Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:45:00 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1048 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.76746e-07(3.94515e-09) GeV, BR= 7.08314e-06 % 23,-24,4,-3 Z --> W- c sb 1.7244e-07(3.85671e-09) GeV, BR= 6.91057e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.82568e-08(1.27178e-09) GeV, BR= 2.33466e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.56645e-08(1.26056e-09) GeV, BR= 2.23077e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 4.96402e-08(1.01943e-09) GeV, BR= 1.98935e-06 % 23,24,-2,1 Z --> W+ ub d 1.74673e-07(3.8868e-09) GeV, BR= 7.00009e-06 % 23,24,-4,3 Z --> W+ cb s 1.6876e-07(3.82674e-09) GeV, BR= 6.7631e-06 % 23,24,-12,11 Z --> W+ veb e- 5.73514e-08(1.28637e-09) GeV, BR= 2.29838e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.71792e-08(1.29046e-09) GeV, BR= 2.29147e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 5.04049e-08(1.0119e-09) GeV, BR= 2.01999e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.00172988 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.20221e-05) GeV [disabled], BR= 19.3886 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538014 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8276 % 25,-24,2,-1 h0 --> W- u db 0.000132916(1.01157e-06) GeV [disabled], BR= 7.68353 % 25,-24,4,-3 h0 --> W- c sb 0.000131844(9.9231e-07) GeV [disabled], BR= 7.62154 % 25,-24,12,-11 h0 --> W- ve e+ 4.39715e-05(3.31319e-07) GeV [disabled], BR= 2.54188 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.32191e-05(3.45295e-07) GeV [disabled], BR= 2.49839 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.28525e-05(3.34084e-07) GeV [disabled], BR= 2.47719 % 25,24,-2,1 h0 --> W+ ub d 0.000130711(1.0189e-06) GeV [disabled], BR= 7.55608 % 25,24,-4,3 h0 --> W+ cb s 0.000129425(1.02232e-06) GeV [disabled], BR= 7.4817 % 25,24,-12,11 h0 --> W+ veb e- 4.42378e-05(3.42141e-07) GeV [disabled], BR= 2.55727 % 25,24,-14,13 h0 --> W+ vmub mu- 4.41454e-05(3.45876e-07) GeV [disabled], BR= 2.55193 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.30982e-05(3.28231e-07) GeV [disabled], BR= 2.4914 % 25,23,1,-1 h0 --> Z d db 5.19358e-05(4.29172e-07) GeV [disabled], BR= 3.00227 % 25,23,2,-2 h0 --> Z u ub 4.09456e-05(3.36366e-07) GeV [disabled], BR= 2.36696 % 25,23,3,-3 h0 --> Z s sb 5.2246e-05(4.2203e-07) GeV [disabled], BR= 3.02021 % 25,23,4,-4 h0 --> Z c cb 4.0508e-05(3.30007e-07) GeV [disabled], BR= 2.34166 % 25,23,5,-5 h0 --> Z b bb 5.14446e-05(4.35897e-07) GeV [disabled], BR= 2.97388 % 25,23,11,-11 h0 --> Z e- e+ 1.18839e-05(9.66582e-08) GeV [disabled], BR= 0.686975 % 25,23,12,-12 h0 --> Z ve veb 2.33356e-05(1.88744e-07) GeV [disabled], BR= 1.34897 % 25,23,13,-13 h0 --> Z mu- mu+ 1.17035e-05(9.70215e-08) GeV [disabled], BR= 0.67655 % 25,23,14,-14 h0 --> Z vmu vmub 2.35144e-05(1.90925e-07) GeV [disabled], BR= 1.35931 % 25,23,15,-15 h0 --> Z tau- tau+ 1.12608e-05(8.84592e-08) GeV [disabled], BR= 0.650958 % 25,23,16,-16 h0 --> Z vtau vtaub 2.34767e-05(1.93912e-07) GeV [disabled], BR= 1.35713 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 62 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:46:46 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1048 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.76746e-07(3.94515e-09) GeV, BR= 7.08314e-06 % 23,-24,4,-3 Z --> W- c sb 1.7244e-07(3.85671e-09) GeV, BR= 6.91057e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.82568e-08(1.27178e-09) GeV, BR= 2.33466e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.56645e-08(1.26056e-09) GeV, BR= 2.23077e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 4.96402e-08(1.01943e-09) GeV, BR= 1.98935e-06 % 23,24,-2,1 Z --> W+ ub d 1.74673e-07(3.8868e-09) GeV, BR= 7.00009e-06 % 23,24,-4,3 Z --> W+ cb s 1.6876e-07(3.82674e-09) GeV, BR= 6.7631e-06 % 23,24,-12,11 Z --> W+ veb e- 5.73514e-08(1.28637e-09) GeV, BR= 2.29838e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.71792e-08(1.29046e-09) GeV, BR= 2.29147e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 5.04049e-08(1.0119e-09) GeV, BR= 2.01999e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.00172988 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.20221e-05) GeV [disabled], BR= 19.3886 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538014 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8276 % 25,-24,2,-1 h0 --> W- u db 0.000132916(1.01157e-06) GeV [disabled], BR= 7.68353 % 25,-24,4,-3 h0 --> W- c sb 0.000131844(9.9231e-07) GeV [disabled], BR= 7.62154 % 25,-24,12,-11 h0 --> W- ve e+ 4.39715e-05(3.31319e-07) GeV [disabled], BR= 2.54188 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.32191e-05(3.45295e-07) GeV [disabled], BR= 2.49839 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.28525e-05(3.34084e-07) GeV [disabled], BR= 2.47719 % 25,24,-2,1 h0 --> W+ ub d 0.000130711(1.0189e-06) GeV [disabled], BR= 7.55608 % 25,24,-4,3 h0 --> W+ cb s 0.000129425(1.02232e-06) GeV [disabled], BR= 7.4817 % 25,24,-12,11 h0 --> W+ veb e- 4.42378e-05(3.42141e-07) GeV [disabled], BR= 2.55727 % 25,24,-14,13 h0 --> W+ vmub mu- 4.41454e-05(3.45876e-07) GeV [disabled], BR= 2.55193 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.30982e-05(3.28231e-07) GeV [disabled], BR= 2.4914 % 25,23,1,-1 h0 --> Z d db 5.19358e-05(4.29172e-07) GeV [disabled], BR= 3.00227 % 25,23,2,-2 h0 --> Z u ub 4.09456e-05(3.36366e-07) GeV [disabled], BR= 2.36696 % 25,23,3,-3 h0 --> Z s sb 5.2246e-05(4.2203e-07) GeV [disabled], BR= 3.02021 % 25,23,4,-4 h0 --> Z c cb 4.0508e-05(3.30007e-07) GeV [disabled], BR= 2.34166 % 25,23,5,-5 h0 --> Z b bb 5.14446e-05(4.35897e-07) GeV [disabled], BR= 2.97388 % 25,23,11,-11 h0 --> Z e- e+ 1.18839e-05(9.66582e-08) GeV [disabled], BR= 0.686975 % 25,23,12,-12 h0 --> Z ve veb 2.33356e-05(1.88744e-07) GeV [disabled], BR= 1.34897 % 25,23,13,-13 h0 --> Z mu- mu+ 1.17035e-05(9.70215e-08) GeV [disabled], BR= 0.67655 % 25,23,14,-14 h0 --> Z vmu vmub 2.35144e-05(1.90925e-07) GeV [disabled], BR= 1.35931 % 25,23,15,-15 h0 --> Z tau- tau+ 1.12608e-05(8.84592e-08) GeV [disabled], BR= 0.650958 % 25,23,16,-16 h0 --> Z vtau vtaub 2.34767e-05(1.93912e-07) GeV [disabled], BR= 1.35713 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 62 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 4s elapsed / 5d 6h 6m 35s left ) -> ETA: Wed Oct 30 02:53 XS = 0.0711075 pb +- ( 0.0711075 pb = 100 % ) Event 2 ( 4s elapsed / 2d 15h 28m 15s left ) -> ETA: Sun Oct 27 12:15 XS = 0.0729801 pb +- ( 0.00187259 pb = 2 % ) Event 3 ( 4s elapsed / 1d 18h 24m 22s left ) -> ETA: Sat Oct 26 16:11 XS = 0.0724233 pb +- ( 0.00121609 pb = 1 % ) Event 4 ( 4s elapsed / 1d 8h 4m 55s left ) -> ETA: Sat Oct 26 05:51 XS = 0.0723264 pb +- ( 0.000865354 pb = 1 % ) Event 5 ( 4s elapsed / 1d 1h 43m 15s left ) -> ETA: Fri Oct 25 23:30 XS = 0.0721504 pb +- ( 0.000693008 pb = 0 % ) Event 6 ( 4s elapsed / 21h 31m 35s left ) -> ETA: Fri Oct 25 19:18 XS = 0.0721471 pb +- ( 0.000565849 pb = 0 % ) Event 7 ( 4s elapsed / 18h 29m 26s left ) -> ETA: Fri Oct 25 16:16 XS = 0.0718602 pb +- ( 0.000557654 pb = 0 % ) Event 8 ( 4s elapsed / 16h 12m 50s left ) -> ETA: Fri Oct 25 13:59 XS = 0.0683144 pb +- ( 0.00357859 pb = 5 % ) Event 9 ( 4s elapsed / 14h 32m 8s left ) -> ETA: Fri Oct 25 12:19 XS = 0.068748 pb +- ( 0.00318567 pb = 4 % ) Event 10 ( 4s elapsed / 13h 9m 55s left ) -> ETA: Fri Oct 25 10:56 XS = 0.0691815 pb +- ( 0.00288214 pb = 4 % ) Event 20 ( 4s elapsed / 6h 55m 45s left ) -> ETA: Fri Oct 25 04:42 XS = 0.0626653 pb +- ( 0.00449037 pb = 7 % ) Event 30 ( 5s elapsed / 4h 50m 28s left ) -> ETA: Fri Oct 25 02:37 XS = 0.0654968 pb +- ( 0.00306131 pb = 4 % ) Event 40 ( 5s elapsed / 3h 46m 59s left ) -> ETA: Fri Oct 25 01:33 XS = 0.0673414 pb +- ( 0.00235479 pb = 3 % ) Event 50 ( 5s elapsed / 3h 8m 14s left ) -> ETA: Fri Oct 25 00:55 XS = 0.0685113 pb +- ( 0.00191526 pb = 2 % ) Event 60 ( 6s elapsed / 2h 54m 37s left ) -> ETA: Fri Oct 25 00:41 XS = 0.0690893 pb +- ( 0.00160347 pb = 2 % ) Event 70 ( 6s elapsed / 2h 35m 36s left ) -> ETA: Fri Oct 25 00:22 XS = 0.0693396 pb +- ( 0.0013757 pb = 1 % ) Event 80 ( 6s elapsed / 2h 20m 43s left ) -> ETA: Fri Oct 25 00:07 XS = 0.0691029 pb +- ( 0.00125454 pb = 1 % ) Event 90 ( 7s elapsed / 2h 10m 4s left ) -> ETA: Thu Oct 24 23:57 XS = 0.0686205 pb +- ( 0.00126692 pb = 1 % ) Event 100 ( 7s elapsed / 