb +- ( 417.296 pb = 12 % ) Event 70 ( 2s elapsed / 2m 21s left ) -> ETA: Tue Nov 28 22:08 XS = 3547.26 pb +- ( 400.396 pb = 11 % ) Event 80 ( 2s elapsed / 2m 5s left ) -> ETA: Tue Nov 28 22:08 XS = 3519.72 pb +- ( 371.768 pb = 10 % ) Event 90 ( 2s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 22:08 XS = 3481.88 pb +- ( 346.936 pb = 9 % ) Event 100 ( 2s elapsed / 1m 44s left ) -> ETA: Tue Nov 28 22:08 XS = 3455.86 pb +- ( 326.799 pb = 9 % ) Event 200 ( 2s elapsed / 1m 1s left ) -> ETA: Tue Nov 28 22:07 XS = 3459.56 pb +- ( 231.253 pb = 6 % ) Event 300 ( 3s elapsed / 47s left ) -> ETA: Tue Nov 28 22:07 XS = 3580.7 pb +- ( 195.003 pb = 5 % ) Event 400 ( 3s elapsed / 38s left ) -> ETA: Tue Nov 28 22:07 XS = 3668.25 pb +- ( 172.736 pb = 4 % ) Event 500 ( 3s elapsed / 34s left ) -> ETA: Tue Nov 28 22:07 XS = 3758.29 pb +- ( 158.04 pb = 4 % ) Event 600 ( 4s elapsed / 31s left ) -> ETA: Tue Nov 28 22:07 XS = 3748.57 pb +- ( 143.919 pb = 3 % ) Event 700 ( 4s elapsed / 28s left ) -> ETA: Tue Nov 28 22:07 XS = 3747.23 pb +- ( 133.196 pb = 3 % ) Event 800 ( 5s elapsed / 26s left ) -> ETA: Tue Nov 28 22:07 XS = 3842.92 pb +- ( 127.561 pb = 3 % ) Event 900 ( 5s elapsed / 25s left ) -> ETA: Tue Nov 28 22:07 XS = 3829.6 pb +- ( 119.875 pb = 3 % ) Event 1000 ( 5s elapsed / 23s left ) -> ETA: Tue Nov 28 22:07 XS = 3813.62 pb +- ( 113.28 pb = 2 % ) Event 2000 ( 9s elapsed / 14s left ) -> ETA: Tue Nov 28 22:06 XS = 3827.82 pb +- ( 80.377 pb = 2 % ) Event 3000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:06 XS = 3803.61 pb +- ( 65.2395 pb = 1 % ) Event 4000 ( 18s elapsed / 4s left ) -> ETA: Tue Nov 28 22:06 XS = 3794.51 pb +- ( 56.3726 pb = 1 % ) Event 5000 ( 22 s total ) = 1.90308e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3787.48 0 % 50.3338 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:06:56 2023 (User: 22s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:11:50 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 26m 38s left ) -> ETA: Wed Nov 29 00:38 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 1h 13m 43s left ) -> ETA: Tue Nov 28 23:25 XS = 8852.68 pb +- ( 0 pb = 0 % ) Event 3 ( 1s elapsed / 49m 24s left ) -> ETA: Tue Nov 28 23:01 XS = 5311.61 pb +- ( 2168.45 pb = 40 % ) Event 4 ( 1s elapsed / 37m 15s left ) -> ETA: Tue Nov 28 22:49 XS = 5058.67 pb +- ( 1788.51 pb = 35 % ) Event 5 ( 1s elapsed / 30m 8s left ) -> ETA: Tue Nov 28 22:42 XS = 2950.89 pb +- ( 1115.33 pb = 37 % ) Event 6 ( 1s elapsed / 25m 14s left ) -> ETA: Tue Nov 28 22:37 XS = 2950.89 pb +- ( 1012.15 pb = 34 % ) Event 7 ( 1s elapsed / 21m 38s left ) -> ETA: Tue Nov 28 22:33 XS = 2950.89 pb +- ( 933.154 pb = 31 % ) Event 8 ( 1s elapsed / 19m 8s left ) -> ETA: Tue Nov 28 22:31 XS = 2529.34 pb +- ( 769.652 pb = 30 % ) Event 9 ( 1s elapsed / 17m left ) -> ETA: Tue Nov 28 22:28 XS = 2414.37 pb +- ( 696.967 pb = 28 % ) Event 10 ( 1s elapsed / 15m 28s left ) -> ETA: Tue Nov 28 22:27 XS = 2529.34 pb +- ( 685.862 pb = 27 % ) Event 20 ( 1s elapsed / 7m 55s left ) -> ETA: Tue Nov 28 22:19 XS = 2269.92 pb +- ( 440.518 pb = 19 % ) Event 30 ( 1s elapsed / 5m 24s left ) -> ETA: Tue Nov 28 22:17 XS = 2058.76 pb +- ( 330.566 pb = 16 % ) Event 40 ( 2s elapsed / 4m 9s left ) -> ETA: Tue Nov 28 22:16 XS = 2070.8 pb +- ( 287.422 pb = 13 % ) Event 50 ( 2s elapsed / 3m 26s left ) -> ETA: Tue Nov 28 22:15 XS = 2159.19 pb +- ( 266.168 pb = 12 % ) Event 60 ( 2s elapsed / 2m 56s left ) -> ETA: Tue Nov 28 22:14 XS = 2107.78 pb +- ( 237.993 pb = 11 % ) Event 70 ( 2s elapsed / 2m 33s left ) -> ETA: Tue Nov 28 22:14 XS = 2189.71 pb +- ( 227.459 pb = 10 % ) Event 80 ( 2s elapsed / 2m 16s left ) -> ETA: Tue Nov 28 22:14 XS = 2227.09 pb +- ( 215.75 pb = 9 % ) Event 90 ( 2s elapsed / 2m 4s left ) -> ETA: Tue Nov 28 22:13 XS = 2130.32 pb +- ( 195.943 pb = 9 % ) Event 100 ( 2s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 22:13 XS = 2021.16 pb +- ( 177.753 pb = 8 % ) Event 200 ( 2s elapsed / 1m 8s left ) -> ETA: Tue Nov 28 22:13 XS = 2032.76 pb +- ( 126.233 pb = 6 % ) Event 300 ( 3s elapsed / 52s left ) -> ETA: Tue Nov 28 22:12 XS = 2039.79 pb +- ( 103.352 pb = 5 % ) Event 400 ( 3s elapsed / 45s left ) -> ETA: Tue Nov 28 22:12 XS = 2111.55 pb +- ( 92.1573 pb = 4 % ) Event 500 ( 4s elapsed / 41s left ) -> ETA: Tue Nov 28 22:12 XS = 2074.2 pb +- ( 81.1887 pb = 3 % ) Event 600 ( 5s elapsed / 38s left ) -> ETA: Tue Nov 28 22:12 XS = 2056.37 pb +- ( 73.5714 pb = 3 % ) Event 700 ( 5s elapsed / 36s left ) -> ETA: Tue Nov 28 22:12 XS = 2032.43 pb +- ( 67.4373 pb = 3 % ) Event 800 ( 6s elapsed / 33s left ) -> ETA: Tue Nov 28 22:12 XS = 2027.52 pb +- ( 62.9509 pb = 3 % ) Event 900 ( 7s elapsed / 31s left ) -> ETA: Tue Nov 28 22:12 XS = 2017.58 pb +- ( 59.1015 pb = 2 % ) Event 1000 ( 7s elapsed / 30s left ) -> ETA: Tue Nov 28 22:12 XS = 2013.8 pb +- ( 55.9785 pb = 2 % ) Event 2000 ( 13s elapsed / 20s left ) -> ETA: Tue Nov 28 22:12 XS = 1976.04 pb +- ( 38.9454 pb = 1 % ) Event 3000 ( 19s elapsed / 12s left ) -> ETA: Tue Nov 28 22:12 XS = 1929.39 pb +- ( 31.1526 pb = 1 % ) Event 4000 ( 25s elapsed / 6s left ) -> ETA: Tue Nov 28 22:12 XS = 1928.9 pb +- ( 26.9728 pb = 1 % ) Event 5000 ( 30 s total ) = 1.4521e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1931.46 0 % 24.1527 1.25 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 30s on Tue Nov 28 22:12:21 2023 (User: 29s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:13:56 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 58m 18s left ) -> ETA: Wed Nov 29 03:12 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 29m 58s left ) -> ETA: Wed Nov 29 00:43 XS = 8852.68 pb +- ( 0 pb = 0 % ) Event 3 ( 1s elapsed / 1h 40m 31s left ) -> ETA: Tue Nov 28 23:54 XS = 5311.61 pb +- ( 2168.45 pb = 40 % ) Event 4 ( 1s elapsed / 