Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:45:00 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1083 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.75469e-07(3.88984e-09) GeV, BR= 7.03198e-06 % 23,-24,4,-3 Z --> W- c sb 1.75733e-07(3.94158e-09) GeV, BR= 7.04255e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.67912e-08(1.27388e-09) GeV, BR= 2.27593e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.48626e-08(1.24367e-09) GeV, BR= 2.19864e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 4.90562e-08(9.99468e-10) GeV, BR= 1.96594e-06 % 23,24,-2,1 Z --> W+ ub d 1.73728e-07(3.88188e-09) GeV, BR= 6.96222e-06 % 23,24,-4,3 Z --> W+ cb s 1.68195e-07(3.77401e-09) GeV, BR= 6.74046e-06 % 23,24,-12,11 Z --> W+ veb e- 5.86157e-08(1.29808e-09) GeV, BR= 2.34904e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.71346e-08(1.28794e-09) GeV, BR= 2.28969e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 4.92554e-08(1.01462e-09) GeV, BR= 1.97393e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.001729 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.20771e-05) GeV [disabled], BR= 19.3984 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538287 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8351 % 25,-24,2,-1 h0 --> W- u db 0.000130229(1.03923e-06) GeV [disabled], BR= 7.53201 % 25,-24,4,-3 h0 --> W- c sb 0.000129453(1.0332e-06) GeV [disabled], BR= 7.48712 % 25,-24,12,-11 h0 --> W- ve e+ 4.39801e-05(3.34065e-07) GeV [disabled], BR= 2.54367 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.36296e-05(3.44492e-07) GeV [disabled], BR= 2.5234 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.34381e-05(3.288e-07 ) GeV [disabled], BR= 2.51232 % 25,24,-2,1 h0 --> W+ ub d 0.000130674(1.01692e-06) GeV [disabled], BR= 7.55775 % 25,24,-4,3 h0 --> W+ cb s 0.000133006(1.01312e-06) GeV [disabled], BR= 7.69264 % 25,24,-12,11 h0 --> W+ veb e- 4.37012e-05(3.38329e-07) GeV [disabled], BR= 2.52754 % 25,24,-14,13 h0 --> W+ vmub mu- 4.45504e-05(3.35509e-07) GeV [disabled], BR= 2.57665 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.36402e-05(3.29479e-07) GeV [disabled], BR= 2.52401 % 25,23,1,-1 h0 --> Z d db 5.18621e-05(4.22842e-07) GeV [disabled], BR= 2.99953 % 25,23,2,-2 h0 --> Z u ub 4.01874e-05(3.35187e-07) GeV [disabled], BR= 2.32431 % 25,23,3,-3 h0 --> Z s sb 5.21251e-05(4.21938e-07) GeV [disabled], BR= 3.01475 % 25,23,4,-4 h0 --> Z c cb 4.07046e-05(3.34185e-07) GeV [disabled], BR= 2.35422 % 25,23,5,-5 h0 --> Z b bb 5.20085e-05(4.19837e-07) GeV [disabled], BR= 3.008 % 25,23,11,-11 h0 --> Z e- e+ 1.17685e-05(9.57229e-08) GeV [disabled], BR= 0.680652 % 25,23,12,-12 h0 --> Z ve veb 2.29242e-05(1.93837e-07) GeV [disabled], BR= 1.32586 % 25,23,13,-13 h0 --> Z mu- mu+ 1.17322e-05(9.8788e-08) GeV [disabled], BR= 0.678553 % 25,23,14,-14 h0 --> Z vmu vmub 2.31988e-05(1.94624e-07) GeV [disabled], BR= 1.34174 % 25,23,15,-15 h0 --> Z tau- tau+ 1.12591e-05(9.15316e-08) GeV [disabled], BR= 0.651192 % 25,23,16,-16 h0 --> Z vtau vtaub 2.37255e-05(1.91645e-07) GeV [disabled], BR= 1.37221 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 58 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 58 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 58 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:46:46 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1083 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.75469e-07(3.88984e-09) GeV, BR= 7.03198e-06 % 23,-24,4,-3 Z --> W- c sb 1.75733e-07(3.94158e-09) GeV, BR= 7.04255e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.67912e-08(1.27388e-09) GeV, BR= 2.27593e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.48626e-08(1.24367e-09) GeV, BR= 2.19864e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 