Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:44:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 48m 18s left ) -> ETA: Wed Nov 29 02:32 XS = 1904.79 pb +- ( 1904.79 pb = 100 % ) Event 2 ( 1s elapsed / 2h 24m 58s left ) -> ETA: Wed Nov 29 00:09 XS = 1619.07 pb +- ( 1130.08 pb = 69 % ) Event 3 ( 1s elapsed / 1h 37m 11s left ) -> ETA: Tue Nov 28 23:21 XS = 1868.16 pb +- ( 1057.22 pb = 56 % ) Event 4 ( 1s elapsed / 1h 12m 53s left ) -> ETA: Tue Nov 28 22:57 XS = 2398.63 pb +- ( 1164.88 pb = 48 % ) Event 5 ( 1s elapsed / 58m 38s left ) -> ETA: Tue Nov 28 22:42 XS = 2416.53 pb +- ( 1047.44 pb = 43 % ) Event 6 ( 1s elapsed / 48m 51s left ) -> ETA: Tue Nov 28 22:33 XS = 2340.83 pb +- ( 926.045 pb = 39 % ) Event 7 ( 1s elapsed / 42m 6s left ) -> ETA: Tue Nov 28 22:26 XS = 2244.26 pb +- ( 822.409 pb = 36 % ) Event 8 ( 1s elapsed / 37m 15s left ) -> ETA: Tue Nov 28 22:21 XS = 2490.88 pb +- ( 850.207 pb = 34 % ) Event 9 ( 1s elapsed / 33m 18s left ) -> ETA: Tue Nov 28 22:17 XS = 2534.2 pb +- ( 814.554 pb = 32 % ) Event 10 ( 1s elapsed / 29m 58s left ) -> ETA: Tue Nov 28 22:14 XS = 2632.64 pb +- ( 801.217 pb = 30 % ) Event 20 ( 1s elapsed / 15m 38s left ) -> ETA: Tue Nov 28 21:59 XS = 2676.15 pb +- ( 574.333 pb = 21 % ) Event 30 ( 1s elapsed / 10m 48s left ) -> ETA: Tue Nov 28 21:55 XS = 3248.97 pb +- ( 563.577 pb = 17 % ) Event 40 ( 2s elapsed / 8m 20s left ) -> ETA: Tue Nov 28 21:52 XS = 3648.61 pb +- ( 544.191 pb = 14 % ) Event 50 ( 2s elapsed / 6m 53s left ) -> ETA: Tue Nov 28 21:51 XS = 3496.92 pb +- ( 467.578 pb = 13 % ) Event 60 ( 2s elapsed / 5m 57s left ) -> ETA: Tue Nov 28 21:50 XS = 3686.69 pb +- ( 448.463 pb = 12 % ) Event 70 ( 2s elapsed / 5m 14s left ) -> ETA: Tue Nov 28 21:49 XS = 3765.28 pb +- ( 423.416 pb = 11 % ) Event 80 ( 2s elapsed / 4m 45s left ) -> ETA: Tue Nov 28 21:49 XS = 3781.77 pb +- ( 397.649 pb = 10 % ) Event 90 ( 2s elapsed / 4m 20s left ) -> ETA: Tue Nov 28 21:48 XS = 3911.85 pb +- ( 386.897 pb = 9 % ) Event 100 ( 2s elapsed / 4m left ) -> ETA: Tue Nov 28 21:48 XS = 3730.58 pb +- ( 351.113 pb = 9 % ) Event 200 ( 3s elapsed / 2m 36s left ) -> ETA: Tue Nov 28 21:46 XS = 4070.58 pb +- ( 269.219 pb = 6 % ) Event 300 ( 3s elapsed / 2m 1s left ) -> ETA: Tue Nov 28 21:46 XS = 3981.32 pb +- ( 215.312 pb = 5 % ) Event 400 ( 4s elapsed / 1m 47s left ) -> ETA: Tue Nov 28 21:46 XS = 4138.2 pb +- ( 193.268 pb = 4 % ) Event 500 ( 5s elapsed / 1m 38s left ) -> ETA: Tue Nov 28 21:46 XS = 4088.57 pb +- ( 170.935 pb = 4 % ) Event 600 ( 5s elapsed / 1m 32s left ) -> ETA: Tue Nov 28 21:45 XS = 3925.82 pb +- ( 150.257 pb = 3 % ) Event 700 ( 6s elapsed / 1m 28s left ) -> ETA: Tue Nov 28 21:45 XS = 3946.89 pb +- ( 139.804 pb = 3 % ) Event 800 ( 7s elapsed / 1m 25s left ) -> ETA: Tue Nov 28 21:45 XS = 3923.83 pb +- ( 130.062 pb = 3 % ) Event 900 ( 8s elapsed / 1m 22s left ) -> ETA: Tue Nov 28 21:45 XS = 3810.08 pb +- ( 119.305 pb = 3 % ) Event 1000 ( 9s elapsed / 1m 21s left ) -> ETA: Tue Nov 28 21:45 XS = 3835.3 pb +- ( 113.881 pb = 2 % ) Event 2000 ( 15s elapsed / 1m 2s left ) -> ETA: Tue Nov 28 21:45 XS = 3881.5 pb +- ( 81.4276 pb = 2 % ) Event 3000 ( 23s elapsed / 53s left ) -> ETA: Tue Nov 28 21:45 XS = 3832.73 pb +- ( 65.7054 pb = 1 % ) Event 4000 ( 30s elapsed / 45s left ) -> ETA: Tue Nov 28 21:45 XS = 3820.03 pb +- ( 56.7264 pb = 1 % ) Event 5000 ( 37s elapsed / 37s left ) -> ETA: Tue Nov 28 21:45 XS = 3830.67 pb +- ( 50.8693 pb = 1 % ) Event 6000 ( 44s elapsed / 29s left ) -> ETA: Tue Nov 28 21:45 XS = 3844.03 pb +- ( 46.588 pb = 1 % ) Event 7000 ( 51s elapsed / 21s left ) -> ETA: Tue Nov 28 21:45 XS = 3828.37 pb +- ( 42.9682 pb = 1 % ) Event 8000 ( 58s elapsed / 14s left ) -> ETA: Tue Nov 28 21:45 XS = 3848.12 pb +- ( 40.3864 pb = 1 % ) Event 9000 ( 1m 5s elapsed / 7s left ) -> ETA: Tue Nov 28 21:45 XS = 3847.5 pb +- ( 38.0709 pb = 0 % ) Event 10000 ( 72 s total ) = 1.20368e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Zrecoil/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3855.67 0 % 36.1887 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 12s on Tue Nov 28 21:45:31 2023 (User: 1m 11s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:46:18 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 29m 58s left ) -> ETA: Wed Nov 29 02:16 XS = 1904.79 pb +- ( 1904.79 pb = 100 % ) Event 2 ( 1s elapsed / 2h 15m 48s left ) -> ETA: Wed Nov 29 00:02 XS = 2233.2 pb +- ( 1550.66 pb = 69 % ) Event 3 ( 1s elapsed / 1h 31m 5s left ) -> ETA: Tue Nov 28 23:17 XS = 2698.45 pb +- ( 1512.78 pb = 56 % ) Event 4 ( 1s elapsed / 1h 8m 43s left ) -> ETA: Tue Nov 28 22:55 XS = 3500.7 pb +- ( 1675.83 pb = 47 % ) Event 5 ( 1s elapsed / 55m 18s left ) -> ETA: Tue Nov 28 22:41 XS = 3854.93 pb +- ( 1637.72 pb = 42 % ) Event 6 ( 1s elapsed / 46m 5s left ) -> ETA: Tue Nov 28 22:32 XS = 3597.94 pb +- ( 1397.85 pb = 38 % ) Event 7 ( 1s elapsed / 39m 44s left ) -> ETA: Tue Nov 28 22:26 XS = 4047.68 pb +- ( 1444.02 pb = 35 % ) Event 8 ( 1s elapsed / 34m 45s left ) -> ETA: Tue Nov 28 22:21 XS = 4466.41 pb +- ( 1478.97 pb = 33 % ) Event 9 ( 1s elapsed / 31m 4s left ) -> ETA: Tue Nov 28 22:17 XS = 4777.59 pb +- ( 1482.56 pb = 31 % ) Event 10 ( 1s elapsed / 28m 8s left ) -> ETA: Tue Nov 28 22:14 XS = 4151.47 pb +- ( 1233.7 pb = 29 % ) Event 20 ( 1s elapsed / 14m 38s left ) -> ETA: Tue Nov 28 22:00 XS = 4497.42 pb +- ( 936.465 pb = 20 % ) Event 30 ( 1s elapsed / 10m 4s left ) -> ETA: Tue Nov 28 21:56 XS = 4906.28 pb +- ( 827.205 pb = 16 % ) Event 40 ( 1s elapsed / 7m 55s left ) -> ETA: Tue Nov 28 21:54 XS = 4576.88 pb +- ( 671.766 pb = 14 % ) Event 50 ( 1s elapsed / 6m 36s left ) -> ETA: Tue Nov 28 21:52 XS = 4639.17 pb +- ( 608.137 pb = 13 % ) Event 60 ( 2s elapsed / 5m 41s left ) -> ETA: Tue Nov 28 21:52 XS = 4307.95 pb +- ( 518.415 pb = 12 % ) Event 70 ( 2s elapsed / 5m 3s left ) -> ETA: Tue Nov 28 21:51 XS = 4375.87 pb +- ( 486.866 pb = 11 % ) Event 80 ( 2s elapsed / 4m 36s left ) -> ETA: Tue Nov 28 21:50 XS = 4398.16 pb +- ( 457.505 pb = 10 % ) Event 90 ( 2s elapsed / 4m 15s left ) -> ETA: Tue Nov 28 21:50 XS = 4181.25 pb +- ( 411.599 pb = 9 % ) Event 100 ( 2s elapsed / 3m 56s left ) -> ETA: Tue Nov 28 21:50 XS = 3809.58 pb +- ( 358.058 pb = 9 % ) Event 200 ( 3s elapsed / 2m 34s left ) -> ETA: Tue Nov 28 21:48 XS = 3845.78 pb +- ( 255.355 pb = 6 % ) Event 300 ( 3s elapsed / 2m 7s left ) -> ETA: Tue Nov 28 21:48 XS = 3774.06 pb +- ( 204.844 pb = 5 % ) Event 400 ( 4s elapsed / 1m 54s left ) -> ETA: Tue Nov 28 21:48 XS = 3840.08 pb +- ( 180.287 pb = 4 % ) Event 500 ( 5s elapsed / 1m 42s left ) -> ETA: Tue Nov 28 21:48 XS = 3865.06 pb +- ( 162.226 pb = 4 % ) Event 600 ( 6s elapsed / 1m 36s left ) -> ETA: Tue Nov 28 21:48 XS = 3928.99 pb +- ( 150.37 pb = 3 % ) Event 700 ( 6s elapsed / 1m 32s left ) -> ETA: Tue Nov 28 21:47 XS = 3940.03 pb +- ( 139.578 pb = 3 % ) Event 800 ( 7s elapsed / 1m 27s left ) -> ETA: Tue Nov 28 21:47 XS = 3992.16 pb +- ( 132.168 pb = 3 % ) Event 900 ( 8s elapsed / 1m 23s left ) -> ETA: Tue Nov 28 21:47 XS = 3983.5 pb +- ( 124.357 pb = 3 % ) Event 1000 ( 8s elapsed / 1m 20s left ) -> ETA: Tue Nov 28 21:47 XS = 3941.75 pb +- ( 116.823 pb = 2 % ) Event 2000 ( 16s elapsed / 1m 6s left ) -> ETA: Tue Nov 28 21:47 XS = 4018.55 pb +- ( 84.0997 pb = 2 % ) Event 3000 ( 23s elapsed / 55s left ) -> ETA: Tue Nov 28 21:47 XS = 3935.2 pb +- ( 67.3409 pb = 1 % ) Event 4000 ( 31s elapsed / 47s left ) -> ETA: Tue Nov 28 21:47 XS = 3920.15 pb +- ( 58.111 pb = 1 % ) Event 5000 ( 42s elapsed / 42s left ) -> ETA: Tue Nov 28 21:47 XS = 3930.07 pb +- ( 52.0984 pb = 1 % ) Event 6000 ( 1m 1s elapsed / 41s left ) -> ETA: Tue Nov 28 21:48 XS = 3924.15 pb +- ( 47.4923 pb = 1 % ) Event 7000 ( 1m 14s elapsed / 31s left ) -> ETA: Tue Nov 28 21:48 XS = 3905.88 pb +- ( 43.7786 pb = 1 % ) Event 8000 ( 1m 21s elapsed / 20s left ) -> ETA: Tue Nov 28 21:48 XS = 3904.44 pb +- ( 40.937 pb = 1 % ) Event 9000 ( 1m 30s elapsed / 10s left ) -> ETA: Tue Nov 28 21:47 XS = 3900.44 pb +- ( 38.5589 pb = 0 % ) Event 10000 ( 97 s total ) = 8.92654e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3890.18 0 % 36.4905 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 37s on Tue Nov 28 21:47:55 2023 (User: 1m 21s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:56:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 20m 48s left ) -> ETA: Wed Nov 29 00:17 XS = 1904.79 pb +- ( 1904.79 pb = 100 % ) Event 2 ( 1s elapsed / 1h 10m 48s left ) -> ETA: Tue Nov 28 23:07 XS = 1962.51 pb +- ( 1365.85 pb = 69 % ) Event 3 ( 1s elapsed / 47m 44s left ) -> ETA: Tue Nov 28 22:44 XS = 2698.45 pb +- ( 1512.78 pb = 56 % ) Event 4 ( 1s elapsed / 35m 48s left ) -> ETA: Tue Nov 28 22:32 XS = 2698.45 