1h 15m 48s left ) -> ETA: Tue Nov 28 23:29 XS = 5058.67 pb +- ( 1788.51 pb = 35 % ) Event 5 ( 1s elapsed / 1h 1m 38s left ) -> ETA: Tue Nov 28 23:15 XS = 2950.89 pb +- ( 1115.33 pb = 37 % ) Event 6 ( 1s elapsed / 51m 38s left ) -> ETA: Tue Nov 28 23:05 XS = 2950.89 pb +- ( 1012.15 pb = 34 % ) Event 7 ( 1s elapsed / 44m 29s left ) -> ETA: Tue Nov 28 22:58 XS = 2950.89 pb +- ( 933.154 pb = 31 % ) Event 8 ( 1s elapsed / 39m 20s left ) -> ETA: Tue Nov 28 22:53 XS = 2529.34 pb +- ( 769.652 pb = 30 % ) Event 9 ( 1s elapsed / 35m 9s left ) -> ETA: Tue Nov 28 22:49 XS = 2414.37 pb +- ( 696.967 pb = 28 % ) Event 10 ( 1s elapsed / 31m 48s left ) -> ETA: Tue Nov 28 22:45 XS = 2529.34 pb +- ( 685.862 pb = 27 % ) Event 20 ( 1s elapsed / 16m 18s left ) -> ETA: Tue Nov 28 22:30 XS = 2269.92 pb +- ( 440.518 pb = 19 % ) Event 30 ( 2s elapsed / 11m 7s left ) -> ETA: Tue Nov 28 22:25 XS = 2058.76 pb +- ( 330.566 pb = 16 % ) Event 40 ( 2s elapsed / 8m 32s left ) -> ETA: Tue Nov 28 22:22 XS = 2070.8 pb +- ( 287.422 pb = 13 % ) Event 50 ( 2s elapsed / 7m 1s left ) -> ETA: Tue Nov 28 22:21 XS = 2159.19 pb +- ( 266.168 pb = 12 % ) Event 60 ( 2s elapsed / 5m 57s left ) -> ETA: Tue Nov 28 22:19 XS = 2107.78 pb +- ( 237.993 pb = 11 % ) Event 70 ( 2s elapsed / 5m 12s left ) -> ETA: Tue Nov 28 22:19 XS = 2189.71 pb +- ( 227.459 pb = 10 % ) Event 80 ( 2s elapsed / 4m 36s left ) -> ETA: Tue Nov 28 22:18 XS = 2227.09 pb +- ( 215.75 pb = 9 % ) Event 90 ( 2s elapsed / 4m 12s left ) -> ETA: Tue Nov 28 22:18 XS = 2130.32 pb +- ( 195.943 pb = 9 % ) Event 100 ( 2s elapsed / 3m 50s left ) -> ETA: Tue Nov 28 22:17 XS = 2021.16 pb +- ( 177.753 pb = 8 % ) Event 200 ( 2s elapsed / 2m 21s left ) -> ETA: Tue Nov 28 22:16 XS = 2032.76 pb +- ( 126.233 pb = 6 % ) Event 300 ( 3s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 22:15 XS = 2039.79 pb +- ( 103.352 pb = 5 % ) Event 400 ( 4s elapsed / 1m 39s left ) -> ETA: Tue Nov 28 22:15 XS = 2111.55 pb +- ( 92.1573 pb = 4 % ) Event 500 ( 4s elapsed / 1m 28s left ) -> ETA: Tue Nov 28 22:15 XS = 2074.2 pb +- ( 81.1887 pb = 3 % ) Event 600 ( 5s elapsed / 1m 22s left ) -> ETA: Tue Nov 28 22:15 XS = 2056.37 pb +- ( 73.5714 pb = 3 % ) Event 700 ( 5s elapsed / 1m 17s left ) -> ETA: Tue Nov 28 22:15 XS = 2032.43 pb +- ( 67.4373 pb = 3 % ) Event 800 ( 6s elapsed / 1m 12s left ) -> ETA: Tue Nov 28 22:15 XS = 2027.52 pb +- ( 62.9509 pb = 3 % ) Event 900 ( 6s elapsed / 1m 9s left ) -> ETA: Tue Nov 28 22:15 XS = 2017.58 pb +- ( 59.1015 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 6s left ) -> ETA: Tue Nov 28 22:15 XS = 2013.8 pb +- ( 55.9785 pb = 2 % ) Event 2000 ( 12s elapsed / 51s left ) -> ETA: Tue Nov 28 22:15 XS = 1976.04 pb +- ( 38.9454 pb = 1 % ) Event 3000 ( 18s elapsed / 43s left ) -> ETA: Tue Nov 28 22:14 XS = 1929.39 pb +- ( 31.1526 pb = 1 % ) Event 4000 ( 23s elapsed / 35s left ) -> ETA: Tue Nov 28 22:14 XS = 1928.9 pb +- ( 26.9728 pb = 1 % ) Event 5000 ( 29s elapsed / 29s left ) -> ETA: Tue Nov 28 22:14 XS = 1931.46 pb +- ( 24.1527 pb = 1 % ) Event 6000 ( 35s elapsed / 23s left ) -> ETA: Tue Nov 28 22:14 XS = 1932.41 pb +- ( 22.0574 pb = 1 % ) Event 7000 ( 40s elapsed / 17s left ) -> ETA: Tue Nov 28 22:14 XS = 1938.22 pb +- ( 20.474 pb = 1 % ) Event 8000 ( 45s elapsed / 11s left ) -> ETA: Tue Nov 28 22:14 XS = 1942.55 pb +- ( 19.1884 pb = 0 % ) Event 9000 ( 51s elapsed / 5s left ) -> ETA: Tue Nov 28 22:14 XS = 1938.54 pb +- ( 18.0589 pb = 0 % ) Event 10000 ( 57 s total ) = 1.523e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1933.03 0 % 17.0902 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 57s on Tue Nov 28 22:14:54 2023 (User: 57s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:21:09 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 5h 1m 38s left ) -> ETA: Wed Nov 29 03:22 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 30m 48s left ) -> ETA: Wed Nov 29 00:51 XS = 8852.68 pb +- ( 0 pb = 0 % ) Event 3 ( 1s elapsed / 1h 41m 4s left ) -> ETA: Wed Nov 29 00:02 XS = 2213.17 pb +- ( 1155.79 pb = 52 % ) Event 4 ( 1s elapsed / 1h 15m 48s left ) -> ETA: Tue Nov 28 23:36 XS = 1863.72 pb +- ( 850.668 pb = 45 % ) Event 5 ( 1s elapsed / 1h 38s left ) -> ETA: Tue Nov 28 23:21 XS = 2107.78 pb +- ( 843.112 pb = 40 % ) Event 6 ( 1s elapsed / 50m 31s left ) -> ETA: Tue Nov 28 23:11 XS = 2414.37 pb +- ( 860.355 pb = 35 % ) Event 7 ( 1s elapsed / 43m 32s left ) -> ETA: Tue Nov 28 23:04 XS = 1936.52 pb +- ( 657.299 pb = 33 % ) Event 8 ( 1s elapsed / 38m 5s left ) -> ETA: Tue Nov 28 22:59 XS = 2023.47 pb +- ( 637.52 pb = 31 % ) Event 9 ( 1s elapsed / 33m 51s left ) -> ETA: Tue Nov 28 22:55 XS = 1770.54 pb +- ( 533.836 pb = 30 % ) Event 10 ( 1s elapsed / 30m 38s left ) -> ETA: Tue Nov 28 22:51 XS = 1883.55 pb +- ( 534.194 pb = 28 % ) Event 20 ( 1s elapsed / 15m 28s left ) -> ETA: Tue Nov 28 22:36 XS = 1686.22 pb +- ( 340.873 pb = 20 % ) Event 30 ( 1s elapsed / 10m 24s left ) -> ETA: Tue Nov 28 22:31 XS = 1599.88 pb +- ( 265.188 pb = 16 % ) Event 40 ( 1s elapsed / 7m 55s left ) -> ETA: Tue Nov 28 22:29 XS = 1662.47 pb +- ( 237.454 pb = 14 % ) Event 50 ( 1s elapsed / 6m 26s left ) -> ETA: Tue Nov 28 22:27 XS = 1792.04 pb +- ( 226.792 pb = 12 % ) Event 60 ( 1s elapsed / 5m 28s left ) -> ETA: Tue Nov 28 22:26 XS = 1782.42 pb +- ( 205.989 pb = 11 % ) Event 70 ( 2s elapsed / 4m 45s left ) -> ETA: Tue Nov 28 22:25 XS = 1849.81 pb +- ( 196.938 pb = 10 % ) Event 80 ( 2s elapsed / 4m 11s left ) -> ETA: Tue Nov 28 22:25 XS = 1853.96 pb +- ( 184.543 pb = 9 % ) Event 90 ( 2s elapsed / 3m 47s left ) -> ETA: Tue Nov 28 22:24 XS = 1835.81 pb +- ( 172.481 pb = 9 % ) Event 100 ( 2s elapsed / 3m 27s left ) -> ETA: Tue Nov 28 22:24 XS = 1792.04 pb +- ( 160.204 pb = 8 % ) Event 200 ( 2s elapsed / 1m 58s left ) -> ETA: Tue Nov 28 22:23 