2h 1m 32s left ) -> ETA: Thu Oct 24 23:48 XS = 0.0685757 pb +- ( 0.00115224 pb = 1 % ) Event 200 ( 9s elapsed / 1h 20m left ) -> ETA: Thu Oct 24 23:07 XS = 0.0686125 pb +- ( 0.000794051 pb = 1 % ) Event 300 ( 11s elapsed / 1h 5m 11s left ) -> ETA: Thu Oct 24 22:52 XS = 0.0687916 pb +- ( 0.000653697 pb = 0 % ) Event 400 ( 14s elapsed / 58m 43s left ) -> ETA: Thu Oct 24 22:45 XS = 0.0690005 pb +- ( 0.000548368 pb = 0 % ) Event 500 ( 19s elapsed / 1h 6m left ) -> ETA: Thu Oct 24 22:53  Memory usage increased by 73 MB, now 209 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690831 pb +- ( 0.000485633 pb = 0 % ) Event 600 ( 22s elapsed / 1h 1m 4s left ) -> ETA: Thu Oct 24 22:48 XS = 0.0689042 pb +- ( 0.000453661 pb = 0 % ) Event 700 ( 24s elapsed / 57m 42s left ) -> ETA: Thu Oct 24 22:44 XS = 0.0690149 pb +- ( 0.000402188 pb = 0 % ) Event 800 ( 26s elapsed / 55m 7s left ) -> ETA: Thu Oct 24 22:42 XS = 0.0689828 pb +- ( 0.000378894 pb = 0 % ) Event 900 ( 28s elapsed / 52m 55s left ) -> ETA: Thu Oct 24 22:40 XS = 0.0690539 pb +- ( 0.000350807 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 10 elements [I] 1 G 7 ( -> 3) [( 1.0163e+02,-0.0000e+00,-0.0000e+00, 1.0163e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,602) 0 [I] 1 u 14 ( -> 5) [( 4.1290e+03,-0.0000e+00,-0.0000e+00, 4.1290e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 G 38 ( -> 7) [( 2.4047e+02,-0.0000e+00,-0.0000e+00, 2.4047e+02), p^2= 0.0000e+00, m= 0.0000e+00] (652,601) 0 [I] 1 G 58 ( -> 9) [( 2.1706e+01,-0.0000e+00,-0.0000e+00, 2.1706e+01), p^2= 0.0000e+00, m= 0.0000e+00] (659,652) 0 [I] 1 u 71 ( -> 11) [( 1.6989e+03,-0.0000e+00,-0.0000e+00, 1.6989e+03), p^2= 0.0000e+00, m= 3.0000e-01] (663, 0) 0 [I] 1 G 89 ( -> 13) [( 6.2806e+01,-0.0000e+00,-0.0000e+00, 6.2806e+01), p^2= 0.0000e+00, m= 0.0000e+00] (674,663) 0 [I] 1 G 101 ( -> 15) [( 2.2683e+02,-0.0000e+00,-0.0000e+00, 2.2683e+02), p^2= 0.0000e+00, m= 0.0000e+00] (682,674) 0 [I] 1 G 116 ( -> 17) [( 4.7661e+00,-0.0000e+00,-0.0000e+00, 4.7661e+00), p^2= 0.0000e+00, m= 0.0000e+00] (699,682) 0 [I] 1 G 134 ( -> 19) [( 1.7688e+00,-0.0000e+00,-0.0000e+00, 1.7688e+00), p^2= 0.0000e+00, m= 0.0000e+00] (703,699) 0 [I] 1 db 148 ( -> 21) [( 1.0894e+01,-0.0000e+00,-0.0000e+00, 1.0894e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,703) 0 and Particle List with 10 elements [I] 1 G 6 ( -> 3) [( 3.8492e+01,-0.0000e+00,-0.0000e+00,-3.8492e+01), p^2=-5.4700e-13, m= 0.0000e+00] (602,601) 1 [I] 1 u 15 ( -> 5) [( 1.4600e+03,-0.0000e+00,-0.0000e+00,-1.4600e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 39 ( -> 7) [( 2.9364e+02,-0.0000e+00,-0.0000e+00,-2.9364e+02), p^2= 0.0000e+00, m= 0.0000e+00] (647,602) 1 [I] 1 G 59 ( -> 9) [( 8.6618e+01,-0.0000e+00,-0.0000e+00,-8.6618e+01), p^2= 0.0000e+00, m= 