4.90562e-08(9.99468e-10) GeV, BR= 1.96594e-06 % 23,24,-2,1 Z --> W+ ub d 1.73728e-07(3.88188e-09) GeV, BR= 6.96222e-06 % 23,24,-4,3 Z --> W+ cb s 1.68195e-07(3.77401e-09) GeV, BR= 6.74046e-06 % 23,24,-12,11 Z --> W+ veb e- 5.86157e-08(1.29808e-09) GeV, BR= 2.34904e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.71346e-08(1.28794e-09) GeV, BR= 2.28969e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 4.92554e-08(1.01462e-09) GeV, BR= 1.97393e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.001729 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.20771e-05) GeV [disabled], BR= 19.3984 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538287 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8351 % 25,-24,2,-1 h0 --> W- u db 0.000130229(1.03923e-06) GeV [disabled], BR= 7.53201 % 25,-24,4,-3 h0 --> W- c sb 0.000129453(1.0332e-06) GeV [disabled], BR= 7.48712 % 25,-24,12,-11 h0 --> W- ve e+ 4.39801e-05(3.34065e-07) GeV [disabled], BR= 2.54367 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.36296e-05(3.44492e-07) GeV [disabled], BR= 2.5234 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.34381e-05(3.288e-07 ) GeV [disabled], BR= 2.51232 % 25,24,-2,1 h0 --> W+ ub d 0.000130674(1.01692e-06) GeV [disabled], BR= 7.55775 % 25,24,-4,3 h0 --> W+ cb s 0.000133006(1.01312e-06) GeV [disabled], BR= 7.69264 % 25,24,-12,11 h0 --> W+ veb e- 4.37012e-05(3.38329e-07) GeV [disabled], BR= 2.52754 % 25,24,-14,13 h0 --> W+ vmub mu- 4.45504e-05(3.35509e-07) GeV [disabled], BR= 2.57665 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.36402e-05(3.29479e-07) GeV [disabled], BR= 2.52401 % 25,23,1,-1 h0 --> Z d db 5.18621e-05(4.22842e-07) GeV [disabled], BR= 2.99953 % 25,23,2,-2 h0 --> Z u ub 4.01874e-05(3.35187e-07) GeV [disabled], BR= 2.32431 % 25,23,3,-3 h0 --> Z s sb 5.21251e-05(4.21938e-07) GeV [disabled], BR= 3.01475 % 25,23,4,-4 h0 --> Z c cb 4.07046e-05(3.34185e-07) GeV [disabled], BR= 2.35422 % 25,23,5,-5 h0 --> Z b bb 5.20085e-05(4.19837e-07) GeV [disabled], BR= 3.008 % 25,23,11,-11 h0 --> Z e- e+ 1.17685e-05(9.57229e-08) GeV [disabled], BR= 0.680652 % 25,23,12,-12 h0 --> Z ve veb 2.29242e-05(1.93837e-07) GeV [disabled], BR= 1.32586 % 25,23,13,-13 h0 --> Z mu- mu+ 1.17322e-05(9.8788e-08) GeV [disabled], BR= 0.678553 % 25,23,14,-14 h0 --> Z vmu vmub 2.31988e-05(1.94624e-07) GeV [disabled], BR= 1.34174 % 25,23,15,-15 h0 --> Z tau- tau+ 1.12591e-05(9.15316e-08) GeV [disabled], BR= 0.651192 % 25,23,16,-16 h0 --> Z vtau vtaub 2.37255e-05(1.91645e-07) GeV [disabled], BR= 1.37221 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 62 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 4s elapsed / 5d 6h 56m 35s left ) -> ETA: Wed Oct 30 03:43 XS = 0.0719821 pb +- ( 0.0719821 pb = 100 % ) Event 2 ( 4s elapsed / 2d 15h 44m 55s left ) -> ETA: Sun Oct 27 12:31 XS = 0.0708693 pb +- ( 0.00111282 pb = 1 % ) Event 3 ( 4s elapsed / 1d 18h 46m 35s left ) -> ETA: Sat Oct 26 16:33 XS = 0.0705126 pb +- ( 0.00073486 pb = 1 % ) Event 4 ( 4s elapsed / 1d 8h 9m 5s left ) -> ETA: Sat Oct 26 05:56 XS = 0.0708827 pb +- ( 0.000637921 pb = 0 % ) Event 5 ( 4s elapsed / 1d 1h 49m 55s left ) -> ETA: Fri Oct 25 23:36 XS = 0.0719491 pb +- ( 0.00117535 pb = 1 % ) Event 6 ( 4s elapsed / 21h 37m 8s left ) -> ETA: Fri Oct 25 19:24 XS = 0.0717686 pb +- ( 0.000976495 pb = 1 % ) Event 7 ( 4s elapsed / 18h 36m 35s left ) -> ETA: Fri Oct 25 16:23 XS = 0.0714972 pb +- ( 0.000868775 pb = 1 % ) Event 8 ( 4s elapsed / 16h 19m 5s left ) -> ETA: Fri Oct 25 14:06 XS = 0.0713619 pb +- ( 0.000764452 pb = 1 % ) Event 9 ( 4s elapsed / 14h 35m 50s left ) -> ETA: Fri Oct 25 12:22 XS = 0.0713307 pb +- ( 0.000674906 pb = 0 % ) Event 10 ( 4s elapsed / 13h 11m 35s left ) -> ETA: Fri Oct 25 10:58 XS = 