XS = 1758.23 pb +- ( 111.352 pb = 6 % ) Event 300 ( 2s elapsed / 1m 26s left ) -> ETA: Tue Nov 28 22:22 XS = 1892.95 pb +- ( 96.9374 pb = 5 % ) Event 400 ( 2s elapsed / 1m 10s left ) -> ETA: Tue Nov 28 22:22 XS = 1849.12 pb +- ( 82.2567 pb = 4 % ) Event 500 ( 3s elapsed / 1m 1s left ) -> ETA: Tue Nov 28 22:22 XS = 1802.25 pb +- ( 71.9432 pb = 3 % ) Event 600 ( 3s elapsed / 55s left ) -> ETA: Tue Nov 28 22:22 XS = 1851.38 pb +- ( 67.2276 pb = 3 % ) Event 700 ( 3s elapsed / 49s left ) -> ETA: Tue Nov 28 22:22 XS = 1883.55 pb +- ( 63.1751 pb = 3 % ) Event 800 ( 4s elapsed / 46s left ) -> ETA: Tue Nov 28 22:21 XS = 1900.74 pb +- ( 59.5595 pb = 3 % ) Event 900 ( 4s elapsed / 43s left ) -> ETA: Tue Nov 28 22:21 XS = 1913.4 pb +- ( 56.4751 pb = 2 % ) Event 1000 ( 4s elapsed / 41s left ) -> ETA: Tue Nov 28 22:21 XS = 1947.35 pb +- ( 54.3936 pb = 2 % ) Event 2000 ( 7s elapsed / 28s left ) -> ETA: Tue Nov 28 22:21 XS = 1920.74 pb +- ( 38.0073 pb = 1 % ) Event 3000 ( 10s elapsed / 23s left ) -> ETA: Tue Nov 28 22:21 XS = 1926.45 pb +- ( 31.1117 pb = 1 % ) Event 4000 ( 12s elapsed / 19s left ) -> ETA: Tue Nov 28 22:21 XS = 1925.75 pb +- ( 26.9349 pb = 1 % ) Event 5000 ( 15s elapsed / 15s left ) -> ETA: Tue Nov 28 22:21 XS = 1927.43 pb +- ( 24.1092 pb = 1 % ) Event 6000 ( 18s elapsed / 12s left ) -> ETA: Tue Nov 28 22:21 XS = 1938.4 pb +- ( 22.1163 pb = 1 % ) Event 7000 ( 21s elapsed / 9s left ) -> ETA: Tue Nov 28 22:21 XS = 1935.74 pb +- ( 20.4515 pb = 1 % ) Event 8000 ( 24s elapsed / 6s left ) -> ETA: Tue Nov 28 22:21 XS = 1925.44 pb +- ( 19.0429 pb = 0 % ) Event 9000 ( 25s elapsed / 2s left ) -> ETA: Tue Nov 28 22:21 XS = 1928.36 pb +- ( 17.9773 pb = 0 % ) Event 10000 ( 27 s total ) = 3.23111e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_1em/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1922.32 0 % 17.0087 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 27s on Tue Nov 28 22:21:36 2023 (User: 26s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:22:27 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 38m 18s left ) -> ETA: Wed Nov 29 03:00 XS = 1471.88 pb +- ( 1471.88 pb = 100 % ) Event 2 ( 1s elapsed / 2h 19m 8s left ) -> ETA: Wed Nov 29 00:41 XS = 2490.88 pb +- ( 1725.73 pb = 69 % ) Event 3 ( 1s elapsed / 1h 33m 18s left ) -> ETA: Tue Nov 28 23:55 XS = 2428.61 pb +- ( 1365.73 pb = 56 % ) Event 4 ( 1s elapsed / 1h 9m 58s left ) -> ETA: Tue Nov 28 23:32 XS = 3083.95 pb +- ( 1484.49 pb = 48 % ) Event 5 ( 1s elapsed / 55m 58s left ) -> ETA: Tue Nov 28 23:18 XS = 3373.07 pb +- ( 1442.86 pb = 42 % ) Event 6 ( 1s elapsed / 47m 11s left ) -> ETA: Tue Nov 28 23:09 XS = 2158.76 pb +- ( 856.197 pb = 39 % ) Event 7 ( 1s elapsed / 40m 26s left ) -> ETA: Tue Nov 28 23:02 XS = 2386 pb +- ( 872.567 pb = 36 % ) Event 8 ( 1s elapsed / 35m 23s left ) -> ETA: Tue Nov 28 22:57 XS = 2490.88 pb +- ( 850.207 pb = 34 % ) Event 9 ( 1s elapsed / 31m 38s left ) -> ETA: Tue Nov 28 22:54 XS = 2625.52 pb +- ( 842.749 pb = 32 % ) Event 10 ( 1s elapsed / 28m 28s left ) -> ETA: Tue Nov 28 22:50 XS = 2654.22 pb +- ( 807.519 pb = 30 % ) Event 20 ( 1s elapsed / 14m 33s left ) -> ETA: Tue Nov 28 22:37 XS = 3098.7 pb +- ( 660.487 pb = 21 % ) Event 30 ( 1s elapsed / 9m 48s left ) -> ETA: Tue Nov 28 22:32 XS = 3839.7 pb +- ( 659.46 pb = 17 % ) Event 40 ( 1s elapsed / 7m 30s left ) -> ETA: Tue Nov 28 22:29 XS = 3679.71 pb +- ( 548.539 pb = 14 % ) Event 50 ( 1s elapsed / 6m 8s left ) -> ETA: Tue Nov 28 22:28 XS = 3459.56 pb +- ( 462.876 pb = 13 % ) Event 60 ( 1s elapsed / 5m 13s left ) -> ETA: Tue Nov 28 22:27 XS = 3438.74 pb +- ( 420.078 pb = 12 % ) Event 70 ( 1s elapsed / 4m 35s left ) -> ETA: Tue Nov 28 22:27 XS = 3368.05 pb +- ( 381.333 pb = 11 % ) Event 80 ( 1s elapsed / 4m 6s left ) -> ETA: Tue Nov 28 22:26 XS = 3218.03 pb +- ( 341.654 pb = 10 % ) Event 90 ( 2s elapsed / 3m 42s left ) -> ETA: Tue Nov 28 22:26 XS = 3353.66 pb +- ( 334.893 pb = 9 % ) Event 100 ( 2s elapsed / 3m 23s left ) -> ETA: Tue Nov 28 22:25 XS = 3380.11 pb +- ( 320.05 pb = 9 % ) Event 200 ( 2s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 22:24 XS = 3802.87 pb +- ( 252.695 pb = 6 % ) Event 300 ( 2s elapsed / 1m 23s left ) -> ETA: Tue Nov 28 22:23 XS = 3952.17 pb +- ( 213.844 pb = 5 % ) Event 400 ( 2s elapsed / 1m 8s left ) -> ETA: Tue Nov 28 22:23 XS = 3963.46 pb +- ( 185.677 pb = 4 % ) Event 500 ( 3s elapsed / 1m left ) -> ETA: Tue Nov 28 22:23 XS = 3875.23 pb +- ( 162.625 pb = 4 % ) Event 600 ( 3s elapsed / 54s left ) -> ETA: Tue Nov 28 22:23 XS = 3896.68 pb +- ( 149.218 pb = 3 % ) Event 700 ( 3s elapsed / 49s left ) -> ETA: Tue Nov 28 22:23 XS = 3937.98 pb +- ( 139.51 pb = 3 % ) Event 800 ( 4s elapsed / 46s left ) -> ETA: Tue Nov 28 22:23 XS = 3947.15 pb +- ( 130.781 pb = 3 % ) Event 900 ( 4s elapsed / 43s left ) -> ETA: Tue Nov 28 22:23 XS = 3935.62 pb +- ( 122.965 pb = 3 % ) Event 1000 ( 4s elapsed / 41s left ) -> ETA: Tue Nov 28 22:23 XS = 3879.41 pb +- ( 115.102 pb = 2 % ) Event 2000 ( 7s elapsed / 30s left ) -> ETA: Tue Nov 28 22:23 XS = 3862.75 pb +- ( 81.0609 pb = 2 % ) Event 3000 ( 10s elapsed / 25s left ) -> ETA: Tue Nov 28 22:23 XS = 3903.89 pb +- ( 66.8419 pb = 1 % ) Event 4000 ( 14s elapsed / 21s left ) -> ETA: Tue Nov 28 22:23 XS = 3868.87 pb +- ( 57.4024 pb = 1 % ) Event 5000 ( 16s elapsed / 16s left ) -> ETA: Tue Nov 28 22:23 XS = 3874.4 pb +- ( 51.4106 pb = 1 % ) Event 6000 ( 19s elapsed / 13s left ) -> ETA: Tue Nov 28 22:23 XS = 3871.76 pb +- ( 46.9013 pb = 1 % ) Event 7000 ( 23s elapsed / 9s left ) -> ETA: Tue Nov 28 22:22 XS = 3850.87 pb +- ( 43.2037 pb = 1 % ) Event 8000 ( 25s elapsed / 6s left ) -> ETA: Tue Nov 28 22:22 XS = 3861.66 pb +- ( 40.5188 pb = 1 % ) Event 9000 ( 28s elapsed / 3s left ) -> ETA: Tue Nov 28 22:22 XS = 3858.71 pb +- ( 38.1743 