pb +- ( 1305.46 pb = 48 % ) Event 5 ( 1s elapsed / 28m 48s left ) -> ETA: Tue Nov 28 22:25 XS = 3238.14 pb +- ( 1387.78 pb = 42 % ) Event 6 ( 1s elapsed / 24m 8s left ) -> ETA: Tue Nov 28 22:20 XS = 3809.58 pb +- ( 1475.44 pb = 38 % ) Event 7 ( 1s elapsed / 20m 55s left ) -> ETA: Tue Nov 28 22:17 XS = 4276.79 pb +- ( 1520.36 pb = 35 % ) Event 8 ( 1s elapsed / 18m 18s left ) -> ETA: Tue Nov 28 22:14 XS = 4797.25 pb +- ( 1580.11 pb = 32 % ) Event 9 ( 1s elapsed / 16m 21s left ) -> ETA: Tue Nov 28 22:12 XS = 4939.54 pb +- ( 1528.75 pb = 30 % ) Event 10 ( 1s elapsed / 14m 48s left ) -> ETA: Tue Nov 28 22:11 XS = 5396.91 pb +- ( 1571.1 pb = 29 % ) Event 20 ( 1s elapsed / 7m 43s left ) -> ETA: Tue Nov 28 22:04 XS = 4761.98 pb +- ( 987.039 pb = 20 % ) Event 30 ( 1s elapsed / 5m 18s left ) -> ETA: Tue Nov 28 22:01 XS = 4456.16 pb +- ( 757.267 pb = 16 % ) Event 40 ( 2s elapsed / 4m 10s left ) -> ETA: Tue Nov 28 22:00 XS = 4260.72 pb +- ( 628.83 pb = 14 % ) Event 50 ( 2s elapsed / 3m 25s left ) -> ETA: Tue Nov 28 21:59 XS = 4547.95 pb +- ( 597.142 pb = 13 % ) Event 60 ( 2s elapsed / 2m 55s left ) -> ETA: Tue Nov 28 21:59 XS = 4659.2 pb +- ( 557.215 pb = 11 % ) Event 70 ( 2s elapsed / 2m 38s left ) -> ETA: Tue Nov 28 21:59 XS = 4506.36 pb +- ( 500.229 pb = 11 % ) Event 80 ( 2s elapsed / 2m 22s left ) -> ETA: Tue Nov 28 21:58 XS = 4253.72 pb +- ( 443.609 pb = 10 % ) Event 90 ( 2s elapsed / 2m 10s left ) -> ETA: Tue Nov 28 21:58 XS = 4429.07 pb +- ( 434.093 pb = 9 % ) Event 100 ( 2s elapsed / 2m left ) -> ETA: Tue Nov 28 21:58 XS = 4387.73 pb +- ( 408.241 pb = 9 % ) Event 200 ( 3s elapsed / 1m 17s left ) -> ETA: Tue Nov 28 21:57 XS = 3936.95 pb +- ( 260.993 pb = 6 % ) Event 300 ( 4s elapsed / 1m 3s left ) -> ETA: Tue Nov 28 21:57 XS = 3957 pb +- ( 214.088 pb = 5 % ) Event 400 ( 4s elapsed / 56s left ) -> ETA: Tue Nov 28 21:57 XS = 3951.37 pb +- ( 185.15 pb = 4 % ) Event 500 ( 5s elapsed / 51s left ) -> ETA: Tue Nov 28 21:57 XS = 3980.02 pb +- ( 166.715 pb = 4 % ) Event 600 ( 6s elapsed / 48s left ) -> ETA: Tue Nov 28 21:57 XS = 3841.21 pb +- ( 147.237 pb = 3 % ) Event 700 ( 7s elapsed / 45s left ) -> ETA: Tue Nov 28 21:57 XS = 3907.43 pb +- ( 138.502 pb = 3 % ) Event 800 ( 8s elapsed / 42s left ) -> ETA: Tue Nov 28 21:57 XS = 3871.06 pb +- ( 128.431 pb = 3 % ) Event 900 ( 8s elapsed / 39s left ) -> ETA: Tue Nov 28 21:57 XS = 3917.11 pb +- ( 122.427 pb = 3 % ) Event 1000 ( 9s elapsed / 38s left ) -> ETA: Tue Nov 28 21:57 XS = 3915.53 pb +- ( 116.1 pb = 2 % ) Event 2000 ( 17s elapsed / 26s left ) -> ETA: Tue Nov 28 21:57 XS = 3850.58 pb +- ( 80.8227 pb = 2 % ) Event 3000 ( 25s elapsed / 16s left ) -> ETA: Tue Nov 28 21:57 XS = 3799.15 pb +- ( 65.1681 pb = 1 % ) Event 4000 ( 33s elapsed / 8s left ) -> ETA: Tue Nov 28 21:57 XS = 3774.83 pb +- ( 56.0995 pb = 1 % ) Event 5000 ( 40 s total ) = 1.06116e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3780.67 0 % 50.2493 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 41s on Tue Nov 28 21:57:00 2023 (User: 40s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 21:59:11 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 22m 28s left ) -> ETA: Wed Nov 29 00:21 XS = 1904.79 pb +- ( 1904.79 pb = 100 % ) Event 2 ( 1s elapsed / 1h 11m 38s left ) -> ETA: Tue Nov 28 23:10 XS = 2233.2 pb +- ( 1550.66 pb = 69 % ) Event 3 ( 1s elapsed / 48m 1s left ) -> ETA: Tue Nov 28 22:47 XS = 3035.76 pb +- ( 1695.22 pb = 55 % ) Event 4 ( 1s elapsed / 36m 13s left ) -> ETA: Tue Nov 28 22:35 XS = 3809.58 pb +- ( 1816.15 pb = 47 % ) Event 5 ( 1s elapsed / 29m 8s left ) -> ETA: Tue Nov 28 22:28 XS = 4375.87 pb +- ( 1845.03 pb = 42 % ) Event 6 ( 1s elapsed / 24m 16s left ) -> ETA: Tue Nov 28 22:23 XS = 4857.22 pb +- ( 1851.48 pb = 38 % ) Event 7 ( 1s elapsed / 20m 48s left ) -> ETA: Tue Nov 28 22:20 XS = 5151.59 pb +- ( 1806.17 pb = 35 % ) Event 8 ( 1s elapsed / 18m 18s left ) -> ETA: Tue Nov 28 22:17 XS = 4887.76 pb +- ( 1607.57 pb = 32 % ) Event 9 ( 1s elapsed / 16m 21s left ) -> ETA: Tue Nov 28 22:15 XS = 5112.86 pb +- ( 1577.86 pb = 30 % ) Event 10 ( 1s elapsed / 14m 43s left ) -> ETA: Tue Nov 28 22:13 XS = 5488.38 pb +- ( 1595.25 pb = 29 % ) Event 20 ( 1s elapsed / 7m 48s left ) -> ETA: Tue Nov 28 22:07 XS = 3925.02 pb +- ( 825.257 pb = 21 % ) Event 30 ( 1s elapsed / 5m 21s left ) -> ETA: Tue Nov 28 22:04 XS = 4435.81 pb +- ( 754.076 pb = 16 % ) Event 40 ( 2s elapsed / 4m 10s left ) -> ETA: Tue Nov 28 22:03 XS = 4232.87 pb +- ( 625.022 pb = 14 % ) Event 50 ( 2s elapsed / 3m 26s left ) -> ETA: Tue Nov 28 22:02 XS = 3747.85 pb +- ( 498.988 pb = 13 % ) Event 60 ( 2s elapsed / 2m 56s left ) -> ETA: Tue Nov 28 22:02 XS = 4056.13 pb +- ( 490.263 pb = 12 % ) Event 70 ( 2s elapsed / 2m 34s left ) -> ETA: Tue Nov 28 22:01 XS = 4221.04 pb +- ( 470.92 pb = 11 % ) Event 80 ( 2s elapsed / 2m 20s left ) -> ETA: Tue Nov 28 22:01 XS = 4398.16 pb +- ( 457.505 pb = 10 % ) Event 90 ( 2s elapsed / 2m 7s left ) -> ETA: Tue Nov 28 22:01 XS = 4369.31 pb +- ( 428.689 pb = 9 % ) Event 100 ( 2s elapsed / 1m 58s left ) -> ETA: Tue Nov 28 22:01 XS = 4329.07 pb +- ( 403.201 pb = 9 % ) Event 200 ( 2s elapsed / 1m 11s left ) -> ETA: Tue Nov 28 22:00 XS = 4260.72 pb +- ( 280.851 pb = 6 % ) Event 300 ( 3s elapsed / 57s left ) -> ETA: Tue Nov 28 22:00 XS = 4271.96 pb +- ( 229.848 pb = 5 % ) Event 400 ( 4s elapsed / 50s left ) -> ETA: Tue Nov 28 22:00 XS = 4093.73 pb +- ( 191.341 pb = 4 % ) Event 500 ( 5s elapsed / 45s left ) -> ETA: Tue Nov 28 22:00 XS = 4013.56 pb +- ( 168.021 pb = 4 % ) Event 600 ( 5s elapsed / 42s left ) -> ETA: Tue Nov 28 22:00 XS = 3832.88 pb +- ( 146.939 pb = 3 % ) Event 700 ( 6s elapsed / 40s left ) -> ETA: Tue Nov 28 21:59 XS = 3799.36 pb +- ( 134.926 pb = 3 % ) Event 800 ( 7s elapsed / 37s left ) -> ETA: Tue Nov 28 21:59 XS = 3844.63 pb +- ( 127.614 pb = 3 % ) Event 900 ( 7s elapsed / 35s left ) -> ETA: Tue Nov 28 21:59 XS = 3905.04 pb +- ( 122.075 pb = 3 % ) Event 1000 ( 8s elapsed / 33s left ) -> ETA: Tue Nov 28 21:59 XS = 3801.08 pb +- ( 112.932 pb = 2 % ) Event 2000 ( 15s elapsed / 22s left ) -> ETA: Tue Nov 28 21:59 XS = 3812.72 pb +- ( 80.0811 pb = 2 % ) Event 3000 ( 22s elapsed / 14s left ) -> ETA: Tue Nov 28 21:59 XS = 3826.39 pb +- ( 65.604 pb = 1 % ) Event 4000 ( 28s elapsed / 7s left ) -> ETA: Tue Nov 28 21:59 XS = 3838.48 pb +- ( 56.982 pb = 1 % ) Event 5000 ( 35 s total ) = 1.20941e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3812.27 0 % 50.6413 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 36s on Tue Nov 28 21:59:48 2023 (User: 35s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:04:11 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 28m 18s left ) -> ETA: Wed Nov 29 00:32 XS = 1904.79 pb +- ( 1904.79 pb = 100 % ) Event 2 ( 1s elapsed / 1h 14m 33s left ) -> ETA: Tue Nov 28 23:18 XS = 1850.37 pb +- ( 1289.02 pb = 69 % ) Event 3 ( 1s elapsed / 49m 41s left ) -> ETA: Tue Nov 28 22:53 XS = 2158.76 pb +- ( 1217.71 pb = 56 % ) Event 4 ( 1s elapsed / 37m 28s left ) -> ETA: Tue Nov 28 22:41 XS = 2123.37 pb +- ( 1034.8 pb = 48 % ) Event 5 ( 1s elapsed / 30m 8s left ) -> ETA: Tue Nov 28 22:34 XS = 2217.91 pb +- ( 963.932 pb = 43 % ) Event 6 ( 1s elapsed / 25m 14s left ) -> ETA: Tue Nov 28 22:29 XS = 1942.89 pb +- ( 772.891 pb = 39 % ) Event 7 ( 1s elapsed / 21m 38s left ) -> ETA: Tue Nov 28 22:25 XS = 2060.64 pb +- ( 757.108 pb = 36 % ) Event 8 ( 1s elapsed / 19m 1s left ) -> ETA: Tue Nov 28 22:23 XS = 2233.2 pb +- ( 765.149 pb = 34 % ) Event 9 ( 1s elapsed / 16m 54s left ) -> ETA: Tue Nov 28 22:21 XS = 2469.77 pb +- ( 794.613 pb = 32 % ) Event 10 ( 1s elapsed / 15m 18s left ) -> ETA: Tue Nov 28 22:19 XS = 2590.52 pb +- ( 788.904 pb = 30 % ) Event 20 ( 1s elapsed / 7m 50s left ) -> ETA: Tue Nov 28 22:12 XS = 2721.13 pb +- ( 583.564 pb = 21 % ) Event 30 ( 1s elapsed / 5m 19s left ) -> ETA: Tue Nov 28 22:09 XS = 3315.51 pb +- ( 574.481 pb = 17 % ) Event 40 ( 1s elapsed / 4m 4s left ) -> ETA: Tue Nov 28 22:08 XS = 3548.65 pb +- ( 530.181 pb = 14 % ) Event 50 ( 2s elapsed / 3m 20s left ) -> ETA: Tue Nov 28 22:07 XS = 3589.96 pb +- ( 479.259 pb = 13 % ) Event 60 ( 2s elapsed / 2m 52s left ) -> ETA: Tue Nov 28 22:07 XS = 3315.51 pb +- ( 405.872 pb = 12 % ) Event 70 ( 2s elapsed / 2m 31s left ) -> ETA: Tue Nov 28 22:06 XS = 3547.26 pb +- ( 400.396 pb = 11 % ) Event 80 ( 2s elapsed / 2m 15s left ) -> ETA: Tue Nov 28 22:06 XS = 3395.17 pb +- ( 359.376 pb = 10 % ) Event 90 ( 2s elapsed / 2m 3s left ) -> ETA: Tue Nov 28 22:06 XS = 3532.52 pb +- ( 351.677 pb = 9 % ) Event 100 ( 2s elapsed / 1m 53s left ) -> ETA: Tue Nov 28 22:06 XS = 3383.64 pb +- ( 320.365 pb = 9 % ) Event 200 ( 2s elapsed / 1m 6s left ) -> ETA: Tue Nov 28 