0.0713985 pb +- ( 0.00060745 pb = 0 % ) Event 20 ( 4s elapsed / 6h 55m 45s left ) -> ETA: Fri Oct 25 04:42 XS = 0.0713558 pb +- ( 0.000456518 pb = 0 % ) Event 30 ( 5s elapsed / 4h 48m 14s left ) -> ETA: Fri Oct 25 02:35 XS = 0.0689437 pb +- ( 0.00240218 pb = 3 % ) Event 40 ( 5s elapsed / 3h 45m 44s left ) -> ETA: Fri Oct 25 01:32 XS = 0.0693529 pb +- ( 0.00180001 pb = 2 % ) Event 50 ( 5s elapsed / 3h 6m 54s left ) -> ETA: Fri Oct 25 00:53 XS = 0.0695304 pb +- ( 0.0014416 pb = 2 % ) Event 60 ( 5s elapsed / 2h 43m 47s left ) -> ETA: Fri Oct 25 00:30 XS = 0.0699306 pb +- ( 0.00120684 pb = 1 % ) Event 70 ( 6s elapsed / 2h 24m 53s left ) -> ETA: Fri Oct 25 00:11 XS = 0.0698968 pb +- ( 0.00106531 pb = 1 % ) Event 80 ( 6s elapsed / 2h 11m 58s left ) -> ETA: Thu Oct 24 23:58 XS = 0.0701446 pb +- ( 0.000936606 pb = 1 % ) Event 90 ( 6s elapsed / 2h 1m 55s left ) -> ETA: Thu Oct 24 23:48 XS = 0.0702727 pb +- ( 0.000835162 pb = 1 % ) Event 100 ( 6s elapsed / 1h 53m 13s left ) -> ETA: Thu Oct 24 23:40 XS = 0.0689743 pb +- ( 0.00119443 pb = 1 % ) Event 200 ( 9s elapsed / 1h 17m 10s left ) -> ETA: Thu Oct 24 23:04 XS = 0.0696785 pb +- ( 0.000706943 pb = 1 % ) Event 300 ( 11s elapsed / 1h 3m 35s left ) -> ETA: Thu Oct 24 22:50 XS = 0.0696246 pb +- ( 0.000571525 pb = 0 % ) Event 400 ( 13s elapsed / 57m 41s left ) -> ETA: Thu Oct 24 22:44 XS = 0.0700699 pb +- ( 0.000432568 pb = 0 % ) Event 500 ( 16s elapsed / 53m 11s left ) -> ETA: Thu Oct 24 22:40 XS = 0.0699265 pb +- ( 0.000409164 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.0450663,-0.000497558,-0.00140746,0.0339152) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-1.46576,8.92231e-05,0.00055332,-0.0787322) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.699939,-5.46361e-05,8.4067e-05,0.267756) (2) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.430745,-0.000101248,0.000116786,-0.151293) (3) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.0579578,0.000265958,0.000200708,-0.0328551) (4) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-0.00644405,1.73804e-05,-0.000157079,-0.0119224) (5) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (1.03197e-07,-8.48044e-13,2.03773e-10,-1.47434e-07) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (9.39544e-10,-4.96375e-12,-1.53282e-11,9.39387e-10) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (8.89937e-11,1.20848e-13,7.93723e-14,-8.89546e-11) (2) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (1.11247e-11,1.62551e-13,-7.91988e-14,1.1122e-11) (3) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-7.83246e-09,-4.6153e-12,9.52241e-12,7.8325e-09) (4) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-1.28759e-10,-2.51235e-12,-4.47559e-13,-1.28736e-10) (5) Event 600 ( 18s elapsed / 50m 28s left ) -> ETA: Thu Oct 24 22:37  Memory usage increased by 16 MB, now 154 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.069445 pb +- ( 0.000434959 pb = 0 % ) Event 700 ( 20s elapsed / 48m 49s left ) -> ETA: Thu Oct 24 22:36 XS = 0.0693443 pb +- ( 0.000408706 pb = 0 % ) Event 800 ( 22s elapsed / 47m 13s left ) -> ETA: Thu Oct 24 22:34 XS = 0.0692847 pb +- ( 0.000385032 pb = 0 % ) Event 900 ( 25s elapsed / 46m 21s left ) -> ETA: Thu Oct 24 22:33 XS = 0.0692836 pb +- ( 0.0003599 pb = 0 % ) Event 1000 ( 27s elapsed / 45m 43s left ) -> ETA: Thu Oct 24 22:33 XS = 0.0693655 pb +- ( 0.000332496 pb = 0 % ) Event 2000 ( 58s elapsed / 47m 39s left ) -> ETA: Thu Oct 24 22:35  Memory usage increased by 85 MB, now 240 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689744 pb +- ( 0.000250115 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.00683373,0.000147842,-0.00113803,0.00620383) (2) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-4.86126e-06,8.65257e-09,-3.84981e-09,-4.79284e-06) (2) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 