pb = 0 % ) Event 10000 ( 31 s total ) = 2.81158e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3873.61 0 % 36.3456 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 31s on Tue Nov 28 22:22:58 2023 (User: 31s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:25:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 58m 18s left ) -> ETA: Wed Nov 29 03:23 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 29m 58s left ) -> ETA: Wed Nov 29 00:55 XS = 1967.26 pb +- ( 1301.22 pb = 66 % ) Event 3 ( 1s elapsed / 1h 39m 58s left ) -> ETA: Wed Nov 29 00:05 XS = 2655.8 pb +- ( 1352.27 pb = 50 % ) Event 4 ( 1s elapsed / 1h 14m 58s left ) -> ETA: Tue Nov 28 23:40 XS = 1475.45 pb +- ( 687.93 pb = 46 % ) Event 5 ( 1s elapsed / 1h 18s left ) -> ETA: Tue Nov 28 23:25 XS = 1702.44 pb +- ( 697.792 pb = 40 % ) Event 6 ( 1s elapsed / 50m 14s left ) -> ETA: Tue Nov 28 23:15 XS = 1770.54 pb +- ( 657.56 pb = 37 % ) Event 7 ( 1s elapsed / 43m 3s left ) -> ETA: Tue Nov 28 23:08 XS = 1936.52 pb +- ( 657.299 pb = 33 % ) Event 8 ( 1s elapsed / 37m 40s left ) -> ETA: Tue Nov 28 23:03 XS = 1967.26 pb +- ( 622.103 pb = 31 % ) Event 9 ( 1s elapsed / 33m 29s left ) -> ETA: Tue Nov 28 22:58 XS = 2153.35 pb +- ( 633.026 pb = 29 % ) Event 10 ( 1s elapsed / 30m 8s left ) -> ETA: Tue Nov 28 22:55 XS = 2011.97 pb +- ( 565.753 pb = 28 % ) Event 20 ( 1s elapsed / 15m 13s left ) -> ETA: Tue Nov 28 22:40 XS = 2185.85 pb +- ( 426.8 pb = 19 % ) Event 30 ( 1s elapsed / 10m 14s left ) -> ETA: Tue Nov 28 22:35 XS = 1996.84 pb +- ( 322.044 pb = 16 % ) Event 40 ( 1s elapsed / 7m 43s left ) -> ETA: Tue Nov 28 22:33 XS = 2011.97 pb +- ( 280.442 pb = 13 % ) Event 50 ( 1s elapsed / 6m 14s left ) -> ETA: Tue Nov 28 22:31 XS = 1949.93 pb +- ( 244.043 pb = 12 % ) Event 60 ( 1s elapsed / 5m 14s left ) -> ETA: Tue Nov 28 22:30 XS = 1718.97 pb +- ( 199.534 pb = 11 % ) Event 70 ( 1s elapsed / 4m 33s left ) -> ETA: Tue Nov 28 22:29 XS = 1770.54 pb +- ( 189.549 pb = 10 % ) Event 80 ( 1s elapsed / 4m 1s left ) -> ETA: Tue Nov 28 22:29 XS = 1849.12 pb +- ( 184.124 pb = 9 % ) Event 90 ( 1s elapsed / 3m 36s left ) -> ETA: Tue Nov 28 22:28 XS = 1929.15 pb +- ( 180.052 pb = 9 % ) Event 100 ( 1s elapsed / 3m 17s left ) -> ETA: Tue Nov 28 22:28 XS = 1998.35 pb +- ( 176.038 pb = 8 % ) Event 200 ( 2s elapsed / 1m 45s left ) -> ETA: Tue Nov 28 22:27 XS = 2056.37 pb +- ( 127.479 pb = 6 % ) Event 300 ( 2s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:26 XS = 2042.93 pb +- ( 103.487 pb = 5 % ) Event 400 ( 2s elapsed / 1m 1s left ) -> ETA: Tue Nov 28 22:26 XS = 2014.26 pb +- ( 88.5421 pb = 4 % ) Event 500 ( 2s elapsed / 52s left ) -> ETA: Tue Nov 28 22:26 XS = 2098.79 pb +- ( 82.0022 pb = 3 % ) Event 600 ( 3s elapsed / 47s left ) -> ETA: Tue Nov 28 22:26 XS = 2016.55 pb +- ( 72.3576 pb = 3 % ) Event 700 ( 3s elapsed / 42s left ) -> ETA: Tue Nov 28 22:26 XS = 2027.11 pb +- ( 67.287 pb = 3 % ) Event 800 ( 3s elapsed / 39s left ) -> ETA: Tue Nov 28 22:26 XS = 2018.28 pb +- ( 62.7063 pb = 3 % ) Event 900 ( 3s elapsed / 36s left ) -> ETA: Tue Nov 28 22:25 XS = 2036.14 pb +- ( 59.5643 pb = 2 % ) Event 1000 ( 3s elapsed / 34s left ) -> ETA: Tue Nov 28 22:25 XS = 2013.8 pb +- ( 55.9785 pb = 2 % ) Event 2000 ( 5s elapsed / 23s left ) -> ETA: Tue Nov 28 22:25 XS = 1972.3 pb +- ( 38.8822 pb = 1 % ) Event 3000 ( 8s elapsed / 19s left ) -> ETA: Tue Nov 28 22:25 XS = 1946.93 pb +- ( 31.3959 pb = 1 % ) Event 4000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:25 XS = 1962.57 pb +- ( 27.3768 pb = 1 % ) Event 5000 ( 12s elapsed / 12s left ) -> ETA: Tue Nov 28 22:25 XS = 1944.19 pb +- ( 24.2894 pb = 1 % ) Event 6000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:25 XS = 1953.59 pb +- ( 22.265 pb = 1 % ) Event 7000 ( 17s elapsed / 7s left ) -> ETA: Tue Nov 28 22:25 XS = 1947.91 pb +- ( 20.5619 pb = 1 % ) Event 8000 ( 19s elapsed / 4s left ) -> ETA: Tue Nov 28 22:25 XS = 1948.86 pb +- ( 19.2419 pb = 0 % ) Event 9000 ( 21s elapsed / 2s left ) -> ETA: Tue Nov 28 22:25 XS = 1956.3 pb +- ( 18.2009 pb = 0 % ) Event 10000 ( 23 s total ) = 3.80617e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1949.2 0 % 17.213 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:25:42 2023 (User: 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:27:00 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nlo_hessian_pdfas + NNPDF31_nlo_hessian_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 1 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 14m 58s left ) -> ETA: Wed Nov 29 02:42 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 8m 18s left ) -> ETA: Wed Nov 29 00:35 XS = 2529.34 pb +- ( 1632.68 pb = 64 % ) Event 3 ( 1s elapsed / 1h 25m 31s left ) -> ETA: Tue Nov 28 23:52 XS = 2414.37 pb +- ( 1246.77 pb = 51 % ) Event 4 ( 1s elapsed / 1h 4m 33s left ) -> ETA: Tue Nov 28 23:31 XS = 2723.9 pb +- ( 1179.48 pb = 43 % ) Event 5 ( 1s elapsed / 51m 58s left ) -> ETA: Tue Nov 28 23:19 XS = 2011.97 pb +- ( 809.565 pb = 40 % ) Event 6 ( 1s elapsed / 43m 18s left ) -> ETA: Tue Nov 28 23:10 XS = 2124.64 pb +- ( 771.758 pb = 36 % ) Event 7 ( 1s elapsed / 37m 21s left ) -> ETA: Tue Nov 28 23:04 XS = 2213.17 pb +- ( 737.723 pb = 33 % ) Event 8 ( 1s elapsed / 32m 53s left ) -> ETA: Tue Nov 28 22:59 XS = 2442.12 pb +- ( 747.743 pb = 30 % ) Event 9 ( 1s elapsed / 29m 25s left ) -> ETA: Tue Nov 28 22:56 XS = 2276.4 pb +- ( 663.552 pb = 29 % ) Event 10 ( 1s elapsed / 26m 38s left ) -> ETA: Tue Nov 28 22:53 XS = 2459.08 pb +- ( 670.231 pb = 27 % ) Event 20 ( 1s elapsed / 13m 48s left ) -> ETA: Tue Nov 28 22:40 XS = 1624.34 pb +- ( 329.721 pb = 20 % ) Event 30 ( 1s elapsed / 9m 28s left ) -> ETA: Tue Nov 28 22:36 XS = 1938.54 pb +- ( 313.933 pb = 16 % ) Event 40 ( 1s elapsed / 7m 20s left ) -> ETA: Tue Nov 28 22:34 XS = 2000.6 pb +- ( 279.084 pb = 13 % ) Event 50 ( 1s elapsed / 6m 2s left ) -> ETA: Tue Nov 28 22:33 XS = 1967.26 pb +- ( 245.908 pb = 12 % ) Event 60 ( 1s elapsed / 5m 16s left ) -> ETA: Tue Nov 28 22:32 XS = 2027.33 pb +- ( 230.252 pb = 11 % ) Event 70 ( 1s elapsed / 4m 42s left ) -> ETA: Tue Nov 28 22:31 XS = 2058.76 pb +- ( 215.925 pb = 10 % ) Event 80 ( 2s elapsed / 4m 15s left ) -> ETA: Tue Nov 28 22:31 XS = 2040.96 pb +- ( 200.451 pb = 9 % ) Event 90 ( 2s elapsed / 3m 53s left ) -> ETA: Tue Nov 28 22:30 XS = 1986.88 pb +- ( 184.672 pb = 9 % ) Event 100 ( 2s elapsed / 3m 34s left ) -> ETA: Tue Nov 28 22:30 XS = 2030.43 pb +- ( 178.449 pb = 8 % ) Event 200 ( 2s elapsed / 2m 11s left ) -> ETA: Tue Nov 28 22:29 XS = 2053.99 pb +- ( 127.353 pb = 6 % ) Event 300 ( 3s elapsed / 1m 45s left ) -> ETA: Tue Nov 28 22:28 XS = 1989.37 pb +- ( 101.169 pb = 5 % ) Event 400 ( 3s elapsed / 1m 31s left ) -> ETA: Tue Nov 28 22:28 XS = 1967.26 pb +- ( 86.7722 pb = 4 % ) Event 500 ( 4s elapsed / 1m 25s left ) -> ETA: Tue Nov 28 22:28 XS = 1889.18 pb +- ( 74.9474 pb = 3 % ) Event 600 ( 5s elapsed / 1m 22s left ) -> ETA: Tue Nov 28 22:28 XS = 1888.91 pb +- ( 68.4064 pb = 3 % ) Event 700 ( 5s elapsed / 1m 16s left ) -> ETA: Tue Nov 28 22:28 XS = 1892.75 pb +- ( 63.4419 pb = 3 % ) Event 800 ( 6s elapsed / 1m 13s left ) -> ETA: Tue Nov 28 22:28 XS = 1924.49 pb +- ( 60.2009 pb = 3 % ) Event 900 ( 6s elapsed / 1m 10s left ) -> ETA: Tue Nov 28 22:28 XS = 1932.9 pb +- ( 56.9704 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 7s left ) -> ETA: Tue Nov 28 22:28 XS = 1907.9 pb +- ( 53.4435 pb = 2 % ) Event 2000 ( 13s elapsed / 53s left ) -> ETA: Tue Nov 28 22:28 XS = 1885.15 pb +- ( 37.3987 pb = 1 % ) Event 3000 ( 19s elapsed / 45s left ) -> ETA: Tue Nov 28 22:28 XS = 1877.96 pb +- ( 30.4345 pb = 1 % ) Event 4000 ( 25s elapsed / 37s left ) -> ETA: Tue Nov 28 22:28 XS = 1865.88 pb +- ( 26.21 pb = 1 % ) Event 5000 ( 30s elapsed / 30s left ) -> ETA: Tue Nov 28 22:28 XS = 1872.87 pb +- ( 23.5189 pb = 1 % ) Event 6000 ( 36s elapsed / 24s left ) -> ETA: Tue Nov 28 22:28 XS = 1872.07 pb +- ( 21.4616 pb = 1 % ) Event 7000 ( 41s elapsed / 17s left ) -> ETA: Tue Nov 28 22:27 XS = 1883.18 pb +- ( 19.9781 pb = 1 % ) Event 8000 ( 47s elapsed / 11s left ) -> ETA: Tue Nov 28 22:27 XS = 1893.69 pb +- ( 18.7824 pb = 0 % ) Event 9000 ( 52s elapsed / 5s left ) -> ETA: Tue Nov 28 22:27 XS = 1889.32 pb +- ( 17.6718 pb = 0 % ) Event 10000 ( 57 s total ) = 1.52462e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_NNPDF/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1899.86 0 % 16.8449 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 57s on Tue Nov 28 22:27:58 2023 (User: 56s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:31:35 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 33m 18s left ) -> ETA: Wed Nov 29 03:04 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 17m 28s left ) -> ETA: Wed Nov 29 00:49 XS = 8852.68 pb +- ( 0 pb = 0 % ) Event 3 ( 1s elapsed / 1h 32m 11s left ) -> ETA: Wed Nov 29 00:03 XS = 5311.61 pb +- ( 2168.45 pb = 40 % ) Event 4 ( 1s elapsed / 1h 9m 8s left ) -> ETA: Tue Nov 28 23:40 XS = 5058.67 pb +- ( 1788.51 pb = 35 % ) Event 5 ( 1s elapsed / 56m 18s left ) -> ETA: Tue Nov 28 23:27 XS = 2950.89 pb +- ( 1115.33 pb = 37 % ) Event 6 ( 1s elapsed / 47m 11s left ) -> ETA: Tue Nov 28 23:18 XS = 2950.89 pb +- ( 1012.15 pb = 34 % ) Event 7 ( 1s elapsed / 40m 41s left ) -> ETA: Tue Nov 28 23:12 XS = 2950.89 pb +- ( 933.154 pb = 31 % ) Event 8 ( 1s elapsed / 35m 48s left ) -> ETA: Tue Nov 28 23:07 XS = 2529.34 pb +- ( 769.652 pb = 30 % ) Event 9 ( 1s elapsed / 32m left ) -> ETA: Tue Nov 28 23:03 XS = 2414.37 pb +- ( 696.967 pb = 28 % ) Event 10 ( 1s elapsed / 28m 48s left ) -> ETA: Tue Nov 28 23:00 XS = 2529.34 pb +- ( 685.862 pb = 27 % ) Event 20 ( 1s elapsed / 14m 48s left ) -> ETA: Tue Nov 28 22:46 XS = 2269.92 pb +- ( 440.518 pb = 19 % ) Event 30 ( 1s elapsed / 10m 4s left ) -> ETA: Tue Nov 28 22:41 XS = 2058.76 pb +- ( 330.566 pb = 16 % ) Event 40 ( 1s elapsed / 7m 50s left ) -> ETA: Tue Nov 28 22:39 XS = 2070.8 pb +- ( 287.422 pb = 13 % ) Event 50 ( 1s elapsed / 6m 30s left ) -> ETA: Tue Nov 28 22:38 XS = 2159.19 pb +- ( 266.168 pb = 12 % ) Event 60 ( 2s elapsed / 5m 34s left ) -> ETA: Tue Nov 28 22:37 XS = 2107.78 pb +- ( 237.993 pb = 11 % ) Event 70 ( 2s elapsed / 4m 53s left ) -> ETA: Tue Nov 28 22:36 XS = 2189.71 pb +- ( 227.459 pb = 10 % ) Event 80 ( 2s elapsed / 4m 21s left ) -> ETA: Tue Nov 28 22:35 XS = 2227.09 pb +- ( 215.75 pb = 9 % ) Event 90 ( 2s elapsed / 3m 58s left ) -> ETA: Tue Nov 28 22:35 XS = 2130.32 pb +- ( 195.943 pb = 9 % ) Event 100 ( 2s elapsed / 3m 38s left ) -> ETA: Tue Nov 28 22:35 XS = 2021.16 pb +- ( 177.753 pb = 8 % ) Event 200 ( 2s elapsed / 2m 15s left ) -> ETA: Tue Nov 28 22:33 XS = 2146.1 pb +- ( 132.164 pb = 6 % ) Event 300 ( 3s elapsed / 1m 51s left ) -> ETA: Tue Nov 28 22:33 XS = 1998.35 pb +- ( 101.559 pb = 5 % ) Event 400 ( 3s elapsed / 1m 34s left ) -> ETA: Tue Nov 28 22:33 XS = 1961.81 pb +- ( 86.566 pb = 4 % ) Event 500 ( 4s elapsed / 1m 25s left ) -> ETA: Tue Nov 28 22:33 XS = 1958.56 pb +- ( 77.3124 pb = 3 % ) Event 600 ( 5s elapsed / 1m 19s left ) -> ETA: Tue Nov 28 22:32 XS = 1937.83 pb +- ( 69.9317 pb = 3 % ) Event 700 ( 5s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:32 XS = 1955.47 pb +- ( 65.2483 pb = 3 % ) Event 800 ( 6s elapsed / 1m 11s left ) -> ETA: Tue Nov 28 22:32 XS = 1969.45 pb +- ( 61.4072 pb = 3 % ) Event 900 ( 6s elapsed / 1m 9s left ) -> ETA: Tue Nov 28 22:32 XS = 1961.93 pb +- ( 57.7048 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 7s left ) -> ETA: Tue Nov 28 22:32 XS = 1941.38 pb +- ( 54.25 pb = 2 % ) Event 2000 ( 13s elapsed / 52s left ) -> ETA: Tue