0.0000e+00] (652,647) 1 [I] 1 G 72 ( -> 11) [( 2.3481e+02,-0.0000e+00,-0.0000e+00,-2.3481e+02), p^2= 0.0000e+00, m= 0.0000e+00] (668,652) 1 [I] 1 ub 90 ( -> 13) [( 1.5740e+01,-0.0000e+00,-0.0000e+00,-1.5740e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,668) 1 [I] 1 G 102 ( -> 15) [( 2.1680e+02,-0.0000e+00,-0.0000e+00,-2.1680e+02), p^2= 0.0000e+00, m= 0.0000e+00] (685,678) 1 [I] 1 G 117 ( -> 17) [( 9.0374e+01,-0.0000e+00,-0.0000e+00,-9.0374e+01), p^2= 0.0000e+00, m= 0.0000e+00] (682,685) 1 [I] 1 G 135 ( -> 19) [( 8.5531e+01,-0.0000e+00,-0.0000e+00,-8.5531e+01), p^2= 0.0000e+00, m= 0.0000e+00] (704,682) 1 [I] 1 sb 149 ( -> 21) [( 1.7942e+03,-0.0000e+00,-0.0000e+00,-1.7942e+03), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,704) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 162 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,722) 0 [B] 1 d 158 ( -> ) [( 4.0437e-01, 0.0000e+00, 0.0000e+00, 4.0435e-01), p^2= 1.8495e-05, m= 0.0000e+00] (722, 0) 0 [B] 1 ub 84 ( -> ) [( 7.9304e-01, 0.0000e+00, 0.0000e+00, 7.9299e-01), p^2= 7.1134e-05, m= 0.0000e+00] ( 0,659) 0 and Particle List with 3 elements [B] 1 ud_0 163 ( -> ) [( 1.7611e+03, 0.0000e+00, 0.0000e+00,-1.7611e+03), p^2= 1.9235e-01, m= 5.7933e-01] ( 0,723) 1 [B] 1 s 159 ( -> ) [( 2.1747e+00, 0.0000e+00, 0.0000e+00,-2.1747e+00), p^2= 2.9331e-07, m= 0.0000e+00] (723, 0) 1 [B] 1 u 96 ( -> ) [( 4.2054e+02, 0.0000e+00, 0.0000e+00,-4.2054e+02), p^2= 1.0968e-02, m= 0.0000e+00] (678, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 1000 ( 31s elapsed / 51m 19s left ) -> ETA: Thu Oct 24 22:38 XS = 0.0691022 pb +- ( 0.000333201 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (1.24664,-0.000185287,0.00121329,0.497553) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-3.33339,-4.51664e-05,-0.000255306,-0.0980555) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.66553,-0.000174307,0.000274612,0.40156) (2) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.336567,0.000248648,-0.000312755,-0.0874764) (3) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.610232,-0.000176005,-0.000638695,-0.27344) (4) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.431182,0.000338343,-0.000225167,-0.43456) (5) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (1.77196e-06,1.53164e-09,1.20552e-09,1.64598e-06) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-3.92291e-11,7.09946e-13,9.73582e-13,3.92788e-11) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (2.32125e-12,2.13857e-14,-4.32154e-14,2.31859e-12) (2) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (7.13686e-08,-1.63741e-10,7.57578e-11,-7.13682e-08) (3) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (1.86803e-08,-3.26055e-11,-2.11092e-10,1.86791e-08) (4) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (1.59162e-12,5.78426e-14,2.18991e-14,-1.59162e-12) (5) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.177251,-0.000143259,-0.00124159,0.0868018) (2) Blob_List::FourMomentumConservation