9 elements [I] 1 G 6 ( -> 3) [( 2.0615e+02,-0.0000e+00,-0.0000e+00, 2.0615e+02), p^2= 1.1718e-11, m= 0.0000e+00] (602,601) 0 [I] 1 G 14 ( -> 5) [( 5.2143e+02,-0.0000e+00,-0.0000e+00, 5.2143e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,627) 0 [I] 1 G 35 ( -> 7) [( 1.1567e+02,-0.0000e+00,-0.0000e+00, 1.1567e+02), p^2= 0.0000e+00, m= 0.0000e+00] (640,602) 0 [I] 1 G 58 ( -> 9) [( 1.2277e+03,-0.0000e+00,-0.0000e+00, 1.2277e+03), p^2= 0.0000e+00, m= 0.0000e+00] (669,640) 0 [I] 1 u 83 ( -> 11) [( 1.7260e+02,-0.0000e+00,-0.0000e+00, 1.7260e+02), p^2= 0.0000e+00, m= 3.0000e-01] (627, 0) 0 [I] 1 d 97 ( -> 13) [( 1.6429e+03,-0.0000e+00,-0.0000e+00, 1.6429e+03), p^2= 0.0000e+00, m= 3.0000e-01] (677, 0) 0 [I] 1 G 123 ( -> 15) [( 3.9162e+02,-0.0000e+00,-0.0000e+00, 3.9162e+02), p^2= 0.0000e+00, m= 0.0000e+00] (708,669) 0 [I] 1 G 147 ( -> 17) [( 2.1971e+03,-0.0000e+00,-0.0000e+00, 2.1971e+03), p^2= 0.0000e+00, m= 0.0000e+00] (721,708) 0 [I] 1 G 174 ( -> 19) [( 2.3323e+01,-0.0000e+00,-0.0000e+00, 2.3323e+01), p^2= 0.0000e+00, m= 0.0000e+00] (736,721) 0 and Particle List with 9 elements [I] 1 G 7 ( -> 3) [( 1.8976e+01,-0.0000e+00,-0.0000e+00,-1.8976e+01), p^2=-4.0449e-13, m= 0.0000e+00] (601,602) 1 [I] 1 u 15 ( -> 5) [( 9.0139e+02,-0.0000e+00,-0.0000e+00,-9.0139e+02), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 u 36 ( -> 7) [( 8.1001e+02,-0.0000e+00,-0.0000e+00,-8.1001e+02), p^2= 0.0000e+00, m= 3.0000e-01] (635, 0) 1 [I] 1 G 59 ( -> 9) [( 2.3304e+03,-0.0000e+00,-0.0000e+00,-2.3304e+03), p^2= 0.0000e+00, m= 0.0000e+00] (667,601) 1 [I] 1 sb 84 ( -> 11) [( 7.4604e-01,-0.0000e+00,-0.0000e+00,-7.4604e-01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,667) 1 [I] 1 G 98 ( -> 13) [( 1.6699e+02,-0.0000e+00,-0.0000e+00,-1.6699e+02), p^2= 0.0000e+00, m= 0.0000e+00] (696,678) 1 [I] 1 G 124 ( -> 15) [( 5.7522e+02,-0.0000e+00,-0.0000e+00,-5.7522e+02), p^2= 0.0000e+00, m= 0.0000e+00] (699,696) 1 [I] 1 u 148 ( -> 17) [( 1.4898e+03,-0.0000e+00,-0.0000e+00,-1.4898e+03), p^2= 0.0000e+00, m= 3.0000e-01] (722, 0) 1 [I] 1 sb 175 ( -> 19) [( 2.0383e+02,-0.0000e+00,-0.0000e+00,-2.0383e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,722) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 187 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,736) 0 [B] 1 ub 91 ( -> ) [( 1.4533e+00, 0.0000e+00, 0.0000e+00, 1.4532e+00), p^2= 1.9683e-04, m= 0.0000e+00] ( 0,677) 0 and Particle List with 5 elements [B] 1 ud_0 188 ( -> ) [( 1.1922e+00, 0.0000e+00, 0.0000e+00,-1.1921e+00), p^2= 7.2135e-05, m= 5.7933e-01] ( 0,744) 1 [B] 1 s 184 ( -> ) [( 4.5867e-01, 0.0000e+00, 0.0000e+00,-4.5865e-01), p^2= 1.0677e-05, m= 0.0000e+00] (744, 0) 1 [B] 1 ub 169 ( -> ) [( 3.1388e-01, 0.0000e+00, 0.0000e+00,-3.1387e-01), p^2= 5.0001e-06, m= 0.0000e+00] ( 0,699) 1 [B] 1 s 92 ( -> ) [( 4.0005e-01, 0.0000e+00, 0.0000e+00,-4.0004e-01), p^2= 8.1225e-06, m= 0.0000e+00] (678, 0) 1 [B] 1 ub 30 ( -> ) [( 3.0378e-01, 0.0000e+00, 0.0000e+00,-3.0377e-01), p^2= 4.6835e-06, m= 0.0000e+00] ( 0,635) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (1.15045,0.000148657,0.000428652,0.0392826) (3) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-2.05611e-06,-9.05733e-10,-2.09427e-11,3.50067e-06) (3) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 7 ( -> 3) [( 4.4285e+01,-0.0000e+00,-0.0000e+00, 4.4285e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,602) 0 [I] 1 G 14 ( -> 5) [( 1.1456e+03,-0.0000e+00,-0.0000e+00, 1.1456e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,629) 0 [I] 1 G 37 ( -> 7) [( 2.2163e+02,-0.0000e+00,-0.0000e+00, 2.2163e+02), p^2= 0.0000e+00, m= 0.0000e+00] (646,601) 0 [I] 1 u 58 ( -> 9) [( 2.2971e+02,-0.0000e+00,-0.0000e+00, 