Nov 28 22:32 XS = 1911.61 pb +- ( 37.8516 pb = 1 % ) Event 3000 ( 18s elapsed / 42s left ) -> ETA: Tue Nov 28 22:32 XS = 1908.04 pb +- ( 30.8553 pb = 1 % ) Event 4000 ( 23s elapsed / 35s left ) -> ETA: Tue Nov 28 22:32 XS = 1871.21 pb +- ( 26.2748 pb = 1 % ) Event 5000 ( 29s elapsed / 29s left ) -> ETA: Tue Nov 28 22:32 XS = 1886.52 pb +- ( 23.6671 pb = 1 % ) Event 6000 ( 35s elapsed / 23s left ) -> ETA: Tue Nov 28 22:32 XS = 1894.97 pb +- ( 21.6885 pb = 1 % ) Event 7000 ( 41s elapsed / 17s left ) -> ETA: Tue Nov 28 22:32 XS = 1900.01 pb +- ( 20.1257 pb = 1 % ) Event 8000 ( 47s elapsed / 11s left ) -> ETA: Tue Nov 28 22:32 XS = 1899.61 pb +- ( 18.8225 pb = 0 % ) Event 9000 ( 53s elapsed / 5s left ) -> ETA: Tue Nov 28 22:32 XS = 1901.21 pb +- ( 17.7589 pb = 0 % ) Event 10000 ( 59 s total ) = 1.46939e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_v2/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1902.94 0 % 16.8608 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m on Tue Nov 28 22:32:35 2023 (User: 59s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:41:55 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 46m 38s left ) -> ETA: Wed Nov 29 03:28 XS = 8852.68 pb +- ( 8852.68 pb = 100 % ) Event 2 ( 1s elapsed / 2h 23m 18s left ) -> ETA: Wed Nov 29 01:05 XS = 1967.26 pb +- ( 1301.22 pb = 66 % ) Event 3 ( 1s elapsed / 1h 36m 4s left ) -> ETA: Wed Nov 29 00:18 XS = 2655.8 pb +- ( 1352.27 pb = 50 % ) Event 4 ( 1s elapsed / 1h 12m 3s left ) -> ETA: Tue Nov 28 23:54 XS = 1475.45 pb +- ( 687.93 pb = 46 % ) Event 5 ( 1s elapsed / 57m 38s left ) -> ETA: Tue Nov 28 23:39 XS = 1702.44 pb +- ( 697.792 pb = 40 % ) Event 6 ( 1s elapsed / 48m 1s left ) -> ETA: Tue Nov 28 23:29 XS = 1770.54 pb +- ( 657.56 pb = 37 % ) Event 7 ( 1s elapsed / 41m 9s left ) -> ETA: Tue Nov 28 23:23 XS = 1936.52 pb +- ( 657.299 pb = 33 % ) Event 8 ( 1s elapsed / 36m 13s left ) -> ETA: Tue Nov 28 23:18 XS = 1967.26 pb +- ( 622.103 pb = 31 % ) Event 9 ( 1s elapsed / 32m 11s left ) -> ETA: Tue Nov 28 23:14 XS = 2153.35 pb +- ( 633.026 pb = 29 % ) Event 10 ( 1s elapsed / 28m 58s left ) -> ETA: Tue Nov 28 23:10 XS = 2011.97 pb +- ( 565.753 pb = 28 % ) Event 20 ( 1s elapsed / 14m 38s left ) -> ETA: Tue Nov 28 22:56 XS = 2185.85 pb +- ( 426.8 pb = 19 % ) Event 30 ( 1s elapsed / 9m 51s left ) -> ETA: Tue Nov 28 22:51 XS = 1996.84 pb +- ( 322.044 pb = 16 % ) Event 40 ( 1s elapsed / 7m 30s left ) -> ETA: Tue Nov 28 22:49 XS = 2011.97 pb +- ( 280.442 pb = 13 % ) Event 50 ( 1s elapsed / 6m 4s left ) -> ETA: Tue Nov 28 22:48 XS = 1949.93 pb +- ( 244.043 pb = 12 % ) Event 60 ( 1s elapsed / 5m 6s left ) -> ETA: Tue Nov 28 22:47 XS = 1718.97 pb +- ( 199.534 pb = 11 % ) Event 70 ( 1s elapsed / 4m 23s left ) -> ETA: Tue Nov 28 22:46 XS = 1770.54 pb +- ( 189.549 pb = 10 % ) Event 80 ( 1s elapsed / 3m 53s left ) -> ETA: Tue Nov 28 22:45 XS = 1849.12 pb +- ( 184.124 pb = 9 % ) Event 90 ( 1s elapsed / 3m 28s left ) -> ETA: Tue Nov 28 22:45 XS = 1929.15 pb +- ( 180.052 pb = 9 % ) Event 100 ( 1s elapsed / 3m 9s left ) -> ETA: Tue Nov 28 22:45 XS = 1998.35 pb +- ( 176.038 pb = 8 % ) Event 200 ( 2s elapsed / 1m 44s left ) -> ETA: Tue Nov 28 22:43 XS = 2056.37 pb +- ( 127.479 pb = 6 % ) Event 300 ( 2s elapsed / 1m 16s left ) -> ETA: Tue Nov 28 22:43 XS = 2042.93 pb +- ( 103.487 pb = 5 % ) Event 400 ( 2s elapsed / 1m 1s left ) -> ETA: Tue Nov 28 22:42 XS = 2014.26 pb +- ( 88.5421 pb = 4 % ) Event 500 ( 2s elapsed / 53s left ) -> ETA: Tue Nov 28 22:42 XS = 2098.79 pb +- ( 82.0022 pb = 3 % ) Event 600 ( 3s elapsed / 48s left ) -> ETA: Tue Nov 28 22:42 XS = 2016.55 pb +- ( 72.3576 pb = 3 % ) Event 700 ( 3s elapsed / 44s left ) -> ETA: Tue Nov 28 22:42 XS = 2027.11 pb +- ( 67.287 pb = 3 % ) Event 800 ( 3s elapsed / 41s left ) -> ETA: Tue Nov 28 22:42 XS = 2018.28 pb +- ( 62.7063 pb = 3 % ) Event 900 ( 3s elapsed / 38s left ) -> ETA: Tue Nov 28 22:42 XS = 2036.14 pb +- ( 59.5643 pb = 2 % ) Event 1000 ( 4s elapsed / 37s left ) -> ETA: Tue Nov 28 22:42 XS = 2013.8 pb +- ( 55.9785 pb = 2 % ) Event 2000 ( 6s elapsed / 26s left ) -> ETA: Tue Nov 28 22:42 XS = 1972.3 pb +- ( 38.8822 pb = 1 % ) Event 3000 ( 8s elapsed / 20s left ) -> ETA: Tue Nov 28 22:42 XS = 1946.93 pb +- ( 31.3959 pb = 1 % ) Event 4000 ( 10s elapsed / 16s left ) -> ETA: Tue Nov 28 22:42 XS = 1962.57 pb +- ( 27.3768 pb = 1 % ) Event 5000 ( 13s elapsed / 13s left ) -> ETA: Tue Nov 28 22:42 XS = 1944.19 pb +- ( 24.2894 pb = 1 % ) Event 6000 ( 15s elapsed / 10s left ) -> ETA: Tue Nov 28 22:42 XS = 1953.59 pb +- ( 22.265 pb = 1 % ) Event 7000 ( 17s elapsed / 7s left ) -> ETA: Tue Nov 28 22:42 XS = 1947.91 pb +- ( 20.5619 pb = 1 % ) Event 8000 ( 20s elapsed / 5s left ) -> ETA: Tue Nov 28 22:42 XS = 1948.86 pb +- ( 19.2419 pb = 0 % ) Event 9000 ( 22s elapsed / 2s left ) -> ETA: Tue Nov 28 22:42 XS = 1956.3 pb +- ( 18.2009 pb = 0 % ) Event 10000 ( 23 s total ) = 3.64865e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1949.2 0 % 17.213 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 24s on Tue Nov 28 22:42:19 2023 (User: 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:37:24 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 29m 58s left ) -> ETA: Wed Nov 29 23:07 XS = 26089.4 pb +- ( 26089.4 pb = 100 % ) Event 2 ( 1s elapsed / 2h 15m 48s left ) -> ETA: Wed Nov 29 20:53 XS = 6522.35 pb +- ( 4269.88 pb = 65 % ) Event 3 ( 1s elapsed / 1h 30m 31s left ) -> ETA: Wed Nov 29 20:07 XS = 8696.47 pb +- ( 4348.24 pb = 49 % ) Event 4 ( 1s elapsed / 1h 7m 53s left ) -> ETA: Wed Nov 29 19:45 XS = 10435.8 pb +- ( 4260.38 pb = 40 % ) Event 5 ( 1s elapsed / 54m 38s left ) -> ETA: Wed Nov 29 19:32 XS = 9317.65 pb +- ( 3467.14 pb = 37 % ) Event 6 ( 1s elapsed / 45m 31s left ) -> ETA: Wed Nov 29 19:22 XS = 10435.8 pb +- ( 3415.91 