throws four momentum error for Signal Process : (5.22959e-12,0,0,5.00222e-12) (1) Blob_List::FourMomentumConservation throws four momentum error for Hard Decay : (-2.81375e-12,1.42109e-14,0,-2.89901e-12) (1) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (6.24938e-08,1.13058e-11,1.12172e-10,-2.03188e-08) (2) Event 2000 ( 54s elapsed / 44m 11s left ) -> ETA: Thu Oct 24 22:31 XS = 0.069075 pb +- ( 0.000237127 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 10 elements [I] 1 G 6 ( -> 3) [( 3.1638e+01,-0.0000e+00,-0.0000e+00, 3.1638e+01), p^2= 2.2480e-13, m= 0.0000e+00] (602,601) 0 [I] 1 G 14 ( -> 5) [( 1.9855e+02,-0.0000e+00,-0.0000e+00, 1.9855e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,650) 0 [I] 1 s 35 ( -> 7) [( 9.3886e-01,-0.0000e+00,-0.0000e+00, 9.3886e-01), p^2= 0.0000e+00, m= 4.0000e-01] (650, 0) 0 [I] 1 G 51 ( -> 9) [( 2.1305e+02,-0.0000e+00,-0.0000e+00, 2.1305e+02), p^2= 0.0000e+00, m= 0.0000e+00] (665,673) 0 [I] 1 d 71 ( -> 11) [( 4.5337e+02,-0.0000e+00,-0.0000e+00, 4.5337e+02), p^2= 0.0000e+00, m= 3.0000e-01] (673, 0) 0 [I] 1 G 94 ( -> 13) [( 1.3967e+03,-0.0000e+00,-0.0000e+00, 1.3967e+03), p^2= 0.0000e+00, m= 0.0000e+00] (709,602) 0 [I] 1 u 123 ( -> 15) [( 3.5723e+03,-0.0000e+00,-0.0000e+00, 3.5723e+03), p^2= 0.0000e+00, m= 3.0000e-01] (722, 0) 0 [I] 1 G 143 ( -> 17) [( 4.5463e+02,-0.0000e+00,-0.0000e+00, 4.5463e+02), p^2= 0.0000e+00, m= 0.0000e+00] (729,722) 0 [I] 1 d 166 ( -> 19) [( 3.4567e+01,-0.0000e+00,-0.0000e+00, 3.4567e+01), p^2= 0.0000e+00, m= 3.0000e-01] (747, 0) 0 [I] 1 G 177 ( -> 21) [( 1.4215e+02,-0.0000e+00,-0.0000e+00, 1.4215e+02), p^2= 0.0000e+00, m= 0.0000e+00] (760,747) 0 and Particle List with 10 elements [I] 1 G 7 ( -> 3) [( 1.2364e+02,-0.0000e+00,-0.0000e+00,-1.2364e+02), p^2= 3.5142e-12, m= 0.0000e+00] (601,602) 1 [I] 1 d 15 ( -> 5) [( 1.9329e+02,-0.0000e+00,-0.0000e+00,-1.9329e+02), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 G 36 ( -> 7) [( 2.5713e+02,-0.0000e+00,-0.0000e+00,-2.5713e+02), p^2= 0.0000e+00, m= 0.0000e+00] (654,657) 1 [I] 1 d 52 ( -> 9) [( 4.5356e+02,-0.0000e+00,-0.0000e+00,-4.5356e+02), p^2= 0.0000e+00, m= 3.0000e-01] (657, 0) 1 [I] 1 d 72 ( -> 11) [( 6.0325e+02,-0.0000e+00,-0.0000e+00,-6.0325e+02), p^2= 0.0000e+00, m= 3.0000e-01] (691, 0) 1 [I] 1 u 95 ( -> 13) [( 3.1047e+03,-0.0000e+00,-0.0000e+00,-3.1047e+03), p^2= 0.0000e+00, m= 3.0000e-01] (710, 0) 1 [I] 1 G 124 ( -> 15) [( 9.6316e+01,-0.0000e+00,-0.0000e+00,-9.6316e+01), p^2= 0.0000e+00, m= 0.0000e+00] (718,710) 1 [I] 1 G 144 ( -> 17) [( 1.0995e+02,-0.0000e+00,-0.0000e+00,-1.0995e+02), p^2= 0.0000e+00, m= 