2.2971e+02), p^2= 0.0000e+00, m= 3.0000e-01] (629, 0) 0 [I] 1 G 71 ( -> 11) [( 2.9107e+02,-0.0000e+00,-0.0000e+00, 2.9107e+02), p^2= 0.0000e+00, m= 0.0000e+00] (670,646) 0 [I] 1 G 85 ( -> 13) [( 5.2088e+02,-0.0000e+00,-0.0000e+00, 5.2088e+02), p^2= 0.0000e+00, m= 0.0000e+00] (678,670) 0 [I] 1 G 96 ( -> 15) [( 5.5210e+01,-0.0000e+00,-0.0000e+00, 5.5210e+01), p^2= 0.0000e+00, m= 0.0000e+00] (695,678) 0 and Particle List with 7 elements [I] 1 G 6 ( -> 3) [( 8.8334e+01,-0.0000e+00,-0.0000e+00,-8.8334e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 1 [I] 1 G 15 ( -> 5) [( 2.2955e+03,-0.0000e+00,-0.0000e+00,-2.2955e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,624) 1 [I] 1 u 38 ( -> 7) [( 4.0277e+03,-0.0000e+00,-0.0000e+00,-4.0277e+03), p^2= 0.0000e+00, m= 3.0000e-01] (641, 0) 1 [I] 1 G 59 ( -> 9) [( 7.0440e+01,-0.0000e+00,-0.0000e+00,-7.0440e+01), p^2= 0.0000e+00, m= 0.0000e+00] (624,668) 1 [I] 1 G 72 ( -> 11) [( 1.4193e+01,-0.0000e+00,-0.0000e+00,-1.4193e+01), p^2= 0.0000e+00, m= 0.0000e+00] (675,641) 1 [I] 1 u 86 ( -> 13) [( 2.0058e+00,-0.0000e+00,-0.0000e+00,-2.0058e+00), p^2= 0.0000e+00, m= 3.0000e-01] (668, 0) 1 [I] 1 G 97 ( -> 15) [( 1.0592e+00,-0.0000e+00,-0.0000e+00,-1.0592e+00), p^2= 0.0000e+00, m= 0.0000e+00] (678,675) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 104 ( -> ) [( 3.9916e+03, 0.0000e+00, 0.0000e+00, 3.9916e+03), p^2= 5.4062e-01, m= 5.7933e-01] ( 0,695) 0 and Particle List with 2 elements [B] 1 ud_0 105 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,678) 1 [B] 1 ub 53 ( -> ) [( 8.2766e-01, 0.0000e+00, 0.0000e+00,-8.2759e-01), p^2= 1.1209e-04, m= 0.0000e+00] ( 0,602) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 3000 ( 1m 21s elapsed / 44m 10s left ) -> ETA: Thu Oct 24 22:32 XS = 0.0690969 pb +- ( 0.000199553 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.0876071,0.000454565,0.000764072,0.0695071) (4) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-9.71149e-08,-7.12757e-10,-2.68171e-10,2.3585e-07) (4) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (1.19004,5.7413e-05,0.000342835,-0.0501261) (5) WARNING: last allowed error message from 'FourMomentumConservation' Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-1.74473e-06,3.1762e-10,-1.23189e-09,-1.7164e-06) (5) Event 4000 ( 1m 44s elapsed / 41m 54s left ) -> ETA: Thu Oct 24 22:30 XS = 0.0691294 pb +- ( 0.000171726 pb = 0 % ) Event 5000 ( 2m 8s elapsed / 40m 45s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 33 MB, now 273 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691183 pb +- ( 0.000152917 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 8 elements [I] 1 G 7 ( -> 3) [( 1.8261e+02,-0.0000e+00,-0.0000e+00, 1.8261e+02), p^2= 1.0380e-11, m= 0.0000e+00] (601,602) 0 [I] 1 d 14 ( -> 5) [( 1.9441e+03,-0.0000e+00,-0.0000e+00, 1.9441e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 G 45 ( -> 7) [( 3.7395e+02,-0.0000e+00,-0.0000e+00, 3.7395e+02), p^2= 0.0000e+00, m= 0.0000e+00] (640,601) 0 [I] 1 G 68 ( -> 9) [( 3.7394e+02,-0.0000e+00,-0.0000e+00, 3.7394e+02), p^2= 0.0000e+00, m= 0.0000e+00] (672,640) 0 [I] 1 d 95 ( -> 11) [( 1.0328e+01,-0.0000e+00,-0.0000e+00, 1.0328e+01), p^2= 0.0000e+00, m= 3.0000e-01] (674, 0) 0 [I] 1 d 116 ( -> 13) [( 3.2392e+03,-0.0000e+00,-0.0000e+00, 3.2392e+03), p^2= 0.0000e+00, m= 3.0000e-01] (693, 0) 0 [I] 1 G 135 ( -> 15) [( 3.7329e+02,-0.0000e+00,-0.0000e+00, 3.7329e+02), p^2= 0.0000e+00, m= 0.0000e+00] (707,693) 0 [I] 1 ub 161 ( -> 17) [( 9.3133e-01,-0.0000e+00,-0.0000e+00, 9.3133e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,707) 0 and Particle List with 8 elements [I] 1 G 6 ( -> 3) [( 2.1422e+01,-0.0000e+00,-0.0000e+00,-2.1422e+01), p^2=-3.0442e-13, m= 0.0000e+00] (602,601) 1 [I] 1 d 15 ( -> 5) [( 