pb = 32 % ) Event 7 ( 1s elapsed / 39m 1s left ) -> ETA: Wed Nov 29 19:16 XS = 10742.7 pb +- ( 3210 pb = 29 % ) Event 8 ( 1s elapsed / 34m 20s left ) -> ETA: Wed Nov 29 19:11 XS = 9938.82 pb +- ( 2833 pb = 28 % ) Event 9 ( 1s elapsed / 30m 31s left ) -> ETA: Wed Nov 29 19:07 XS = 7574.35 pb +- ( 2162.09 pb = 28 % ) Event 10 ( 1s elapsed / 27m 28s left ) -> ETA: Wed Nov 29 19:04 XS = 7454.12 pb +- ( 2021.28 pb = 27 % ) Event 20 ( 1s elapsed / 13m 58s left ) -> ETA: Wed Nov 29 18:51 XS = 6363.27 pb +- ( 1244.86 pb = 19 % ) Event 30 ( 1s elapsed / 9m 31s left ) -> ETA: Wed Nov 29 18:46 XS = 5324.37 pb +- ( 870.21 pb = 16 % ) Event 40 ( 1s elapsed / 7m 20s left ) -> ETA: Wed Nov 29 18:44 XS = 4157.68 pb +- ( 603.937 pb = 14 % ) Event 50 ( 1s elapsed / 5m 56s left ) -> ETA: Wed Nov 29 18:43 XS = 4498.17 pb +- ( 579.706 pb = 12 % ) Event 60 ( 1s elapsed / 5m 3s left ) -> ETA: Wed Nov 29 18:42 XS = 4434.46 pb +- ( 522.309 pb = 11 % ) Event 70 ( 1s elapsed / 4m 25s left ) -> ETA: Wed Nov 29 18:41 XS = 4307.21 pb +- ( 470.954 pb = 10 % ) Event 80 ( 1s elapsed / 3m 54s left ) -> ETA: Wed Nov 29 18:41 XS = 4469.28 pb +- ( 455.36 pb = 10 % ) Event 90 ( 1s elapsed / 3m 31s left ) -> ETA: Wed Nov 29 18:40 XS = 4577.09 pb +- ( 438.534 pb = 9 % ) Event 100 ( 1s elapsed / 3m 15s left ) -> ETA: Wed Nov 29 18:40 XS = 4312.3 pb +- ( 394.309 pb = 9 % ) Event 200 ( 2s elapsed / 1m 52s left ) -> ETA: Wed Nov 29 18:39 XS = 3631.09 pb +- ( 238.303 pb = 6 % ) Event 300 ( 2s elapsed / 1m 26s left ) -> ETA: Wed Nov 29 18:38 XS = 3516.09 pb +- ( 188.87 pb = 5 % ) Event 400 ( 3s elapsed / 1m 12s left ) -> ETA: Wed Nov 29 18:38 XS = 3536.35 pb +- ( 164.426 pb = 4 % ) Event 500 ( 3s elapsed / 1m 4s left ) -> ETA: Wed Nov 29 18:38 XS = 3544.76 pb +- ( 147.384 pb = 4 % ) Event 600 ( 3s elapsed / 1m left ) -> ETA: Wed Nov 29 18:38 XS = 3464.73 pb +- ( 131.735 pb = 3 % ) Event 700 ( 4s elapsed / 57s left ) -> ETA: Wed Nov 29 18:38 XS = 3359.56 pb +- ( 118.533 pb = 3 % ) Event 800 ( 4s elapsed / 54s left ) -> ETA: Wed Nov 29 18:38 XS = 3359.33 pb +- ( 110.869 pb = 3 % ) Event 900 ( 5s elapsed / 52s left ) -> ETA: Wed Nov 29 18:38 XS = 3340.51 pb +- ( 103.985 pb = 3 % ) Event 1000 ( 5s elapsed / 50s left ) -> ETA: Wed Nov 29 18:38 XS = 3351.67 pb +- ( 98.9534 pb = 2 % ) Event 2000 ( 9s elapsed / 37s left ) -> ETA: Wed Nov 29 18:38 XS = 3411.27 pb +- ( 71.1193 pb = 2 % ) Event 3000 ( 13s elapsed / 31s left ) -> ETA: Wed Nov 29 18:38 XS = 3402.97 pb +- ( 57.9372 pb = 1 % ) Event 4000 ( 17s elapsed / 26s left ) -> ETA: Wed Nov 29 18:38 XS = 3401.6 pb +- ( 50.1562 pb = 1 % ) Event 5000 ( 21s elapsed / 21s left ) -> ETA: Wed Nov 29 18:38 XS = 3413.5 pb +- ( 45.0061 pb = 1 % ) Event 6000 ( 25s elapsed / 16s left ) -> ETA: Wed Nov 29 18:38 XS = 3445.51 pb +- ( 41.4406 pb = 1 % ) Event 7000 ( 29s elapsed / 12s left ) -> ETA: Wed Nov 29 18:38 XS = 3439.48 pb +- ( 38.3044 pb = 1 % ) Event 8000 ( 32s elapsed / 8s left ) -> ETA: Wed Nov 29 18:38 XS = 3461.17 pb +- ( 36.0391 pb = 1 % ) Event 9000 ( 36s elapsed / 4s left ) -> ETA: Wed Nov 29 18:38 XS = 3474.32 pb +- ( 34.0972 pb = 0 % ) Event 10000 ( 40 s total ) = 2.17304e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3485.7 0 % 32.4452 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 40s on Wed Nov 29 18:38:05 2023 (User: 40s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:43:36 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 3h 36m 38s left ) -> ETA: Wed Nov 29 22:20 XS = 26089.4 pb +- ( 26089.4 pb = 100 % ) Event 2 ( 1s elapsed / 1h 48m 18s left ) -> ETA: Wed Nov 29 20:31 XS = 6522.35 pb +- ( 4269.88 pb = 65 % ) Event 3 ( 1s elapsed / 1h 12m 12s left ) -> ETA: Wed Nov 29 19:55 XS = 8696.47 pb +- ( 4348.24 pb = 49 % ) Event 4 ( 1s elapsed / 54m 33s left ) -> ETA: Wed Nov 29 19:38 XS = 10435.8 pb +- ( 4260.38 pb = 40 % ) Event 5 ( 1s elapsed / 43m 38s left ) -> ETA: Wed Nov 29 19:27 XS = 9317.65 pb +- ( 3467.14 pb = 37 % ) Event 6 ( 1s elapsed / 36m 22s left ) -> ETA: Wed Nov 29 19:19 XS = 10435.8 pb +- ( 3415.91 pb = 32 % ) Event 7 ( 1s elapsed / 31m 10s left ) -> ETA: Wed Nov 29 19:14 XS = 10742.7 pb +- ( 3210 pb = 29 % ) Event 8 ( 1s elapsed / 27m 16s left ) -> ETA: Wed Nov 29 19:10 XS = 9938.82 pb +- ( 2833 pb = 28 % ) Event 9 ( 1s elapsed / 24m 25s left ) -> ETA: Wed Nov 29 19:08 XS = 7574.35 pb +- ( 2162.09 pb = 28 % ) Event 10 ( 1s elapsed / 21m 58s left ) -> ETA: Wed Nov 29 19:05 XS = 7454.12 pb +- ( 2021.28 pb = 27 % ) Event 20 ( 1s elapsed / 11m 8s left ) -> ETA: Wed Nov 29 18:54 XS = 6363.27 pb +- ( 1244.86 pb = 19 % ) Event 30 ( 1s elapsed / 7m 38s left ) -> ETA: Wed Nov 29 18:51 XS = 5324.37 pb +- ( 870.21 pb = 16 % ) Event 40 ( 1s elapsed / 5m 51s left ) -> ETA: Wed Nov 29 18:49 XS = 4157.68 pb +- ( 603.937 pb = 14 % ) Event 50 ( 1s elapsed / 4m 44s left ) -> ETA: Wed Nov 29 18:48 XS = 4498.17 pb +- ( 579.706 pb = 12 % ) Event 60 ( 1s elapsed / 4m 1s left ) -> ETA: Wed Nov 29 18:47 XS = 4434.46 pb +- ( 522.309 pb = 11 % ) Event 70 ( 1s elapsed / 3m 31s left ) -> ETA: Wed Nov 29 18:47 XS = 4307.21 pb +- ( 470.954 pb = 10 % ) Event 80 ( 1s elapsed / 3m 7s left ) -> ETA: Wed Nov 29 18:46 XS = 4469.28 pb +- ( 455.36 pb = 10 % ) Event 90 ( 1s elapsed / 2m 49s left ) -> ETA: Wed Nov 29 18:46 XS = 4577.09 pb +- ( 438.534 pb = 9 % ) Event 100 ( 1s elapsed / 2m 37s left ) -> ETA: Wed Nov 29 18:46 XS = 4312.3 pb +- ( 394.309 pb = 9 % ) Event 200 ( 1s elapsed / 1m 34s left ) -> ETA: Wed Nov 29 18:45 XS = 3631.09 pb +- ( 238.303 pb = 6 % ) Event 300 ( 2s elapsed / 1m 14s left ) -> ETA: Wed Nov 29 18:44 XS = 3516.09 pb +- ( 188.87 pb = 5 % ) Event 400 ( 2s elapsed / 1m 4s left ) -> ETA: Wed Nov 29 18:44 XS = 3536.35 pb +- ( 164.426 pb = 4 % ) Event 500 ( 3s elapsed / 57s left ) -> ETA: Wed Nov 29 18:44 XS = 