22:05 XS = 3485.62 pb +- ( 232.89 pb = 6 % ) Event 300 ( 3s elapsed / 51s left ) -> ETA: Tue Nov 28 22:05 XS = 3716.31 pb +- ( 201.912 pb = 5 % ) Event 400 ( 3s elapsed / 43s left ) -> ETA: Tue Nov 28 22:04 XS = 3780.67 pb +- ( 177.682 pb = 4 % ) Event 500 ( 4s elapsed / 38s left ) -> ETA: Tue Nov 28 22:04 XS = 3817.67 pb +- ( 160.37 pb = 4 % ) Event 600 ( 4s elapsed / 34s left ) -> ETA: Tue Nov 28 22:04 XS = 3927.4 pb +- ( 150.313 pb = 3 % ) Event 700 ( 5s elapsed / 31s left ) -> ETA: Tue Nov 28 22:04 XS = 3924.34 pb +- ( 139.06 pb = 3 % ) Event 800 ( 5s elapsed / 29s left ) -> ETA: Tue Nov 28 22:04 XS = 3884.41 pb +- ( 128.844 pb = 3 % ) Event 900 ( 6s elapsed / 27s left ) -> ETA: Tue Nov 28 22:04 XS = 3805.1 pb +- ( 119.16 pb = 3 % ) Event 1000 ( 6s elapsed / 25s left ) -> ETA: Tue Nov 28 22:04 XS = 3777.14 pb +- ( 112.268 pb = 2 % ) Event 2000 ( 10s elapsed / 16s left ) -> ETA: Tue Nov 28 22:04 XS = 3782.22 pb +- ( 79.4828 pb = 2 % ) Event 3000 ( 15s elapsed / 10s left ) -> ETA: Tue Nov 28 22:04 XS = 3723.15 pb +- ( 63.9492 pb = 1 % ) Event 4000 ( 19s elapsed / 4s left ) -> ETA: Tue Nov 28 22:04 XS = 3736.28 pb +- ( 55.564 pb = 1 % ) Event 5000 ( 23 s total ) = 1.8989e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3753.76 0 % 49.9151 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:04:34 2023 (User: 22s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:06:33 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 32m 28s left ) -> ETA: Wed Nov 29 00:39 XS = 1904.79 pb +- ( 1904.79 pb = 100 % ) Event 2 ( 1s elapsed / 1h 16m 38s left ) -> ETA: Tue Nov 28 23:23 XS = 1704.29 pb +- ( 1188.72 pb = 69 % ) Event 3 ( 1s elapsed / 51m 4s left ) -> ETA: Tue Nov 28 22:57 XS = 1868.16 pb +- ( 1057.22 pb = 56 % ) Event 4 ( 1s elapsed / 38m 30s left ) -> ETA: Tue Nov 28 22:45 XS = 2123.37 pb +- ( 1034.8 pb = 48 % ) Event 5 ( 1s elapsed / 30m 48s left ) -> ETA: Tue Nov 28 22:37 XS = 2569.96 pb +- ( 1111.63 pb = 43 % ) Event 6 ( 1s elapsed / 25m 48s left ) -> ETA: Tue Nov 28 22:32 XS = 2590.52 pb +- ( 1021.22 pb = 39 % ) Event 7 ( 1s elapsed / 22m 13s left ) -> ETA: Tue Nov 28 22:28 XS = 2869.24 pb +- ( 1041.93 pb = 36 % ) Event 8 ( 1s elapsed / 19m 26s left ) -> ETA: Tue Nov 28 22:26 XS = 3083.95 pb +- ( 1043.35 pb = 33 % ) Event 9 ( 1s elapsed / 17m 22s left ) -> ETA: Tue Nov 28 22:23 XS = 3238.14 pb +- ( 1029.73 pb = 31 % ) Event 10 ( 1s elapsed / 15m 43s left ) -> ETA: Tue Nov 28 22:22 XS = 3174.65 pb +- ( 958.14 pb = 30 % ) Event 20 ( 1s elapsed / 7m 58s left ) -> ETA: Tue Nov 28 22:14 XS = 4047.68 pb +- ( 849.291 pb = 20 % ) Event 30 ( 1s elapsed / 5m 24s left ) -> ETA: Tue Nov 28 22:11 XS = 3932.97 pb +- ( 674.407 pb = 17 % ) Event 40 ( 1s elapsed / 4m 6s left ) -> ETA: Tue Nov 28 22:10 XS = 3820.82 pb +- ( 568.203 pb = 14 % ) Event 50 ( 2s elapsed / 3m 19s left ) -> ETA: Tue Nov 28 22:09 XS = 3747.85 pb +- ( 498.988 pb = 13 % ) Event 60 ( 2s elapsed / 2m 49s left ) -> ETA: Tue Nov 28 22:09 XS = 3925.02 pb +- ( 475.497 pb = 12 % ) Event 70 ( 2s elapsed / 2m 28s left ) -> ETA: Tue Nov 28 22:09 XS = 4113.79 pb +- ( 459.817 pb = 11 % ) Event 80 ( 2s elapsed / 2m 12s left ) -> ETA: Tue Nov 28 22:08 XS = 3948.96 pb +- ( 414.026 pb = 10 % ) Event 90 ( 2s elapsed / 2m left ) -> ETA: Tue Nov 28 22:08 XS = 4093.16 pb +- ( 403.55 pb = 9 % ) Event 100 ( 2s elapsed / 1m 50s left ) -> ETA: Tue Nov 28 22:08 XS = 4151.47 pb +- ( 387.871 pb = 9 % ) Event 200 ( 2s elapsed / 1m 5s left ) -> ETA: Tue Nov 28 22:07 XS = 3944.15 pb +- ( 261.437 pb = 6 % ) Event 300 ( 3s elapsed / 49s left ) -> ETA: Tue Nov 28 22:07 XS = 4054.44 pb +- ( 218.984 pb = 5 % ) Event 400 ( 3s elapsed / 42s left ) -> ETA: Tue Nov 28 22:07 XS = 3885 pb +- ( 182.252 pb = 4 % ) Event 500 ( 4s elapsed / 37s left ) -> ETA: Tue Nov 28 22:07 XS = 3936.47 pb +- ( 165.017 pb = 4 % ) Event 600 ( 4s elapsed / 33s left ) -> ETA: Tue Nov 28 22:07 XS = 4033.39 pb +- ( 154.083 pb = 3 % ) Event 700 ( 4s elapsed / 30s left ) -> ETA: Tue Nov 28 22:07 XS = 4019.69 pb +- ( 142.2 pb = 3 % ) Event 800 ( 5s elapsed / 28s left ) -> ETA: Tue Nov 28 22:07 XS = 4035.7 pb +- ( 133.507 pb = 3 % ) Event 900 ( 5s elapsed / 26s left ) -> ETA: Tue Nov 28 22:07 XS = 3979.15 pb +- ( 124.23 pb = 3 % ) Event 1000 ( 6s elapsed / 24s left ) -> ETA: Tue Nov 28 22:07 XS = 3970.26 pb +- ( 117.609 pb = 2 % ) Event 2000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:06 XS = 3911.75 pb +- ( 82.0186 pb = 2 % ) Event 3000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:06 XS = 3843.8 pb +- ( 65.8824 pb = 1 % ) Event 4000 ( 18s elapsed / 4s left ) -> ETA: Tue Nov 28 22:06 XS = 3802.2 pb +- ( 56.4792 pb = 1 % ) Event 5000 ( 23 s total ) = 1.90141e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3807.7 0 % 50.5846 1.32 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:06:56 2023 (User: 22s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:11:50 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 2h 26m 38s left ) -> ETA: Wed Nov 29 00:38 XS = 520.746 pb +- ( 520.746 pb = 100 % ) Event 2 ( 1s elapsed / 1h 13m 43s left ) -> ETA: Tue Nov 28 23:25 XS = 804.789 pb +- ( 555.357 pb = 69 % ) Event 3 ( 1s elapsed / 49m 24s left ) -> ETA: Tue Nov 28 23:01 XS = 737.723 pb +- ( 413.576 pb = 56 % ) Event 4 ( 1s elapsed / 37m 3s left ) -> ETA: Tue Nov 28 22:48 XS = 863.676 pb +- ( 415.328 pb = 48 % ) Event 5 ( 1s elapsed / 29m 48s left ) -> ETA: Tue Nov 28 22:41 XS = 922.154 pb +- ( 394.461 pb = 42 % ) Event 6 ( 1s elapsed / 24m 49s left ) -> ETA: Tue Nov 28 22:36 XS = 1084 pb +- ( 418.859 pb = 38 % ) Event 7 ( 1s elapsed / 21m 23s left ) -> ETA: Tue Nov 28 22:33 XS = 1126.7 pb +- ( 401.499 pb = 35 % ) Event 8 ( 1s elapsed / 18m 49s left ) -> ETA: Tue Nov 28 22:30 XS = 1264.67 pb +- ( 417.706 pb = 33 % ) Event 9 ( 1s elapsed / 16m 43s left ) -> ETA: Tue Nov 28 22:28 XS = 1138.2 pb +- ( 356.729 pb = 31 % ) Event 10 ( 1s elapsed / 15m 13s left ) -> ETA: Tue Nov 28 22:27 XS = 1246.86 pb +- ( 368.071 pb = 29 % ) Event 20 ( 1s elapsed / 8m left ) -> ETA: Tue Nov 28 22:19 XS = 1580.83 pb +- ( 321.813 pb = 20 % ) Event 30 ( 1s elapsed / 5m 29s left ) -> ETA: Tue Nov 28 22:17 XS = 1735.82 pb +- ( 285.085 pb = 16 % ) Event 40 ( 2s elapsed / 4m 15s left ) -> ETA: Tue Nov 28 22:16 XS = 1718.97 pb +- ( 244.576 pb = 14 % ) Event 50 ( 2s elapsed / 3m 28s left ) -> ETA: Tue Nov 28 22:15 XS = 1729.04 pb +- ( 219.777 pb = 12 % ) Event 60 ( 2s elapsed / 2m 57s left ) -> ETA: Tue Nov 28 22:14 XS = 1770.54 pb +- ( 204.785 pb = 11 % ) Event 70 ( 2s elapsed / 2m 34s left ) -> ETA: Tue Nov 28 22:14 XS = 1806.67 pb +- ( 192.929 pb = 10 % ) Event 80 ( 2s elapsed / 2m 18s left ) -> ETA: Tue Nov 28 22:14 XS = 1853.96 pb +- ( 184.543 pb = 9 % ) Event 90 ( 2s elapsed / 2m 6s left ) -> ETA: Tue Nov 28 22:13 XS = 1938.54 pb +- ( 180.807 pb = 9 % ) Event 100 ( 2s elapsed / 1m 56s left ) -> ETA: Tue Nov 28 22:13 XS = 1998.35 pb +- ( 176.038 pb = 8 % ) Event 200 ( 3s elapsed / 1m 12s left ) -> ETA: Tue Nov 28 22:13 XS = 1918.24 pb +- ( 120.113 pb = 6 % ) Event 300 ( 3s elapsed / 57s left ) -> ETA: Tue Nov 28 22:12 XS = 1874.24 pb +- ( 96.1082 pb = 5 % ) Event 400 ( 4s elapsed / 50s left ) -> ETA: Tue Nov 28 22:12 XS = 1948.86 pb +- ( 86.0749 pb = 4 % ) Event 500 ( 4s elapsed / 43s left ) -> ETA: Tue Nov 28 22:12 XS = 1920.32 pb +- ( 76.0127 pb = 3 % ) Event 600 ( 5s elapsed / 40s left ) -> ETA: Tue Nov 28 22:12 XS = 1925.19 pb +- ( 69.5389 pb = 3 % ) Event 700 ( 6s elapsed / 36s left ) -> ETA: Tue Nov 28 22:12 XS = 1951.16 pb +- ( 65.1248 pb = 3 % ) Event 800 ( 6s elapsed / 34s left ) -> ETA: Tue Nov 28 22:12 XS = 1914.61 pb +- ( 59.9344 pb = 3 % ) Event 900 ( 7s elapsed / 32s left ) -> ETA: Tue Nov 28 22:12 XS = 1940.43 pb +- ( 57.1613 pb = 2 % ) Event 1000 ( 7s elapsed / 30s left ) -> ETA: Tue Nov 28 22:12 XS = 1941.38 pb +- ( 54.25 pb = 2 % ) Event 2000 ( 13s elapsed / 20s left ) -> ETA: Tue Nov 28 22:12 XS = 1946.93 pb +- ( 38.4527 pb = 1 % ) Event 3000 ( 18s elapsed / 12s left ) -> ETA: Tue Nov 28 22:12 XS = 1945.93 pb +- ( 31.3821 pb = 1 % ) Event 4000 ( 24s elapsed / 6s left ) -> ETA: Tue Nov 28 22:12 XS = 1909.55 pb +- ( 26.7395 pb = 1 % ) Event 5000 ( 29 s total ) = 1.50104e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1929.95 0 % 24.1363 1.25 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 5000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 29s on Tue Nov 28 22:12:20 2023 (User: 28s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:13:56 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 24m 58s left ) -> ETA: Wed Nov 29 02:38 XS = 520.746 pb +- ( 520.746 pb = 100 % ) Event 2 ( 1s elapsed / 2h 12m 28s left ) -> ETA: Wed Nov 29 00:26 