7.3591e+02,-0.0000e+00,-0.0000e+00,-7.3591e+02), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 d 46 ( -> 7) [( 1.8148e+03,-0.0000e+00,-0.0000e+00,-1.8148e+03), p^2= 0.0000e+00, m= 3.0000e-01] (645, 0) 1 [I] 1 G 69 ( -> 9) [( 7.5108e+02,-0.0000e+00,-0.0000e+00,-7.5108e+02), p^2= 0.0000e+00, m= 0.0000e+00] (673,645) 1 [I] 1 G 96 ( -> 11) [( 5.1676e+02,-0.0000e+00,-0.0000e+00,-5.1676e+02), p^2= 0.0000e+00, m= 0.0000e+00] (683,673) 1 [I] 1 d 117 ( -> 13) [( 2.9794e+02,-0.0000e+00,-0.0000e+00,-2.9794e+02), p^2= 0.0000e+00, m= 3.0000e-01] (691, 0) 1 [I] 1 G 136 ( -> 15) [( 2.4708e+02,-0.0000e+00,-0.0000e+00,-2.4708e+02), p^2= 0.0000e+00, m= 0.0000e+00] (716,691) 1 [I] 1 db 162 ( -> 17) [( 7.9874e+02,-0.0000e+00,-0.0000e+00,-7.9874e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,716) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 174 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,732) 0 [B] 1 u 170 ( -> ) [( 3.6631e-01, 0.0000e+00, 0.0000e+00, 3.6629e-01), p^2= 1.1090e-05, m= 0.0000e+00] (732, 0) 0 [B] 1 db 129 ( -> ) [( 5.5456e-01, 0.0000e+00, 0.0000e+00, 5.5454e-01), p^2= 2.5418e-05, m= 0.0000e+00] ( 0,674) 0 [B] 1 db 111 ( -> ) [( 7.1782e-01, 0.0000e+00, 0.0000e+00, 7.1779e-01), p^2= 4.2587e-05, m= 0.0000e+00] ( 0,672) 0 and Particle List with 2 elements [B] 1 uu_1 175 ( -> ) [( 1.0058e+03, 0.0000e+00, 0.0000e+00,-1.0058e+03), p^2= 1.0410e-01, m= 7.7133e-01] ( 0,683) 1 [B] 1 db 63 ( -> ) [( 3.1046e+02, 0.0000e+00, 0.0000e+00,-3.1046e+02), p^2= 9.9178e-03, m= 0.0000e+00] ( 0,602) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 6000 ( 2m 32s elapsed / 39m 53s left ) -> ETA: Thu Oct 24 22:29 XS = 0.0690153 pb +- ( 0.00014334 pb = 0 % ) Event 7000 ( 2m 56s elapsed / 39m 10s left ) -> ETA: Thu Oct 24 22:28 XS = 0.0690506 pb +- ( 0.000131195 pb = 0 % ) Event 8000 ( 3m 20s elapsed / 38m 25s left ) -> ETA: Thu Oct 24 22:28 XS = 0.0690589 pb +- ( 0.000122558 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 10 elements [I] 1 G 6 ( -> 3) [( 2.6999e+01,-0.0000e+00,-0.0000e+00, 2.6999e+01), p^2=-3.8368e-13, m= 0.0000e+00] (602,601) 0 [I] 1 G 14 ( -> 5) [( 2.8441e+02,-0.0000e+00,-0.0000e+00, 2.8441e+02), p^2= 0.0000e+00, m= 0.0000e+00] (636,602) 0 [I] 1 ub 38 ( -> 7) [( 2.1428e+02,-0.0000e+00,-0.0000e+00, 2.1428e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,636) 0 [I] 1 G 67 ( -> 9) [( 1.8139e+02,-0.0000e+00,-0.0000e+00, 1.8139e+02), p^2= 0.0000e+00, m= 0.0000e+00] (675,661) 0 [I] 1 u 93 ( -> 11) [( 1.5825e+03,-0.0000e+00,-0.0000e+00, 1.5825e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 d 108 ( -> 13) [( 5.1646e+02,-0.0000e+00,-0.0000e+00, 5.1646e+02), p^2= 0.0000e+00, m= 3.0000e-01] (691, 0) 0 [I] 1 G 126 ( -> 15) [( 2.0145e+02,-0.0000e+00,-0.0000e+00, 2.0145e+02), p^2= 0.0000e+00, m= 0.0000e+00] (705,691) 0 [I] 1 u 139 ( -> 17) [( 1.7817e+03,-0.0000e+00,-0.0000e+00, 1.7817e+03), p^2= 0.0000e+00, m= 3.0000e-01] (715, 0) 0 [I] 1 sb 156 ( -> 19) [( 5.5708e+02,-0.0000e+00,-0.0000e+00, 5.5708e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,715) 0 [I] 1 u 168 ( -> 21) [( 4.8179e+02,-0.0000e+00,-0.0000e+00, 4.8179e+02), p^2= 0.0000e+00, m= 3.0000e-01] (737, 0) 0 and Particle List with 10 elements [I] 1 G 7 ( -> 3) [( 1.4489e+02,-0.0000e+00,-0.0000e+00,-1.4489e+02), p^2= 8.2360e-12, m= 0.0000e+00] (601,602) 1 [I] 1 G 15 ( -> 5) [( 9.2149e+02,-0.0000e+00,-0.0000e+00,-9.2149e+02), p^2= 0.0000e+00, m= 0.0000e+00] (630,601) 1 [I] 1 u 39 ( -> 7) [( 1.1415e+03,-0.0000e+00,-0.0000e+00,-1.1415e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 G 68 ( -> 9) [( 1.5730e+03,-0.0000e+00,-0.0000e+00,-1.5730e+03), p^2= 0.0000e+00, m= 0.0000e+00] (669,630) 1 [I] 1 G 94 ( -> 11) [( 2.6575e+02,-0.0000e+00,-0.0000e+00,-2.6575e+02), p^2= 0.0000e+00, m= 