3544.76 pb +- ( 147.384 pb = 4 % ) Event 600 ( 3s elapsed / 52s left ) -> ETA: Wed Nov 29 18:44 XS = 3464.73 pb +- ( 131.735 pb = 3 % ) Event 700 ( 3s elapsed / 49s left ) -> ETA: Wed Nov 29 18:44 XS = 3359.56 pb +- ( 118.533 pb = 3 % ) Event 800 ( 4s elapsed / 47s left ) -> ETA: Wed Nov 29 18:44 XS = 3359.33 pb +- ( 110.869 pb = 3 % ) Event 900 ( 4s elapsed / 45s left ) -> ETA: Wed Nov 29 18:44 XS = 3340.51 pb +- ( 103.985 pb = 3 % ) Event 1000 ( 4s elapsed / 43s left ) -> ETA: Wed Nov 29 18:44 XS = 3351.67 pb +- ( 98.9534 pb = 2 % ) Event 2000 ( 8s elapsed / 33s left ) -> ETA: Wed Nov 29 18:44 XS = 3411.27 pb +- ( 71.1193 pb = 2 % ) Event 3000 ( 12s elapsed / 28s left ) -> ETA: Wed Nov 29 18:44 XS = 3402.97 pb +- ( 57.9372 pb = 1 % ) Event 4000 ( 15s elapsed / 23s left ) -> ETA: Wed Nov 29 18:44 XS = 3401.6 pb +- ( 50.1562 pb = 1 % ) Event 5000 ( 19s elapsed / 19s left ) -> ETA: Wed Nov 29 18:44 XS = 3413.5 pb +- ( 45.0061 pb = 1 % ) Event 6000 ( 23s elapsed / 15s left ) -> ETA: Wed Nov 29 18:44 XS = 3445.51 pb +- ( 41.4406 pb = 1 % ) Event 7000 ( 26s elapsed / 11s left ) -> ETA: Wed Nov 29 18:44 XS = 3439.48 pb +- ( 38.3044 pb = 1 % ) Event 8000 ( 30s elapsed / 7s left ) -> ETA: Wed Nov 29 18:44 XS = 3461.17 pb +- ( 36.0391 pb = 1 % ) Event 9000 ( 34s elapsed / 3s left ) -> ETA: Wed Nov 29 18:44 XS = 3474.32 pb +- ( 34.0972 pb = 0 % ) Event 10000 ( 37 s total ) = 2.34974e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3485.7 0 % 32.4452 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 37s on Wed Nov 29 18:44:13 2023 (User: 37s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 19:45:50 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8017 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 13m 18s left ) -> ETA: Wed Nov 29 23:59 XS = 26089.4 pb +- ( 26089.4 pb = 100 % ) Event 2 ( 1s elapsed / 2h 7m 28s left ) -> ETA: Wed Nov 29 21:53 XS = 6522.35 pb +- ( 4269.88 pb = 65 % ) Event 3 ( 1s elapsed / 1h 24m 58s left ) -> ETA: Wed Nov 29 21:10 XS = 8696.47 pb +- ( 4348.24 pb = 49 % ) Event 4 ( 1s elapsed / 1h 4m 8s left ) -> ETA: Wed Nov 29 20:49 XS = 10435.8 pb +- ( 4260.38 pb = 40 % ) Event 5 ( 1s elapsed / 51m 38s left ) -> ETA: Wed Nov 29 20:37 XS = 9317.65 pb +- ( 3467.14 pb = 37 % ) Event 6 ( 1s elapsed / 43m 1s left ) -> ETA: Wed Nov 29 20:28 XS = 10435.8 pb +- ( 3415.91 pb = 32 % ) Event 7 ( 1s elapsed / 37m 7s left ) -> ETA: Wed Nov 29 20:22 XS = 10742.7 pb +- ( 3210 pb = 29 % ) Event 8 ( 1s elapsed / 32m 28s left ) -> ETA: Wed Nov 29 20:18 XS = 9938.82 pb +- ( 2833 pb = 28 % ) Event 9 ( 1s elapsed / 29m 2s left ) -> ETA: Wed Nov 29 20:14 XS = 7574.35 pb +- ( 2162.09 pb = 28 % ) Event 10 ( 1s elapsed / 26m 8s left ) -> ETA: Wed Nov 29 20:11 XS = 7454.12 pb +- ( 2021.28 pb = 27 % ) Event 20 ( 1s elapsed / 13m 23s left ) -> ETA: Wed Nov 29 19:59 XS = 6363.27 pb +- ( 1244.86 pb = 19 % ) Event 30 ( 1s elapsed / 9m 11s left ) -> ETA: Wed Nov 29 19:55 XS = 5324.37 pb +- ( 870.21 pb = 16 % ) Event 40 ( 1s elapsed / 7m 5s left ) -> ETA: Wed Nov 29 19:52 XS = 4157.68 pb +- ( 603.937 pb = 14 % ) Event 50 ( 1s elapsed / 5m 48s left ) -> ETA: Wed Nov 29 19:51 XS = 4498.17 pb +- ( 579.706 pb = 12 % ) Event 60 ( 1s elapsed / 4m 58s left ) -> ETA: Wed Nov 29 19:50 XS = 4434.46 pb +- ( 522.309 pb = 11 % ) Event 70 ( 1s elapsed / 4m 21s left ) -> ETA: Wed Nov 29 19:50 XS = 4307.21 pb +- ( 470.954 pb = 10 % ) Event 80 ( 1s elapsed / 3m 53s left ) -> ETA: Wed Nov 29 19:49 XS = 4469.28 pb +- ( 455.36 pb = 10 % ) Event 90 ( 1s elapsed / 3m 30s left ) -> ETA: Wed Nov 29 19:49 XS = 4577.09 pb +- ( 438.534 pb = 9 % ) Event 100 ( 1s elapsed / 3m 13s left ) -> ETA: Wed Nov 29 19:49 XS = 4312.3 pb +- ( 394.309 pb = 9 % ) Event 200 ( 2s elapsed / 1m 59s left ) -> ETA: Wed Nov 29 19:47 XS = 3631.09 pb +- ( 238.303 pb = 6 % ) Event 300 ( 2s elapsed / 1m 30s left ) -> ETA: Wed Nov 29 19:47 XS = 3516.09 pb +- ( 188.87 pb = 5 % ) Event 400 ( 3s elapsed / 1m 16s left ) -> ETA: Wed Nov 29 19:47 XS = 3536.35 pb +- ( 164.426 pb = 4 % ) Event 500 ( 3s elapsed / 1m 7s left ) -> ETA: Wed Nov 29 19:47 XS = 3544.76 pb +- ( 147.384 pb = 4 % ) Event 600 ( 3s elapsed / 1m 2s left ) -> ETA: Wed Nov 29 19:46 XS = 3464.73 pb +- ( 131.735 pb = 3 % ) Event 700 ( 4s elapsed / 58s left ) -> ETA: Wed Nov 29 19:46 XS = 3359.56 pb +- ( 118.533 pb = 3 % ) Event 800 ( 4s elapsed / 55s left ) -> ETA: Wed Nov 29 19:46 XS = 3359.33 pb +- ( 110.869 pb = 3 % ) Event 900 ( 5s elapsed / 53s left ) -> ETA: Wed Nov 29 19:46 XS = 3340.51 pb +- ( 103.985 pb = 3 % ) Event 1000 ( 5s elapsed / 50s left ) -> ETA: Wed Nov 29 19:46 XS = 3351.67 pb +- ( 98.9534 pb = 2 % ) Event 2000 ( 9s elapsed / 38s left ) -> ETA: Wed Nov 29 19:46 XS = 3411.27 pb +- ( 71.1193 pb = 2 % ) Event 3000 ( 13s elapsed / 31s left ) -> ETA: Wed Nov 29 19:46 XS = 3402.97 pb +- ( 57.9372 pb = 1 % ) Event 4000 ( 17s elapsed / 26s left ) -> ETA: Wed Nov 29 19:46 XS = 3401.6 pb +- ( 50.1562 pb = 1 % ) Event 5000 ( 21s elapsed / 21s left ) -> ETA: Wed Nov 29 19:46 XS = 3413.5 pb +- ( 45.0061 pb = 1 % ) Event 6000 ( 25s elapsed / 17s left ) -> ETA: Wed Nov 29 19:46 XS = 3445.51 pb +- ( 41.4406 pb = 1 % ) Event 7000 ( 29s elapsed / 12s left ) -> ETA: Wed Nov 29 19:46 XS = 3439.48 pb +- ( 38.3044 pb = 1 % ) Event 8000 ( 33s elapsed / 8s left ) -> ETA: Wed Nov 29 19:46 XS = 3461.17 pb +- ( 36.0391 pb = 1 % ) Event 9000 ( 37s elapsed / 4s left ) -> ETA: Wed Nov 29 19:46 XS = 3474.32 pb +- ( 34.0972 pb = 0 % ) Event 10000 ( 39 s total ) = 2.23083e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8017){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3485.7 0 % 32.4452 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 39s on Wed Nov 29 19:46:29 2023 (User: 39s, System: 0s, Children User: 0s, Children System: 0s)