XS = 804.789 pb +- ( 555.357 pb = 69 % ) Event 3 ( 1s elapsed / 1h 28m 51s left ) -> ETA: Tue Nov 28 23:42 XS = 737.723 pb +- ( 413.576 pb = 56 % ) Event 4 ( 1s elapsed / 1h 6m 38s left ) -> ETA: Tue Nov 28 23:20 XS = 863.676 pb +- ( 415.328 pb = 48 % ) Event 5 ( 1s elapsed / 53m 38s left ) -> ETA: Tue Nov 28 23:07 XS = 922.154 pb +- ( 394.461 pb = 42 % ) Event 6 ( 1s elapsed / 44m 41s left ) -> ETA: Tue Nov 28 22:58 XS = 1084 pb +- ( 418.859 pb = 38 % ) Event 7 ( 1s elapsed / 38m 18s left ) -> ETA: Tue Nov 28 22:52 XS = 1126.7 pb +- ( 401.499 pb = 35 % ) Event 8 ( 1s elapsed / 33m 43s left ) -> ETA: Tue Nov 28 22:47 XS = 1264.67 pb +- ( 417.706 pb = 33 % ) Event 9 ( 1s elapsed / 29m 58s left ) -> ETA: Tue Nov 28 22:43 XS = 1138.2 pb +- ( 356.729 pb = 31 % ) Event 10 ( 1s elapsed / 27m 8s left ) -> ETA: Tue Nov 28 22:41 XS = 1246.86 pb +- ( 368.071 pb = 29 % ) Event 20 ( 1s elapsed / 14m 3s left ) -> ETA: Tue Nov 28 22:28 XS = 1580.83 pb +- ( 321.813 pb = 20 % ) Event 30 ( 1s elapsed / 9m 34s left ) -> ETA: Tue Nov 28 22:23 XS = 1735.82 pb +- ( 285.085 pb = 16 % ) Event 40 ( 1s elapsed / 7m 25s left ) -> ETA: Tue Nov 28 22:21 XS = 1718.97 pb +- ( 244.576 pb = 14 % ) Event 50 ( 1s elapsed / 6m 14s left ) -> ETA: Tue Nov 28 22:20 XS = 1729.04 pb +- ( 219.777 pb = 12 % ) Event 60 ( 1s elapsed / 5m 19s left ) -> ETA: Tue Nov 28 22:19 XS = 1770.54 pb +- ( 204.785 pb = 11 % ) Event 70 ( 1s elapsed / 4m 40s left ) -> ETA: Tue Nov 28 22:18 XS = 1806.67 pb +- ( 192.929 pb = 10 % ) Event 80 ( 2s elapsed / 4m 11s left ) -> ETA: Tue Nov 28 22:18 XS = 1853.96 pb +- ( 184.543 pb = 9 % ) Event 90 ( 2s elapsed / 3m 49s left ) -> ETA: Tue Nov 28 22:17 XS = 1938.54 pb +- ( 180.807 pb = 9 % ) Event 100 ( 2s elapsed / 3m 29s left ) -> ETA: Tue Nov 28 22:17 XS = 1998.35 pb +- ( 176.038 pb = 8 % ) Event 200 ( 2s elapsed / 2m 9s left ) -> ETA: Tue Nov 28 22:16 XS = 1918.24 pb +- ( 120.113 pb = 6 % ) Event 300 ( 3s elapsed / 1m 44s left ) -> ETA: Tue Nov 28 22:15 XS = 1874.24 pb +- ( 96.1082 pb = 5 % ) Event 400 ( 3s elapsed / 1m 33s left ) -> ETA: Tue Nov 28 22:15 XS = 1948.86 pb +- ( 86.0749 pb = 4 % ) Event 500 ( 4s elapsed / 1m 23s left ) -> ETA: Tue Nov 28 22:15 XS = 1920.32 pb +- ( 76.0127 pb = 3 % ) Event 600 ( 4s elapsed / 1m 16s left ) -> ETA: Tue Nov 28 22:15 XS = 1925.19 pb +- ( 69.5389 pb = 3 % ) Event 700 ( 5s elapsed / 1m 12s left ) -> ETA: Tue Nov 28 22:15 XS = 1951.16 pb +- ( 65.1248 pb = 3 % ) Event 800 ( 5s elapsed / 1m 8s left ) -> ETA: Tue Nov 28 22:15 XS = 1914.61 pb +- ( 59.9344 pb = 3 % ) Event 900 ( 6s elapsed / 1m 5s left ) -> ETA: Tue Nov 28 22:15 XS = 1940.43 pb +- ( 57.1613 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 3s left ) -> ETA: Tue Nov 28 22:15 XS = 1941.38 pb +- ( 54.25 pb = 2 % ) Event 2000 ( 12s elapsed / 49s left ) -> ETA: Tue Nov 28 22:14 XS = 1946.93 pb +- ( 38.4527 pb = 1 % ) Event 3000 ( 17s elapsed / 41s left ) -> ETA: Tue Nov 28 22:14 XS = 1945.93 pb +- ( 31.3821 pb = 1 % ) Event 4000 ( 22s elapsed / 34s left ) -> ETA: Tue Nov 28 22:14 XS = 1909.55 pb +- ( 26.7395 pb = 1 % ) Event 5000 ( 28s elapsed / 28s left ) -> ETA: Tue Nov 28 22:14 XS = 1929.95 pb +- ( 24.1363 pb = 1 % ) Event 6000 ( 34s elapsed / 22s left ) -> ETA: Tue Nov 28 22:14 XS = 1906.4 pb +- ( 21.8014 pb = 1 % ) Event 7000 ( 39s elapsed / 16s left ) -> ETA: Tue Nov 28 22:14 XS = 1921.93 pb +- ( 20.3258 pb = 1 % ) Event 8000 ( 45s elapsed / 11s left ) -> ETA: Tue Nov 28 22:14 XS = 1937.55 pb +- ( 19.146 pb = 0 % ) Event 9000 ( 50s elapsed / 5s left ) -> ETA: Tue Nov 28 22:14 XS = 1938.12 pb +- ( 18.0555 pb = 0 % ) Event 10000 ( 56 s total ) = 1.5495e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_Tall_PT2MIN/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1935.39 0 % 17.1082 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 56s on Tue Nov 28 22:14:53 2023 (User: 55s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:21:09 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 26m 38s left ) -> ETA: Wed Nov 29 02:47 XS = 520.746 pb +- ( 520.746 pb = 100 % ) Event 2 ( 1s elapsed / 2h 14m 8s left ) -> ETA: Wed Nov 29 00:35 XS = 491.815 pb +- ( 342.762 pb = 69 % ) Event 3 ( 1s elapsed / 1h 29m 25s left ) -> ETA: Tue Nov 28 23:50 XS = 698.895 pb +- ( 392.45 pb = 56 % ) Event 4 ( 1s elapsed / 1h 7m 3s left ) -> ETA: Tue Nov 28 23:28 XS = 907.967 pb +- ( 435.695 pb = 47 % ) Event 5 ( 1s elapsed / 53m 58s left ) -> ETA: Tue Nov 28 23:15 XS = 1053.89 pb +- ( 447.733 pb = 42 % ) Event 6 ( 1s elapsed / 44m 58s left ) -> ETA: Tue Nov 28 23:06 XS = 1021.46 pb +- ( 396.041 pb = 38 % ) Event 7 ( 1s elapsed / 38m 46s left ) -> ETA: Tue Nov 28 22:59 XS = 1147.57 pb +- ( 408.452 pb = 35 % ) Event 8 ( 1s elapsed / 33m 55s left ) -> ETA: Tue Nov 28 22:55 XS = 1287.66 pb +- ( 424.726 pb = 32 % ) Event 9 ( 1s elapsed / 30m 9s left ) -> ETA: Tue Nov 28 22:51 XS = 1122.17 pb +- ( 352.034 pb = 31 % ) Event 10 ( 1s elapsed / 27m 18s left ) -> ETA: Tue Nov 28 22:48 XS = 1134.96 pb +- ( 337.279 pb = 29 % ) Event 20 ( 1s elapsed / 13m 48s left ) -> ETA: Tue Nov 28 22:34 XS = 1566.85 pb +- ( 319.259 pb = 20 % ) Event 30 ( 1s elapsed / 9m 18s left ) -> ETA: Tue Nov 28 22:30 XS = 2027.33 pb +- ( 326.252 pb = 16 % ) Event 40 ( 1s elapsed / 7m 5s left ) -> ETA: Tue Nov 28 22:28 XS = 2000.6 pb +- ( 279.084 pb = 13 % ) Event 50 ( 1s elapsed / 5m 46s left ) -> ETA: Tue Nov 28 22:26 XS = 1967.26 pb +- ( 245.908 pb = 12 % ) Event 60 ( 1s elapsed / 4m 53s left ) -> ETA: Tue Nov 28 22:26 XS = 2074.85 pb +- ( 234.838 pb = 11 % ) Event 70 ( 1s elapsed / 4m 15s left ) -> ETA: Tue Nov 28 22:25 XS = 2058.76 pb +- ( 215.925 pb = 10 % ) Event 80 ( 1s elapsed / 3m 45s left ) -> ETA: Tue Nov 28 22:24 XS = 2139.62 pb +- ( 208.627 pb = 9 % ) Event 90 ( 1s elapsed / 3m 23s left ) -> ETA: Tue Nov 28 22:24 XS = 2188.85 pb +- ( 200.455 pb = 9 % ) Event 100 ( 1s elapsed / 3m 6s left ) -> ETA: Tue Nov 28 22:24 XS = 2180.46 pb +- ( 189.532 pb = 8 % ) Event 200 ( 2s elapsed / 1m 42s left ) -> ETA: Tue Nov 28 22:22 XS = 2021.16 pb +- ( 125.619 pb = 6 % ) Event 300 ( 2s elapsed / 1m 13s left ) -> ETA: Tue Nov 28 22:22 XS = 1987.88 pb +- ( 101.104 pb = 5 % ) Event 400 ( 2s elapsed / 59s left ) -> ETA: Tue Nov 28 22:22 XS = 2078.09 pb +- ( 90.9215 pb = 4 % ) Event 500 ( 2s elapsed / 51s left ) -> ETA: Tue Nov 28 22:22 XS = 2044.5 pb +- ( 80.2011 pb = 3 % ) Event 600 ( 2s elapsed / 45s left ) -> ETA: Tue Nov 28 22:21 XS = 1985.65 pb +- ( 71.4093 pb = 3 % ) Event 700 ( 3s elapsed / 42s left ) -> ETA: Tue Nov 28 22:21 XS = 1946.87 pb +- ( 65.0018 pb = 3 % ) Event 800 ( 3s elapsed / 39s left ) -> ETA: Tue Nov 28 22:21 XS = 1945.11 pb +- ( 60.7552 pb = 3 % ) Event 900 ( 3s elapsed / 37s left ) -> ETA: Tue Nov 28 22:21 XS = 1931.02 pb +- ( 56.9229 pb = 2 % ) Event 1000 ( 3s elapsed / 35s left ) -> ETA: Tue Nov 28 22:21 XS = 1911.61 pb +- ( 53.5331 pb = 2 % ) Event 2000 ( 6s elapsed / 24s left ) -> ETA: Tue Nov 28 22:21 XS = 1919.28 pb +- ( 37.9824 pb = 1 % ) Event 3000 ( 8s elapsed / 19s left ) -> ETA: Tue Nov 28 22:21 XS = 1939.25 pb +- ( 31.2895 pb = 1 % ) Event 4000 ( 10s elapsed / 15s left ) -> ETA: Tue Nov 28 22:21 XS = 1944.79 pb +- ( 27.1637 pb = 1 % ) Event 5000 ( 12s elapsed / 12s left ) -> ETA: Tue Nov 28 22:21 XS = 1932.31 pb +- ( 24.1617 pb = 1 % ) Event 6000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:21 XS = 1931.28 pb +- ( 22.0464 pb = 1 % ) Event 7000 ( 17s elapsed / 7s left ) -> ETA: Tue Nov 28 22:21 XS = 1927.97 pb +- ( 20.3808 pb = 1 % ) Event 8000 ( 19s elapsed / 4s left ) -> ETA: Tue Nov 28 22:21 XS = 1927.38 pb +- ( 19.0594 pb = 0 % ) Event 9000 ( 21s elapsed / 2s left ) -> ETA: Tue Nov 28 22:21 XS = 1919.3 pb +- ( 17.9045 pb = 0 % ) Event 10000 ( 23 s total ) = 3.80449e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_1em/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1925.42 0 % 17.0323 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 23s on Tue Nov 28 22:21:33 2023 (User: 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:22:27 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3847.35 pb +- ( 6.79368 pb = 0.176581 % )  exp. eff: 11.8814 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.118814 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 39m 58s left ) -> ETA: Wed Nov 29 03:02 XS = 1904.79 pb +- ( 1904.79 pb = 100 % ) Event 2 ( 1s elapsed / 2h 19m 58s left ) -> ETA: Wed Nov 29 00:42 XS = 1962.51 pb +- ( 1365.85 pb = 69 % ) Event 3 ( 1s elapsed / 1h 33m 51s left ) -> ETA: Tue Nov 28 23:56 XS = 2490.88 pb +- ( 1399.75 pb = 56 % ) Event 4 ( 1s elapsed / 1h 10m 23s left ) -> ETA: Tue Nov 28 23:32 XS = 1962.51 pb +- ( 958.344 pb = 48 % ) Event 5 ( 1s elapsed / 56m 18s left ) -> ETA: Tue Nov 28 23:18 XS = 2416.53 pb +- ( 1047.44 pb = 43 % ) Event 6 ( 1s elapsed / 46m 54s left ) -> ETA: Tue Nov 28 23:09 XS = 2490.88 pb +- ( 983.327 pb = 39 % ) Event 7 ( 1s elapsed / 40m 26s left ) -> ETA: Tue Nov 28 23:02 XS = 2869.24 pb +- ( 1041.93 pb = 36 % ) Event 8 ( 1s elapsed / 35m 23s left ) -> ETA: Tue Nov 28 22:57 XS = 2910.69 pb +- ( 987.307 pb = 33 % ) Event 9 ( 1s elapsed / 31m 27s left ) -> ETA: Tue Nov 28 22:53 XS = 3133.69 pb +- ( 998.114 pb = 31 % ) Event 10 ( 1s elapsed / 28m 18s left ) -> ETA: Tue Nov 28 22:50 XS = 3113.6 pb +- ( 940.607 pb = 30 % ) Event 20 ( 1s elapsed / 14m 18s left ) -> ETA: Tue Nov 28 22:36 XS = 3558.4 pb +- ( 752.762 pb = 21 % ) Event 30 ( 1s elapsed / 9m 41s left ) -> ETA: Tue Nov 28 22:32 XS = 3824.58 pb +- ( 657.032 pb = 17 % ) Event 40 ( 1s elapsed / 7m 23s left ) -> ETA: Tue Nov 28 22:29 XS = 3936.95 pb +- ( 584.309 pb = 14 % ) Event 50 ( 1s elapsed / 6m 4s left ) -> ETA: Tue Nov 28 22:28 XS = 3722 pb +- ( 495.767 pb = 13 % ) Event 60 ( 1s elapsed / 5m 8s left ) -> ETA: Tue Nov 28 22:27 XS = 3802.13 pb +- ( 461.587 pb = 12 % ) Event 70 ( 1s elapsed / 4m 29s left ) -> ETA: Tue Nov 28 22:26 XS = 3691.69 pb +- ( 415.667 pb = 11 % ) Event 80 ( 1s elapsed / 3m 59s left ) -> ETA: Tue Nov 28 22:26 XS = 3809.58 pb +- ( 400.381 pb = 10 % ) Event 90 ( 1s elapsed / 3m 35s left ) -> ETA: Tue Nov 28 22:26 XS = 4036.47 pb +- ( 398.356 pb = 9 % ) Event 100 ( 1s elapsed / 3m 17s left ) -> ETA: Tue Nov 28 22:25 XS = 4022.54 pb +- ( 376.675 pb = 9 % ) Event 200 ( 2s elapsed / 1m 55s left ) -> ETA: Tue Nov 28 22:24 XS = 3690.19 pb +- ( 245.688 pb = 6 % ) Event 300 ( 2s elapsed / 1m 27s left ) -> ETA: Tue Nov 28 22:23 XS = 3870.29 pb +- ( 209.715 pb = 5 % ) Event 400 ( 3s elapsed / 1m 13s left ) -> ETA: Tue Nov 28 22:23 XS = 3860.68 pb +- ( 181.189 pb = 4 % ) Event 500 ( 3s elapsed / 1m 5s left ) -> ETA: Tue Nov 28 22:23 XS = 3778.46 pb +- ( 158.832 pb = 4 % ) Event 600 ( 3s elapsed / 58s left ) -> ETA: Tue Nov 28 22:23 XS = 3868.75 pb +- ( 148.221 pb = 3 % ) Event 700 ( 4s elapsed / 54s left ) -> ETA: Tue Nov 28 22:23 XS = 3844.47 pb +- ( 136.421 pb = 3 % ) Event 800 ( 4s elapsed / 50s left ) -> ETA: Tue Nov 28 22:23 XS = 3846.35 pb +- ( 127.667 pb = 3 % ) Event 900 ( 4s elapsed / 47s left ) -> ETA: Tue Nov 28 22:23 XS = 3855.95 pb +- ( 120.645 pb = 3 % ) Event 1000 ( 4s elapsed / 44s left ) -> ETA: Tue Nov 28 22:23 XS = 3826.69 pb +- ( 113.642 pb = 2 % ) Event 2000 ( 7s elapsed / 31s left ) -> ETA: Tue Nov 28 22:23 XS = 3878.95 pb +- ( 81.3776 pb = 2 % ) Event 3000 ( 11s elapsed / 26s left ) -> ETA: Tue Nov 28 22:23 XS = 3853.86 pb +- ( 66.0433 pb = 1 % ) Event 4000 ( 14s elapsed / 21s left ) -> ETA: Tue Nov 28 22:23 XS = 3834.73 pb +- ( 56.93 pb = 1 % ) Event 5000 ( 17s elapsed / 17s left ) -> ETA: Tue Nov 28 22:23 XS = 3841.85 pb +- ( 51.0078 pb = 1 % ) Event 6000 ( 20s elapsed / 13s left ) -> ETA: Tue Nov 28 22:23 XS = 3849.89 pb +- ( 46.6543 pb = 1 % ) Event 7000 ( 23s elapsed / 10s left ) -> ETA: Tue Nov 28 22:23 XS = 3849.76 pb +- ( 43.1921 pb = 1 % ) Event 8000 ( 26s elapsed / 6s left ) -> ETA: Tue Nov 28 22:23 XS = 3830.88 pb +- ( 40.2175 pb = 1 % ) Event 9000 ( 29s elapsed / 3s left ) -> ETA: Tue Nov 28 22:22 XS = 3822.22 pb +- ( 37.8375 pb = 0 % ) Event 10000 ( 31 s total ) = 2.81617e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3819.02 0 % 35.8677 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 31s on Tue Nov 28 22:22:59 2023 (User: 31s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:25:19 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 53m 18s left ) -> ETA: Wed Nov 29 03:18 XS = 520.746 pb +- ( 520.746 pb = 100 % ) Event 2 ( 1s elapsed / 2h 26m 38s left ) -> ETA: Wed Nov 29 00:51 XS = 843.112 pb +- ( 581.075 pb = 68 % ) Event 3 ( 1s elapsed / 1h 37m 44s left ) -> ETA: Wed Nov 29 00:03 XS = 804.789 pb +- ( 449.891 pb = 55 % ) Event 4 ( 1s elapsed / 1h 13m 43s left ) -> ETA: Tue Nov 28 23:39 XS = 737.723 pb +- ( 356.895 pb = 48 % ) Event 5 ( 1s elapsed / 58m 58s left ) -> ETA: Tue Nov 28 23:24 XS = 804.789 pb +- ( 346.326 pb = 43 % ) Event 6 ( 1s elapsed / 49m 8s left ) -> ETA: Tue Nov 28 23:14 XS = 948.501 pb +- ( 369.203 pb = 38 % ) Event 7 ( 1s elapsed / 42m 21s left ) -> ETA: Tue Nov 28 23:07 XS = 755.716 pb +- ( 274.851 pb = 36 % ) Event 8 ( 1s elapsed / 37m 3s left ) -> ETA: Tue Nov 28 23:02 XS = 843.112 pb +- ( 285.238 pb = 33 % ) Event 9 ( 1s elapsed / 32m 55s left ) -> ETA: Tue Nov 28 22:58 XS = 926.443 pb +- ( 293.923 pb = 31 % ) Event 10 ( 1s elapsed / 29m 38s left ) -> ETA: Tue Nov 28 22:54 XS = 931.861 pb +- ( 280.218 pb = 30 % ) Event 20 ( 1s elapsed / 14m 58s left ) -> ETA: Tue Nov 28 22:40 XS = 1229.54 pb +- ( 256.018 pb = 20 % ) Event 30 ( 1s elapsed / 10m 4s left ) -> ETA: Tue Nov 28 22:35 XS = 1327.9 pb +- ( 224.08 pb = 16 % ) Event 40 ( 1s elapsed / 7m 35s left ) -> ETA: Tue Nov 28 22:32 XS = 1439.46 pb +- ( 208.699 pb = 14 % ) Event 50 ( 1s elapsed / 6m 8s left ) -> ETA: Tue Nov 28 22:31 XS = 1553.1 pb +- ( 199.797 pb = 12 % ) Event 60 ( 1s elapsed / 5m 11s left ) -> ETA: Tue Nov 28 22:30 XS = 1654.71 pb +- ( 192.926 pb = 11 % ) Event 70 ( 1s elapsed / 4m 30s left ) -> ETA: Tue Nov 28 22:29 XS = 1597.13 pb +- ( 173.041 pb = 10 % ) Event 80 ( 1s elapsed / 3m 58s left ) -> ETA: Tue Nov 28 22:29 XS = 1631.83 pb +- ( 164.963 pb = 10 % ) Event 90 ( 1s elapsed / 3m 33s left ) -> ETA: Tue Nov 28 22:28 XS = 1649.57 pb +- ( 157.008 pb = 9 % ) Event 100 ( 1s elapsed / 3m 14s left ) -> ETA: Tue Nov 28 22:28 XS = 1699.17 pb +- ( 152.889 pb = 8 % ) Event 200 ( 2s elapsed / 1m 48s left ) -> ETA: Tue Nov 28 22:27 XS = 1823.41 pb +- ( 114.951 pb = 6 % ) Event 300 ( 2s elapsed / 1m 19s left ) -> ETA: Tue Nov 28 22:26 XS = 1865.03 pb +- ( 95.6987 pb = 5 % ) Event 400 ( 2s elapsed / 1m 5s left ) -> ETA: Tue Nov 28 22:26 XS = 1834.75 pb +- ( 81.7009 pb = 4 % ) Event 500 ( 2s elapsed / 56s left ) -> ETA: Tue Nov 28 22:26 XS = 1897.27 pb +- ( 75.2249 pb = 3 % ) Event 600 ( 3s elapsed / 51s left ) -> ETA: Tue Nov 28 22:26 XS = 1885.55 pb +- ( 68.3014 pb = 3 % ) Event 700 ( 3s elapsed / 46s left ) -> ETA: Tue Nov 28 22:26 XS = 1886.99 pb +- ( 63.2749 pb = 3 % ) Event 800 ( 3s elapsed / 43s left ) -> ETA: Tue Nov 28 22:26 XS = 1898.7 pb +- ( 59.5043 pb = 3 % ) Event 900 ( 4s elapsed / 41s left ) -> ETA: Tue Nov 28 22:26 XS = 1897.45 pb +- ( 56.0686 pb = 2 % ) Event 1000 ( 4s elapsed / 38s left ) -> ETA: Tue Nov 28 22:26 XS = 1887.56 pb +- ( 52.9511 pb = 2 % ) Event 2000 ( 6s elapsed / 26s left ) -> ETA: Tue Nov 28 22:25 XS = 1910.99 pb +- ( 37.841 pb = 1 % ) Event 3000 ( 8s elapsed / 20s left ) -> ETA: Tue Nov 28 22:25 XS = 1907.08 pb +- ( 30.8419 pb = 1 % ) Event 4000 ( 10s elapsed / 16s left ) -> ETA: Tue Nov 28 22:25 XS = 1909.04 pb +- ( 26.7333 pb = 1 % ) Event 5000 ( 13s elapsed / 13s left ) -> ETA: Tue Nov 28 22:25 XS = 1907.74 pb +- ( 23.8968 pb = 1 % ) Event 6000 ( 15s elapsed / 10s left ) -> ETA: Tue Nov 28 22:25 XS = 1913.89 pb +- ( 21.8752 pb = 1 % ) Event 7000 ( 17s elapsed / 7s left ) -> ETA: Tue Nov 28 22:25 XS = 1917.47 pb +- ( 20.2852 pb = 1 % ) Event 8000 ( 19s elapsed / 4s left ) -> ETA: Tue Nov 28 22:25 XS = 1918.6 pb +- ( 18.9847 pb = 0 % ) Event 9000 ( 21s elapsed / 2s left ) -> ETA: Tue Nov 28 22:25 XS = 1925.52 pb +- ( 17.9544 pb = 0 % ) Event 10000 ( 23 s total ) = 3.6425e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1921.28 0 % 17.0008 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 24s on Tue Nov 28 22:25:43 2023 (User: 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:27:00 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nlo_hessian_pdfas + NNPDF31_nlo_hessian_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 1 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 14m 58s left ) -> ETA: Wed Nov 29 02:42 XS = 520.746 pb +- ( 520.746 pb = 100 % ) Event 2 ( 1s elapsed / 2h 8m 18s left ) -> ETA: Wed Nov 29 00:35 XS = 708.214 pb +- ( 490.239 pb = 69 % ) Event 3 ( 1s elapsed / 1h 26m 5s left ) -> ETA: Tue Nov 28 23:53 XS = 804.789 pb +- ( 449.891 pb = 55 % ) Event 4 ( 1s elapsed / 1h 4m 58s left ) -> ETA: Tue Nov 28 23:32 XS = 769.798 pb +- ( 371.848 pb = 48 % ) Event 5 ( 1s elapsed / 52m 18s left ) -> ETA: Tue Nov 28 23:19 XS = 903.334 pb +- ( 386.785 pb = 42 % ) Event 6 ( 1s elapsed / 43m 35s left ) -> ETA: Tue Nov 28 23:10 XS = 1062.32 pb +- ( 410.968 pb = 38 % ) Event 7 ( 1s elapsed / 37m 35s left ) -> ETA: Tue Nov 28 23:04 XS = 1126.7 pb +- ( 401.499 pb = 35 % ) Event 8 ( 1s elapsed / 32m 53s left ) -> ETA: Tue Nov 28 22:59 XS = 1221.06 pb +- ( 404.333 pb = 33 % ) Event 9 ( 1s elapsed / 29m 13s left ) -> ETA: Tue Nov 