0.0000e+00] (684,669) 1 [I] 1 u 109 ( -> 13) [( 2.1593e+03,-0.0000e+00,-0.0000e+00,-2.1593e+03), p^2= 0.0000e+00, m= 3.0000e-01] (692, 0) 1 [I] 1 db 127 ( -> 15) [( 2.5428e+00,-0.0000e+00,-0.0000e+00,-2.5428e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,692) 1 [I] 1 G 140 ( -> 17) [( 2.8040e+02,-0.0000e+00,-0.0000e+00,-2.8040e+02), p^2= 0.0000e+00, m= 0.0000e+00] (716,710) 1 [I] 1 ub 157 ( -> 19) [( 1.9285e+00,-0.0000e+00,-0.0000e+00,-1.9285e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,716) 1 [I] 1 u 169 ( -> 21) [( 7.6420e+00,-0.0000e+00,-0.0000e+00,-7.6420e+00), p^2= 0.0000e+00, m= 3.0000e-01] (738, 0) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 184 ( -> ) [( 5.3297e+02, 0.0000e+00, 0.0000e+00, 5.3297e+02), p^2= 5.7252e-02, m= 5.7933e-01] ( 0,737) 0 [B] 1 s 162 ( -> ) [( 1.2164e+00, 0.0000e+00, 0.0000e+00, 1.2164e+00), p^2= 2.9823e-07, m= 0.0000e+00] (661, 0) 0 [B] 1 ub 151 ( -> ) [( 3.9750e-01, 0.0000e+00, 0.0000e+00, 3.9750e-01), p^2= 3.1847e-08, m= 0.0000e+00] ( 0,705) 0 [B] 1 db 120 ( -> ) [( 1.3740e+02, 0.0000e+00, 0.0000e+00, 1.3740e+02), p^2= 3.8051e-03, m= 0.0000e+00] ( 0,675) 0 and Particle List with 3 elements [B] 1 ud_0 186 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,738) 1 [B] 1 d 134 ( -> ) [( 3.8660e-01, 0.0000e+00, 0.0000e+00,-3.8658e-01), p^2= 1.3830e-05, m= 0.0000e+00] (710, 0) 1 [B] 1 ub 121 ( -> ) [( 1.0771e+00, 0.0000e+00, 0.0000e+00,-1.0770e+00), p^2= 1.0734e-04, m= 0.0000e+00] ( 0,684) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 9000 ( 3m 44s elapsed / 37m 51s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 28 MB, now 302 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691021 pb +- ( 0.000114637 pb = 0 % ) Event 10000 ( 4m 16s elapsed / 38m 31s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 60 MB, now 363 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.069151 pb +- ( 0.000107524 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 6 ( -> 3) [( 1.2746e+02,-0.0000e+00,-0.0000e+00, 1.2746e+02), p^2=-3.6225e-12, m= 0.0000e+00] (602,601) 0 [I] 1 u 14 ( -> 5) [( 7.0711e+01,-0.0000e+00,-0.0000e+00, 7.0711e+01), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 u 35 ( -> 7) [( 8.2018e+02,-0.0000e+00,-0.0000e+00, 8.2018e+02), p^2= 0.0000e+00, m= 3.0000e-01] (626, 0) 0 [I] 1 G 58 ( -> 9) [( 3.8727e+03,-0.0000e+00,-0.0000e+00, 3.8727e+03), p^2= 0.0000e+00, m= 0.0000e+00] (650,602) 0 [I] 1 G 84 ( -> 11) [( 3.2169e+02,-0.0000e+00,-0.0000e+00, 3.2169e+02), p^2= 0.0000e+00, m= 0.0000e+00] (673,650) 0 [I] 1 G 105 ( -> 13) [( 2.2482e+02,-0.0000e+00,-0.0000e+00, 2.2482e+02), p^2= 0.0000e+00, m= 0.0000e+00] (683,673) 0 [I] 1 G 119 ( -> 15) [( 9.4519e+01,-0.0000e+00,-0.0000e+00, 9.4519e+01), p^2= 0.0000e+00, m= 0.0000e+00] (697,683) 0 and Particle List with 7 elements [I] 1 G 7 ( -> 3) [( 3.0692e+01,-0.0000e+00,-0.0000e+00,-3.0692e+01), p^2=-6.5424e-13, m= 0.0000e+00] (601,602) 1 [I] 1 u 15 ( -> 5) [( 1.4192e+03,-0.0000e+00,-0.0000e+00,-1.4192e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 u 36 ( -> 7) [( 1.3225e+03,-0.0000e+00,-0.0000e+00,-1.3225e+03), p^2= 0.0000e+00, m= 3.0000e-01] (633, 0) 1 [I] 1 u 59 ( -> 9) [( 2.7194e+03,-0.0000e+00,-0.0000e+00,-2.7194e+03), p^2= 0.0000e+00, m= 3.0000e-01] (648, 0) 1 [I] 1 G 85 ( -> 11) [( 9.5988e+02,-0.0000e+00,-0.0000e+00,-9.5988e+02), p^2= 0.0000e+00, m= 0.0000e+00] (663,648) 1 [I] 1 u 106 ( -> 13) [( 4.5330e+01,-0.0000e+00,-0.0000e+00,-4.5330e+01), p^2= 0.0000e+00, m= 3.0000e-01] (681, 0) 1 [I] 1 d 120 ( -> 15) [( 1.3220e+00,-0.0000e+00,-0.0000e+00,-1.3220e+00), p^2= 0.0000e+00, m= 3.0000e-01] (683, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 129 ( -> ) [( 6.6100e+02, 0.0000e+00, 0.0000e+00, 6.6100e+02), p^2= 6.1139e-02, m= 5.7933e-01] ( 0,697) 0 [B] 1 ub 30 ( -> ) [( 3.0689e+02, 0.0000e+00, 0.0000e+00, 3.0689e+02), p^2= 1.3179e-02, m= 0.0000e+00] ( 0,626) 0 and Particle List with 5 elements [B] 1 ud_0 130 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,683) 1 [B] 1 db 126 ( -> ) [( 3.6155e-01, 0.0000e+00, 0.0000e+00,-3.6153e-01), p^2= 1.0685e-05, m= 0.0000e+00] ( 0,681) 1 [B] 1 ub 114 ( -> ) [( 4.2601e-01, 0.0000e+00, 0.0000e+00,-4.2599e-01), p^2= 1.4835e-05, m= 0.0000e+00] ( 0,663) 1 [B] 1 ub 79 ( -> ) [( 5.0186e-01, 0.0000e+00, 0.0000e+00,-5.0184e-01), p^2= 2.0588e-05, m= 0.0000e+00] ( 0,633) 1 [B] 1 ub 53 ( -> ) [( 3.6744e-01, 0.0000e+00, 0.0000e+00,-3.6742e-01), p^2= 1.1036e-05, m= 0.0000e+00] ( 0,601) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 20000 ( 8m 25s elapsed / 33m 40s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 160 MB, now 524 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691495 pb +- ( 7.61686e-05 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 30000 ( 12m 22s elapsed / 28m 52s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 150 MB, now 674 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691453 pb +- ( 6.23146e-05 pb = 0 % ) Event 40000 ( 16m 21s elapsed / 24m 32s left ) -> ETA: Thu Oct 24 22:27  Memory usage increased by 160 MB, now 834 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691552 pb +- ( 5.3669e-05 pb = 0 % ) Event 50000 ( 20m 8s elapsed / 20m 8s left ) -> ETA: Thu Oct 24 22:27  Memory usage increased by 210 MB, now 1044 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691147 pb +- ( 4.85123e-05 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 60000 ( 26m 23s elapsed / 17m 35s left ) -> ETA: Thu Oct 24 22:30  Memory usage increased by 135 MB, now 1180 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691359 pb +- ( 4.41228e-05 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 70000 ( 29m 57s elapsed / 12m 50s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 171 MB, now 1351 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.069161 pb +- ( 4.05228e-05 pb = 0 % ) Event 80000 ( 33m 29s elapsed / 8m 22s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 170 MB, now 1521 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691468 pb +- ( 3.80477e-05 pb = 0 % ) Event 90000 ( 37m 46s elapsed / 4m 11s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 174 MB, now 1695 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.069137 pb +- ( 3.60009e-05 pb = 0 % ) Event 100000 ( 2486 s total ) = 3.47679e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/1083){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  0.0691315 0 % 3.41985e-05 0.04 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100000 New events { From "Beam_Remnants:Parametrised": 58 (100281) -> 0 % From "Jet_Evolution:CFP": 223 (490071) -> 0 % } Retried phases { From "Hadron_Decay_Handler::RejectExclusiveChannelsFromFragmentation": 775 (0) -> 775. } Retried methods { From "Decay_Channel::GenerateKinematics": 240 (20955113) -> 0 % } } Blob_List: Momentum Fail Statistics { Signal Process : 28 fails Hard Decay : 40 fails Hard Collision : 54 fails Soft Collision : 223 fails Shower : 1599 fails Fragmentation : 223 fails Hadron Decay : 18599 fails } Error messages from 'FourMomentumConservation' exceeded frequency limit: 35/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Gluon_Splitter::~Gluon_Splitter with 18306 kinematic fails. Singlet_Checker::~Singlet_Checker with 2 errors in total. Remnant handling yields 58 fails in creating good beam breakups. Remnant Kinematics: 58 errors (no kinematics found) and 4 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 41m 30s on Thu Oct 24 22:28:17 2024 (User: 39m 33s, System: 1m 33s, Children User: 0s, Children System: 0s)