28 22:56 XS = 1306.13 pb +- ( 405.314 pb = 31 % ) Event 10 ( 1s elapsed / 26m 28s left ) -> ETA: Tue Nov 28 22:53 XS = 1427.85 pb +- ( 416.888 pb = 29 % ) Event 20 ( 1s elapsed / 13m 53s left ) -> ETA: Tue Nov 28 22:40 XS = 1372.51 pb +- ( 283.21 pb = 20 % ) Event 30 ( 1s elapsed / 9m 44s left ) -> ETA: Tue Nov 28 22:36 XS = 1526.32 pb +- ( 254.24 pb = 16 % ) Event 40 ( 1s elapsed / 7m 33s left ) -> ETA: Tue Nov 28 22:34 XS = 1566.85 pb +- ( 225.248 pb = 14 % ) Event 50 ( 1s elapsed / 6m 18s left ) -> ETA: Tue Nov 28 22:33 XS = 1609.58 pb +- ( 206.273 pb = 12 % ) Event 60 ( 1s elapsed / 5m 23s left ) -> ETA: Tue Nov 28 22:32 XS = 1697 pb +- ( 197.283 pb = 11 % ) Event 70 ( 2s elapsed / 4m 43s left ) -> ETA: Tue Nov 28 22:31 XS = 1580.83 pb +- ( 171.466 pb = 10 % ) Event 80 ( 2s elapsed / 4m 14s left ) -> ETA: Tue Nov 28 22:31 XS = 1613.24 pb +- ( 163.292 pb = 10 % ) Event 90 ( 2s elapsed / 3m 54s left ) -> ETA: Tue Nov 28 22:30 XS = 1606.33 pb +- ( 153.347 pb = 9 % ) Event 100 ( 2s elapsed / 3m 35s left ) -> ETA: Tue Nov 28 22:30 XS = 1639.38 pb +- ( 148.12 pb = 9 % ) Event 200 ( 2s elapsed / 2m 15s left ) -> ETA: Tue Nov 28 22:29 XS = 1715.63 pb +- ( 108.979 pb = 6 % ) Event 300 ( 3s elapsed / 1m 47s left ) -> ETA: Tue Nov 28 22:28 XS = 1757.56 pb +- ( 91.5588 pb = 5 % ) Event 400 ( 3s elapsed / 1m 33s left ) -> ETA: Tue Nov 28 22:28 XS = 1771.43 pb +- ( 79.6834 pb = 4 % ) Event 500 ( 4s elapsed / 1m 27s left ) -> ETA: Tue Nov 28 22:28 XS = 1717.43 pb +- ( 69.2779 pb = 4 % ) Event 600 ( 5s elapsed / 1m 22s left ) -> ETA: Tue Nov 28 22:28 XS = 1731.16 pb +- ( 63.6368 pb = 3 % ) Event 700 ( 5s elapsed / 1m 19s left ) -> ETA: Tue Nov 28 22:28 XS = 1766.49 pb +- ( 59.9362 pb = 3 % ) Event 800 ( 6s elapsed / 1m 15s left ) -> ETA: Tue Nov 28 22:28 XS = 1772.76 pb +- ( 56.2158 pb = 3 % ) Event 900 ( 7s elapsed / 1m 12s left ) -> ETA: Tue Nov 28 22:28 XS = 1758.39 pb +- ( 52.6073 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 10s left ) -> ETA: Tue Nov 28 22:28 XS = 1732.69 pb +- ( 49.2538 pb = 2 % ) Event 2000 ( 14s elapsed / 57s left ) -> ETA: Tue Nov 28 22:28 XS = 1820.1 pb +- ( 36.3173 pb = 1 % ) Event 3000 ( 21s elapsed / 49s left ) -> ETA: Tue Nov 28 22:28 XS = 1825.63 pb +- ( 29.742 pb = 1 % ) Event 4000 ( 27s elapsed / 40s left ) -> ETA: Tue Nov 28 22:28 XS = 1851.34 pb +- ( 26.0623 pb = 1 % ) Event 5000 ( 33s elapsed / 33s left ) -> ETA: Tue Nov 28 22:28 XS = 1865.3 pb +- ( 23.4577 pb = 1 % ) Event 6000 ( 39s elapsed / 26s left ) -> ETA: Tue Nov 28 22:28 XS = 1869.37 pb +- ( 21.4511 pb = 1 % ) Event 7000 ( 46s elapsed / 19s left ) -> ETA: Tue Nov 28 22:28 XS = 1878.65 pb +- ( 19.9429 pb = 1 % ) Event 8000 ( 52s elapsed / 13s left ) -> ETA: Tue Nov 28 22:28 XS = 1882.04 pb +- ( 18.6878 pb = 0 % ) Event 9000 ( 58s elapsed / 6s left ) -> ETA: Tue Nov 28 22:28 XS = 1889.16 pb +- ( 17.6794 pb = 0 % ) Event 10000 ( 63 s total ) = 1.37777e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_NNPDF/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1897.08 0 % 16.8351 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1m 3s on Tue Nov 28 22:28:04 2023 (User: 1m 3s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:31:35 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 5h 14m 58s left ) -> ETA: Wed Nov 29 03:46 XS = 520.746 pb +- ( 520.746 pb = 100 % ) Event 2 ( 1s elapsed / 2h 38m 18s left ) -> ETA: Wed Nov 29 01:09 XS = 804.789 pb +- ( 555.357 pb = 69 % ) Event 3 ( 1s elapsed / 1h 46m 4s left ) -> ETA: Wed Nov 29 00:17 XS = 737.723 pb +- ( 413.576 pb = 56 % ) Event 4 ( 1s elapsed / 1h 19m 33s left ) -> ETA: Tue Nov 28 23:51 XS = 863.676 pb +- ( 415.328 pb = 48 % ) Event 5 ( 1s elapsed / 1h 3m 58s left ) -> ETA: Tue Nov 28 23:35 XS = 922.154 pb +- ( 394.461 pb = 42 % ) Event 6 ( 1s elapsed / 53m 18s left ) -> ETA: Tue Nov 28 23:24 XS = 1084 pb +- ( 418.859 pb = 38 % ) Event 7 ( 1s elapsed / 45m 55s left ) -> ETA: Tue Nov 28 23:17 XS = 1126.7 pb +- ( 401.499 pb = 35 % ) Event 8 ( 1s elapsed / 40m 23s left ) -> ETA: Tue Nov 28 23:12 XS = 1264.67 pb +- ( 417.706 pb = 33 % ) Event 9 ( 1s elapsed / 35m 53s left ) -> ETA: Tue Nov 28 23:07 XS = 1138.2 pb +- ( 356.729 pb = 31 % ) Event 10 ( 1s elapsed / 32m 38s left ) -> ETA: Tue Nov 28 23:04 XS = 1246.86 pb +- ( 368.071 pb = 29 % ) Event 20 ( 2s elapsed / 17m 7s left ) -> ETA: Tue Nov 28 22:48 XS = 1580.83 pb +- ( 321.813 pb = 20 % ) Event 30 ( 2s elapsed / 11m 41s left ) -> ETA: Tue Nov 28 22:43 XS = 1735.82 pb +- ( 285.085 pb = 16 % ) Event 40 ( 2s elapsed / 9m 2s left ) -> ETA: Tue Nov 28 22:40 XS = 1718.97 pb +- ( 244.576 pb = 14 % ) Event 50 ( 2s elapsed / 7m 31s left ) -> ETA: Tue Nov 28 22:39 XS = 1729.04 pb +- ( 219.777 pb = 12 % ) Event 60 ( 2s elapsed / 6m 24s left ) -> ETA: Tue Nov 28 22:38 XS = 1770.54 pb +- ( 204.785 pb = 11 % ) Event 70 ( 2s elapsed / 5m 37s left ) -> ETA: Tue Nov 28 22:37 XS = 1806.67 pb +- ( 192.929 pb = 10 % ) Event 80 ( 2s elapsed / 5m 5s left ) -> ETA: Tue Nov 28 22:36 XS = 1898.7 pb +- ( 188.397 pb = 9 % ) Event 90 ( 2s elapsed / 4m 38s left ) -> ETA: Tue Nov 28 22:36 XS = 1910.65 pb +- ( 178.561 pb = 9 % ) Event 100 ( 2s elapsed / 4m 17s left ) -> ETA: Tue Nov 28 22:35 XS = 1859.81 pb +- ( 165.468 pb = 8 % ) Event 200 ( 3s elapsed / 2m 38s left ) -> ETA: Tue Nov 28 22:34 XS = 1984.9 pb +- ( 123.691 pb = 6 % ) Event 300 ( 4s elapsed / 2m 10s left ) -> ETA: Tue Nov 28 22:33 XS = 1998.35 pb +- ( 101.559 pb = 5 % ) Event 400 ( 4s elapsed / 1m 53s left ) -> ETA: Tue Nov 28 22:33 XS = 1990.48 pb +- ( 87.6486 pb = 4 % ) Event 500 ( 5s elapsed / 1m 39s left ) -> ETA: Tue Nov 28 22:33 XS = 2021.16 pb +- ( 79.4211 pb = 3 % ) Event 600 ( 5s elapsed / 1m 30s left ) -> ETA: Tue Nov 28 22:33 XS = 1996.09 pb +- ( 71.7304 pb = 3 % ) Event 700 ( 6s elapsed / 1m 23s left ) -> ETA: Tue Nov 28 22:33 XS = 1988.09 pb +- ( 66.1799 pb = 3 % ) Event 800 ( 6s elapsed / 1m 19s left ) -> ETA: Tue Nov 28 22:33 XS = 1970.55 pb +- ( 61.4364 pb = 3 % ) Event 900 ( 7s elapsed / 1m 14s left ) -> ETA: Tue Nov 28 22:32 XS = 1968.23 pb +- ( 57.8637 pb = 2 % ) Event 1000 ( 7s elapsed / 1m 11s left ) -> ETA: Tue Nov 28 22:32 XS = 1963.33 pb +- ( 54.7765 pb = 2 % ) Event 2000 ( 13s elapsed / 54s left ) -> ETA: Tue Nov 28 22:32 XS = 1974.06 pb +- ( 38.9119 pb = 1 % ) Event 3000 ( 19s elapsed / 45s left ) -> ETA: Tue Nov 28 22:32 XS = 1983.57 pb +- ( 31.9019 pb = 1 % ) Event 4000 ( 24s elapsed / 36s left ) -> ETA: Tue Nov 28 22:32 XS = 1963.99 pb +- ( 27.3938 pb = 1 % ) Event 5000 ( 30s elapsed / 30s left ) -> ETA: Tue Nov 28 22:32 XS = 1935.77 pb +- ( 24.199 pb = 1 % ) Event 6000 ( 35s elapsed / 23s left ) -> ETA: Tue Nov 28 22:32 XS = 1938.33 pb +- ( 22.1156 pb = 1 % ) Event 7000 ( 41s elapsed / 17s left ) -> ETA: Tue Nov 28 22:32 XS = 1938.7 pb +- ( 20.4784 pb = 1 % ) Event 8000 ( 46s elapsed / 11s left ) -> ETA: Tue Nov 28 22:32 XS = 1930.37 pb +- ( 19.0849 pb = 0 % ) Event 9000 ( 51s elapsed / 5s left ) -> ETA: Tue Nov 28 22:32 XS = 1925.98 pb +- ( 17.9582 pb = 0 % ) Event 10000 ( 56 s total ) = 1.55089e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Allrecoil_v2/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1927.43 0 % 17.0476 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 56s on Tue Nov 28 22:32:31 2023 (User: 56s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Nov 28 22:41:55 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: alpha0 alpha(0) scheme, input: 1/\alphaQED(0), m_W, m_Z, m_h, widths Ren. scheme: alpha0 Parameters: sin^2(\theta_W) = 0.222928 - 0.00110708 i vev = 243.034 - 3.75493 i } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 128.802 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 173.21 2 0 1 1 173.21 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.385 2.085 0 1 1 80.385 h0 25 125 0.00407 0 1 1 125 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 52 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 52 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__e-__e+ Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__e-__e+' (Comix) 2_2__j__j__e-__e+ : 1929.23 pb +- ( 3.07365 pb = 0.15932 % )  exp. eff: 21.7926 % reduce max for 2_2__j__j__e-__e+ to 1 ( eps = 0.001 -> exp. eff 0.217926 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CSS Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 5h 3m 18s left ) -> ETA: Wed Nov 29 03:45 XS = 520.746 pb +- ( 520.746 pb = 100 % ) Event 2 ( 1s elapsed / 2h 32m 28s left ) -> ETA: Wed Nov 29 01:14 XS = 843.112 pb +- ( 581.075 pb = 68 % ) Event 3 ( 1s elapsed / 1h 41m 38s left ) -> ETA: Wed Nov 29 00:23 XS = 804.789 pb +- ( 449.891 pb = 55 % ) Event 4 ( 1s elapsed / 1h 16m 13s left ) -> ETA: Tue Nov 28 23:58 XS = 737.723 pb +- ( 356.895 pb = 48 % ) Event 5 ( 1s elapsed / 1h 58s left ) -> ETA: Tue Nov 28 23:42 XS = 804.789 pb +- ( 346.326 pb = 43 % ) Event 6 ( 1s elapsed / 51m 4s left ) -> ETA: Tue Nov 28 23:33 XS = 948.501 pb +- ( 369.203 pb = 38 % ) Event 7 ( 1s elapsed / 43m 46s left ) -> ETA: Tue Nov 28 23:25 XS = 755.716 pb +- ( 274.851 pb = 36 % ) Event 8 ( 1s elapsed / 38m 18s left ) -> ETA: Tue Nov 28 23:20 XS = 843.112 pb +- ( 285.238 pb = 33 % ) Event 9 ( 1s elapsed / 34m 2s left ) -> ETA: Tue Nov 28 23:15 XS = 926.443 pb +- ( 293.923 pb = 31 % ) Event 10 ( 1s elapsed / 30m 48s left ) -> ETA: Tue Nov 28 23:12 XS = 931.861 pb +- ( 280.218 pb = 30 % ) Event 20 ( 1s elapsed / 15m 28s left ) -> ETA: Tue Nov 28 22:57 XS = 1229.54 pb +- ( 256.018 pb = 20 % ) Event 30 ( 1s elapsed / 10m 24s left ) -> ETA: Tue Nov 28 22:52 XS = 1327.9 pb +- ( 224.08 pb = 16 % ) Event 40 ( 1s elapsed / 7m 53s left ) -> ETA: Tue Nov 28 22:49 XS = 1439.46 pb +- ( 208.699 pb = 14 % ) Event 50 ( 1s elapsed / 6m 24s left ) -> ETA: Tue Nov 28 22:48 XS = 1553.1 pb +- ( 199.797 pb = 12 % ) Event 60 ( 1s elapsed / 5m 23s left ) -> ETA: Tue Nov 28 22:47 XS = 1654.71 pb +- ( 192.926 pb = 11 % ) Event 70 ( 1s elapsed / 4m 39s left ) -> ETA: Tue Nov 28 22:46 XS = 1597.13 pb +- ( 173.041 pb = 10 % ) Event 80 ( 1s elapsed / 4m 6s left ) -> ETA: Tue Nov 28 22:46 XS = 1631.83 pb +- ( 164.963 pb = 10 % ) Event 90 ( 2s elapsed / 3m 42s left ) -> ETA: Tue Nov 28 22:45 XS = 1649.57 pb +- ( 157.008 pb = 9 % ) Event 100 ( 2s elapsed / 3m 21s left ) -> ETA: Tue Nov 28 22:45 XS = 1699.17 pb +- ( 152.889 pb = 8 % ) Event 200 ( 2s elapsed / 1m 48s left ) -> ETA: Tue Nov 28 22:43 XS = 1823.41 pb +- ( 114.951 pb = 6 % ) Event 300 ( 2s elapsed / 1m 18s left ) -> ETA: Tue Nov 28 22:43 XS = 1865.03 pb +- ( 95.6987 pb = 5 % ) Event 400 ( 2s elapsed / 1m 3s left ) -> ETA: Tue Nov 28 22:43 XS = 1834.75 pb +- ( 81.7009 pb = 4 % ) Event 500 ( 2s elapsed / 53s left ) -> ETA: Tue Nov 28 22:42 XS = 1897.27 pb +- ( 75.2249 pb = 3 % ) Event 600 ( 3s elapsed / 47s left ) -> ETA: Tue Nov 28 22:42 XS = 1885.55 pb +- ( 68.3014 pb = 3 % ) Event 700 ( 3s elapsed / 42s left ) -> ETA: Tue Nov 28 22:42 XS = 1886.99 pb +- ( 63.2749 pb = 3 % ) Event 800 ( 3s elapsed / 39s left ) -> ETA: Tue Nov 28 22:42 XS = 1898.7 pb +- ( 59.5043 pb = 3 % ) Event 900 ( 3s elapsed / 36s left ) -> ETA: Tue Nov 28 22:42 XS = 1897.45 pb +- ( 56.0686 pb = 2 % ) Event 1000 ( 3s elapsed / 34s left ) -> ETA: Tue Nov 28 22:42 XS = 1887.56 pb +- ( 52.9511 pb = 2 % ) Event 2000 ( 5s elapsed / 23s left ) -> ETA: Tue Nov 28 22:42 XS = 1910.99 pb +- ( 37.841 pb = 1 % ) Event 3000 ( 7s elapsed / 18s left ) -> ETA: Tue Nov 28 22:42 XS = 1907.08 pb +- ( 30.8419 pb = 1 % ) Event 4000 ( 9s elapsed / 14s left ) -> ETA: Tue Nov 28 22:42 XS = 1909.04 pb +- ( 26.7333 pb = 1 % ) Event 5000 ( 12s elapsed / 12s left ) -> ETA: Tue Nov 28 22:42 XS = 1907.74 pb +- ( 23.8968 pb = 1 % ) Event 6000 ( 14s elapsed / 9s left ) -> ETA: Tue Nov 28 22:42 XS = 1913.89 pb +- ( 21.8752 pb = 1 % ) Event 7000 ( 16s elapsed / 7s left ) -> ETA: Tue Nov 28 22:42 XS = 1917.47 pb +- ( 20.2852 pb = 1 % ) Event 8000 ( 19s elapsed / 4s left ) -> ETA: Tue Nov 28 22:42 XS = 1918.6 pb +- ( 18.9847 pb = 0 % ) Event 9000 ( 21s elapsed / 2s left ) -> ETA: Tue Nov 28 22:42 XS = 1925.52 pb +- ( 17.9544 pb = 0 % ) Event 10000 ( 23 s total ) = 3.65637e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_CSS_1em/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1921.28 0 % 17.0008 0.88 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 24s on Tue Nov 28 22:42:19 2023 (User: 23s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:37:24 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 38m 18s left ) -> ETA: Wed Nov 29 23:15 XS = 5217.88 pb +- ( 5217.88 pb = 100 % ) Event 2 ( 1s elapsed / 2h 19m 58s left ) -> ETA: Wed Nov 29 20:57 XS = 2174.12 pb +- ( 1503.54 pb = 69 % ) Event 3 ( 1s elapsed / 1h 33m 18s left ) -> ETA: Wed Nov 29 20:10 XS = 2445.88 pb +- ( 1365.82 pb = 55 % ) Event 4 ( 1s elapsed / 1h 10m 23s left ) -> ETA: Wed Nov 29 19:47 XS = 2981.65 pb +- ( 1423.53 pb = 47 % ) Event 5 ( 1s elapsed / 56m 18s left ) -> ETA: Wed Nov 29 19:33 XS = 3623.53 pb +- ( 1525.08 pb = 42 % ) Event 6 ( 1s elapsed / 47m 11s left ) -> ETA: Wed Nov 29 19:24 XS = 4119.38 pb +- ( 1563.98 pb = 37 % ) Event 7 ( 1s elapsed / 40m 26s left ) -> ETA: Wed Nov 29 19:17 XS = 4058.35 pb +- ( 1425.5 pb = 35 % ) Event 8 ( 1s elapsed / 35m 35s left ) -> ETA: Wed Nov 29 19:13 XS = 3024.86 pb +- ( 1012.91 pb = 33 % ) Event 9 ( 1s elapsed / 31m 38s left ) -> ETA: Wed Nov 29 19:09 XS = 2898.82 pb +- ( 916.689 pb = 31 % ) Event 10 ( 1s elapsed / 28m 38s left ) -> ETA: Wed Nov 29 19:06 XS = 2775.47 pb +- ( 834.132 pb = 30 % ) Event 20 ( 1s elapsed / 14m 43s left ) -> ETA: Wed Nov 29 18:52 XS = 2998.78 pb +- ( 632.656 pb = 21 % ) Event 30 ( 1s elapsed / 9m 58s left ) -> ETA: Wed Nov 29 18:47 XS = 3623.53 pb +- ( 615.33 pb = 16 % ) Event 40 ( 1s elapsed / 7m 35s left ) -> ETA: Wed Nov 29 18:45 XS = 3753.87 pb +- ( 550.172 pb = 14 % ) Event 50 ( 1s elapsed / 6m 14s left ) -> ETA: Wed Nov 29 18:43 XS = 3643.77 pb +- ( 478.638 pb = 13 % ) Event 60 ( 1s elapsed / 5m 16s left ) -> ETA: Wed Nov 29 18:42 XS = 3718.21 pb +- ( 445.027 pb = 11 % ) Event 70 ( 1s elapsed / 4m 38s left ) -> ETA: Wed Nov 29 18:42 XS = 3512.04 pb +- ( 390.87 pb = 11 % ) Event 80 ( 2s elapsed / 4m 9s left ) -> ETA: Wed Nov 29 18:41 XS = 3467.03 pb +- ( 361.252 pb = 10 % ) Event 90 ( 2s elapsed / 3m 44s left ) -> ETA: Wed Nov 29 18:41 XS = 3478.59 pb +- ( 341.609 pb = 9 % ) Event 100 ( 2s elapsed / 3m 25s left ) -> ETA: Wed Nov 29 18:40 XS = 3306.64 pb +- ( 309.196 pb = 9 % ) Event 200 ( 2s elapsed / 1m 59s left ) -> ETA: Wed Nov 29 18:39 XS = 3141.41 pb +- ( 208.392 pb = 6 % ) Event 300 ( 2s elapsed / 1m 31s left ) -> ETA: Wed Nov 29 18:38 XS = 3210.35 pb +- ( 173.607 pb = 5 % ) Event 400 ( 3s elapsed / 1m 17s left ) -> ETA: Wed Nov 29 18:38 XS = 3297.24 pb +- ( 154.117 pb = 4 % ) Event 500 ( 3s elapsed / 1m 8s left ) -> ETA: Wed Nov 29 18:38 XS = 3360.31 pb +- ( 140.284 pb = 4 % ) Event 600 ( 3s elapsed / 1m 2s left ) -> ETA: Wed Nov 29 18:38 XS = 3421.56 pb +- ( 130.217 pb = 3 % ) Event 700 ( 4s elapsed / 58s left ) -> ETA: Wed Nov 29 18:38 XS = 3436.05 pb +- ( 121.028 pb = 3 % ) Event 800 ( 4s elapsed / 56s left ) -> ETA: Wed Nov 29 18:38 XS = 3440.17 pb +- ( 113.335 pb = 3 % ) Event 900 ( 5s elapsed / 54s left ) -> ETA: Wed Nov 29 18:38 XS = 3431.31 pb +- ( 106.598 pb = 3 % ) Event 1000 ( 5s elapsed / 52s left ) -> ETA: Wed Nov 29 18:38 XS = 3478.59 pb +- ( 102.414 pb = 2 % ) Event 2000 ( 9s elapsed / 39s left ) -> ETA: Wed Nov 29 18:38 XS = 3478.36 pb +- ( 72.4105 pb = 2 % ) Event 3000 ( 13s elapsed / 32s left ) -> ETA: Wed Nov 29 18:38 XS = 3489.29 pb +- ( 59.2938 pb = 1 % ) Event 4000 ( 18s elapsed / 27s left ) -> ETA: Wed Nov 29 18:38 XS = 3498.41 pb +- ( 51.4735 pb = 1 % ) Event 5000 ( 22s elapsed / 22s left ) -> ETA: Wed Nov 29 18:38 XS = 3494.99 pb +- ( 45.9976 pb = 1 % ) Event 6000 ( 25s elapsed / 17s left ) -> ETA: Wed Nov 29 18:38 XS = 3469.57 pb +- ( 41.7078 pb = 1 % ) Event 7000 ( 29s elapsed / 12s left ) -> ETA: Wed Nov 29 18:38 XS = 3469.4 pb +- ( 38.6122 pb = 1 % ) Event 8000 ( 34s elapsed / 8s left ) -> ETA: Wed Nov 29 18:38 XS = 3429.03 pb +- ( 35.73 pb = 1 % ) Event 9000 ( 37s elapsed / 4s left ) -> ETA: Wed Nov 29 18:38 XS = 3432.41 pb +- ( 33.7172 pb = 0 % ) Event 10000 ( 41 s total ) = 2.12233e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3428.8 0 % 31.9557 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 41s on Wed Nov 29 18:38:06 2023 (User: 41s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 18:43:36 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 3h 41m 38s left ) -> ETA: Wed Nov 29 22:25 XS = 5217.88 pb +- ( 5217.88 pb = 100 % ) Event 2 ( 1s elapsed / 1h 51m 38s left ) -> ETA: Wed Nov 29 20:35 XS = 2174.12 pb +- ( 1503.54 pb = 69 % ) Event 3 ( 1s elapsed / 1h 14m 25s left ) -> ETA: Wed Nov 29 19:58 XS = 2445.88 pb +- ( 1365.82 pb = 55 % ) Event 4 ( 1s elapsed / 55m 48s left ) -> ETA: Wed Nov 29 19:39 XS = 2981.65 pb +- ( 1423.53 pb = 47 % ) Event 5 ( 1s elapsed / 44m 38s left ) -> ETA: Wed Nov 29 19:28 XS = 3623.53 pb +- ( 1525.08 pb = 42 % ) Event 6 ( 1s elapsed / 37m 28s left ) -> ETA: Wed Nov 29 19:21 XS = 4119.38 pb +- ( 1563.98 pb = 37 % ) Event 7 ( 1s elapsed / 32m 7s left ) -> ETA: Wed Nov 29 19:15 XS = 4058.35 pb +- ( 1425.5 pb = 35 % ) Event 8 ( 1s elapsed / 28m 18s left ) -> ETA: Wed Nov 29 19:11 XS = 3024.86 pb +- ( 1012.91 pb = 33 % ) Event 9 ( 1s elapsed / 25m 9s left ) -> ETA: Wed Nov 29 19:08 XS = 2898.82 pb +- ( 916.689 pb = 31 % ) Event 10 ( 1s elapsed / 22m 48s left ) -> ETA: Wed Nov 29 19:06 XS = 2775.47 pb +- ( 834.132 pb = 30 % ) Event 20 ( 1s elapsed / 11m 48s left ) -> ETA: Wed Nov 29 18:55 XS = 2998.78 pb +- ( 632.656 pb = 21 % ) Event 30 ( 1s elapsed / 7m 58s left ) -> ETA: Wed Nov 29 18:51 XS = 3623.53 pb +- ( 615.33 pb = 16 % ) Event 40 ( 1s elapsed / 6m 6s left ) -> ETA: Wed Nov 29 18:49 XS = 3753.87 pb +- ( 550.172 pb = 14 % ) Event 50 ( 1s elapsed / 5m left ) -> ETA: Wed Nov 29 18:48 XS = 3643.77 pb +- ( 478.638 pb = 13 % ) Event 60 ( 1s elapsed / 4m 15s left ) -> ETA: Wed Nov 29 18:47 XS = 3718.21 pb +- ( 445.027 pb = 11 % ) Event 70 ( 1s elapsed / 3m 44s left ) -> ETA: Wed Nov 29 18:47 XS = 3512.04 pb +- ( 390.87 pb = 11 % ) Event 80 ( 1s elapsed / 3m 20s left ) -> ETA: Wed Nov 29 18:46 XS = 3467.03 pb +- ( 361.252 pb = 10 % ) Event 90 ( 1s elapsed / 3m 1s left ) -> ETA: Wed Nov 29 18:46 XS = 3478.59 pb +- ( 341.609 pb = 9 % ) Event 100 ( 1s elapsed / 2m 48s left ) -> ETA: Wed Nov 29 18:46 XS = 3306.64 pb +- ( 309.196 pb = 9 % ) Event 200 ( 2s elapsed / 1m 41s left ) -> ETA: Wed Nov 29 18:45 XS = 3141.41 pb +- ( 208.392 pb = 6 % ) Event 300 ( 2s elapsed / 1m 17s left ) -> ETA: Wed Nov 29 18:44 XS = 3210.35 pb +- ( 173.607 pb = 5 % ) Event 400 ( 2s elapsed / 1m 6s left ) -> ETA: Wed Nov 29 18:44 XS = 3297.24 pb +- ( 154.117 pb = 4 % ) Event 500 ( 3s elapsed / 58s left ) -> ETA: Wed Nov 29 18:44 XS = 3360.31 pb +- ( 140.284 pb = 4 % ) Event 600 ( 3s elapsed / 53s left ) -> ETA: Wed Nov 29 18:44 XS = 3421.56 pb +- ( 130.217 pb = 3 % ) Event 700 ( 3s elapsed / 51s left ) -> ETA: Wed Nov 29 18:44 XS = 3436.05 pb +- ( 121.028 pb = 3 % ) Event 800 ( 4s elapsed / 48s left ) -> ETA: Wed Nov 29 18:44 XS = 3440.17 pb +- ( 113.335 pb = 3 % ) Event 900 ( 4s elapsed / 45s left ) -> ETA: Wed Nov 29 18:44 XS = 3431.31 pb +- ( 106.598 pb = 3 % ) Event 1000 ( 4s elapsed / 43s left ) -> ETA: Wed Nov 29 18:44 XS = 3478.59 pb +- ( 102.414 pb = 2 % ) Event 2000 ( 8s elapsed / 34s left ) -> ETA: Wed Nov 29 18:44 XS = 3478.36 pb +- ( 72.4105 pb = 2 % ) Event 3000 ( 11s elapsed / 27s left ) -> ETA: Wed Nov 29 18:44 XS = 3489.29 pb +- ( 59.2938 pb = 1 % ) Event 4000 ( 15s elapsed / 22s left ) -> ETA: Wed Nov 29 18:44 XS = 3498.41 pb +- ( 51.4735 pb = 1 % ) Event 5000 ( 18s elapsed / 18s left ) -> ETA: Wed Nov 29 18:44 XS = 3494.99 pb +- ( 45.9976 pb = 1 % ) Event 6000 ( 21s elapsed / 14s left ) -> ETA: Wed Nov 29 18:44 XS = 3469.57 pb +- ( 41.7078 pb = 1 % ) Event 7000 ( 24s elapsed / 10s left ) -> ETA: Wed Nov 29 18:44 XS = 3469.4 pb +- ( 38.6122 pb = 1 % ) Event 8000 ( 28s elapsed / 7s left ) -> ETA: Wed Nov 29 18:44 XS = 3429.03 pb +- ( 35.73 pb = 1 % ) Event 9000 ( 31s elapsed / 3s left ) -> ETA: Wed Nov 29 18:44 XS = 3432.41 pb +- ( 33.7172 pb = 0 % ) Event 10000 ( 34 s total ) = 2.55697e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3428.8 0 % 31.9557 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 34s on Wed Nov 29 18:44:11 2023 (User: 34s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Nov 29 19:45:50 2023. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 8015 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: NNPDF31_nnlo_as_0118_mc + NNPDF31_nnlo_as_0118_mc PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Intact + P+: Intact Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: Soft, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1.41421, now t0 = 1.41421^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1.41421, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1.41421, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 1. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests .. done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. MI_Handler::MI_Handler(id = 2, name = None, type = 0) Underlying event/multiple interactions handler: MI[2]: on = 0 (type = 0, None) Soft-collision handlers: Initialized the Fragmentation_Handler. Initialized the Soft_Photon_Handler. Initialized the Reweighting. Read in channels from directory: Results/Comix/MC_2_2__j__j__l__l Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__l__l' (Comix) 2_2__j__j__l__l : 3430.28 pb +- ( 5.31938 pb = 0.155071 % )  exp. eff: 13.1482 % reduce max for 2_2__j__j__l__l to 1 ( eps = 0.001 -> exp. eff 0.131482 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Partially unweighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: None Hadronization : Beam_Remnants:None Hadronization : Hadronization:None Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 1s elapsed / 4h 9m 58s left ) -> ETA: Wed Nov 29 23:55 XS = 5217.88 pb +- ( 5217.88 pb = 100 % ) Event 2 ( 1s elapsed / 2h 4m 58s left ) -> ETA: Wed Nov 29 21:50 XS = 2174.12 pb +- ( 1503.54 pb = 69 % ) Event 3 ( 1s elapsed / 1h 23m 51s left ) -> ETA: Wed Nov 29 21:09 XS = 2445.88 pb +- ( 1365.82 pb = 55 % ) Event 4 ( 1s elapsed / 1h 2m 53s left ) -> ETA: Wed Nov 29 20:48 XS = 2981.65 pb +- ( 1423.53 pb = 47 % ) Event 5 ( 1s elapsed / 50m 18s left ) -> ETA: Wed Nov 29 20:36 XS = 3623.53 pb +- ( 1525.08 pb = 42 % ) Event 6 ( 1s elapsed / 41m 55s left ) -> ETA: Wed Nov 29 20:27 XS = 4119.38 pb +- ( 1563.98 pb = 37 % ) Event 7 ( 1s elapsed / 36m 9s left ) -> ETA: Wed Nov 29 20:22 XS = 4058.35 pb +- ( 1425.5 pb = 35 % ) Event 8 ( 1s elapsed / 31m 38s left ) -> ETA: Wed Nov 29 20:17 XS = 3024.86 pb +- ( 1012.91 pb = 33 % ) Event 9 ( 1s elapsed / 28m 7s left ) -> ETA: Wed Nov 29 20:13 XS = 2898.82 pb +- ( 916.689 pb = 31 % ) Event 10 ( 1s elapsed / 25m 28s left ) -> ETA: Wed Nov 29 20:11 XS = 2775.47 pb +- ( 834.132 pb = 30 % ) Event 20 ( 1s elapsed / 12m 58s left ) -> ETA: Wed Nov 29 19:58 XS = 2998.78 pb +- ( 632.656 pb = 21 % ) Event 30 ( 1s elapsed / 8m 45s left ) -> ETA: Wed Nov 29 19:54 XS = 3623.53 pb +- ( 615.33 pb = 16 % ) Event 40 ( 1s elapsed / 6m 40s left ) -> ETA: Wed Nov 29 19:52 XS = 3753.87 pb +- ( 550.172 pb = 14 % ) Event 50 ( 1s elapsed / 5m 26s left ) -> ETA: Wed Nov 29 19:51 XS = 3643.77 pb +- ( 478.638 pb = 13 % ) Event 60 ( 1s elapsed / 4m 38s left ) -> ETA: Wed Nov 29 19:50 XS = 3718.21 pb +- ( 445.027 pb = 11 % ) Event 70 ( 1s elapsed / 4m 5s left ) -> ETA: Wed Nov 29 19:49 XS = 3512.04 pb +- ( 390.87 pb = 11 % ) Event 80 ( 1s elapsed / 3m 41s left ) -> ETA: Wed Nov 29 19:49 XS = 3467.03 pb +- ( 361.252 pb = 10 % ) Event 90 ( 1s elapsed / 3m 21s left ) -> ETA: Wed Nov 29 19:49 XS = 3478.59 pb +- ( 341.609 pb = 9 % ) Event 100 ( 1s elapsed / 3m 5s left ) -> ETA: Wed Nov 29 19:48 XS = 3306.64 pb +- ( 309.196 pb = 9 % ) Event 200 ( 2s elapsed / 1m 52s left ) -> ETA: Wed Nov 29 19:47 XS = 3141.41 pb +- ( 208.392 pb = 6 % ) Event 300 ( 2s elapsed / 1m 26s left ) -> ETA: Wed Nov 29 19:47 XS = 3210.35 pb +- ( 173.607 pb = 5 % ) Event 400 ( 3s elapsed / 1m 13s left ) -> ETA: Wed Nov 29 19:47 XS = 3297.24 pb +- ( 154.117 pb = 4 % ) Event 500 ( 3s elapsed / 1m 4s left ) -> ETA: Wed Nov 29 19:46 XS = 3360.31 pb +- ( 140.284 pb = 4 % ) Event 600 ( 3s elapsed / 59s left ) -> ETA: Wed Nov 29 19:46 XS = 3421.56 pb +- ( 130.217 pb = 3 % ) Event 700 ( 4s elapsed / 55s left ) -> ETA: Wed Nov 29 19:46 XS = 3436.05 pb +- ( 121.028 pb = 3 % ) Event 800 ( 4s elapsed / 52s left ) -> ETA: Wed Nov 29 19:46 XS = 3440.17 pb +- ( 113.335 pb = 3 % ) Event 900 ( 4s elapsed / 50s left ) -> ETA: Wed Nov 29 19:46 XS = 3431.31 pb +- ( 106.598 pb = 3 % ) Event 1000 ( 5s elapsed / 47s left ) -> ETA: Wed Nov 29 19:46 XS = 3478.59 pb +- ( 102.414 pb = 2 % ) Event 2000 ( 9s elapsed / 37s left ) -> ETA: Wed Nov 29 19:46 XS = 3478.36 pb +- ( 72.4105 pb = 2 % ) Event 3000 ( 13s elapsed / 30s left ) -> ETA: Wed Nov 29 19:46 XS = 3489.29 pb +- ( 59.2938 pb = 1 % ) Event 4000 ( 17s elapsed / 25s left ) -> ETA: Wed Nov 29 19:46 XS = 3498.41 pb +- ( 51.4735 pb = 1 % ) Event 5000 ( 21s elapsed / 21s left ) -> ETA: Wed Nov 29 19:46 XS = 3494.99 pb +- ( 45.9976 pb = 1 % ) Event 6000 ( 25s elapsed / 17s left ) -> ETA: Wed Nov 29 19:46 XS = 3469.57 pb +- ( 41.7078 pb = 1 % ) Event 7000 ( 30s elapsed / 12s left ) -> ETA: Wed Nov 29 19:46 XS = 3469.4 pb +- ( 38.6122 pb = 1 % ) Event 8000 ( 34s elapsed / 8s left ) -> ETA: Wed Nov 29 19:46 XS = 3429.03 pb +- ( 35.73 pb = 1 % ) Event 9000 ( 37s elapsed / 4s left ) -> ETA: Wed Nov 29 19:46 XS = 3432.41 pb +- ( 33.7172 pb = 0 % ) Event 10000 ( 40 s total ) = 2.17523e+07 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/8015){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  3428.8 0 % 31.9557 0.93 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 40s on Wed Nov 29 19:46:30 2023 (User: 40s, System: 0s, Children User: 0s, Children System: 0s)