0.0000e+00] (733,718) 1 [I] 1 G 167 ( -> 19) [( 3.1530e+02,-0.0000e+00,-0.0000e+00,-3.1530e+02), p^2= 0.0000e+00, m= 0.0000e+00] (750,733) 1 [I] 1 u 178 ( -> 21) [( 1.9155e+02,-0.0000e+00,-0.0000e+00,-1.9155e+02), p^2= 0.0000e+00, m= 3.0000e-01] (747, 0) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 194 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,760) 0 [B] 1 db 172 ( -> ) [( 4.4210e-01, 0.0000e+00, 0.0000e+00, 4.4208e-01), p^2= 1.2953e-05, m= 0.0000e+00] ( 0,729) 0 [B] 1 ub 138 ( -> ) [( 9.9085e-01, 0.0000e+00, 0.0000e+00, 9.9082e-01), p^2= 6.5064e-05, m= 0.0000e+00] ( 0,709) 0 [B] 1 sb 46 ( -> ) [( 6.1071e-01, 0.0000e+00, 0.0000e+00, 6.1069e-01), p^2= 2.4717e-05, m= 0.0000e+00] ( 0,665) 0 and Particle List with 5 elements [B] 1 uu_1 195 ( -> ) [( 7.0541e+02, 0.0000e+00, 0.0000e+00,-7.0541e+02), p^2= 6.4103e-02, m= 7.7133e-01] ( 0,747) 1 [B] 1 ub 191 ( -> ) [( 4.2237e-01, 0.0000e+00, 0.0000e+00,-4.2237e-01), p^2= 2.2981e-08, m= 0.0000e+00] ( 0,750) 1 [B] 1 ub 118 ( -> ) [( 5.8790e+00, 0.0000e+00, 0.0000e+00,-5.8790e+00), p^2= 4.4525e-06, m= 0.0000e+00] ( 0,691) 1 [B] 1 db 89 ( -> ) [( 4.2214e+00, 0.0000e+00, 0.0000e+00,-4.2214e+00), p^2= 2.2957e-06, m= 0.0000e+00] ( 0,601) 1 [B] 1 db 30 ( -> ) [( 3.3542e+02, 0.0000e+00, 0.0000e+00,-3.3542e+02), p^2= 1.4494e-02, m= 0.0000e+00] ( 0,654) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.510047,-0.00101102,-0.000685995,0.507508) (3) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-1.04931e-06,8.46399e-10,1.16053e-09,-1.06375e-06) (3) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.78379,2.04665e-05,-0.000163339,-0.137218) (4) WARNING: last allowed error message from 'FourMomentumConservation' Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (1.23036e-06,-2.33182e-10,-5.33355e-10,-1.44982e-06) (4) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 1m 16s elapsed / 41m 8s left ) -> ETA: Thu Oct 24 22:29 XS = 0.0690198 pb +- ( 0.000197877 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 8 elements [I] 1 G 6 ( -> 3) [( 5.4130e+02,-0.0000e+00,-0.0000e+00, 5.4130e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 0 [I] 1 u 14 ( -> 5) [( 1.2716e+03,-0.0000e+00,-0.0000e+00, 1.2716e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 42 ( -> 7) [( 2.2170e+02,-0.0000e+00,-0.0000e+00, 2.2170e+02), p^2= 0.0000e+00, m= 0.0000e+00] (644,602) 0 [I] 1 d 65 ( -> 9) [( 5.8837e+02,-0.0000e+00,-0.0000e+00, 5.8837e+02), p^2= 0.0000e+00, m= 3.0000e-01] (658, 0) 0 [I] 1 G 84 ( -> 11) [( 2.4033e+02,-0.0000e+00,-0.0000e+00, 2.4033e+02), p^2= 0.0000e+00, m= 0.0000e+00] (673,658) 0 [I] 1 G 110 ( -> 13) [( 4.4806e+02,-0.0000e+00,-0.0000e+00, 4.4806e+02), p^2= 0.0000e+00, m= 0.0000e+00] (702,673) 0 [I] 1 d 133 ( -> 15) [( 5.7531e+02,-0.0000e+00,-0.0000e+00, 5.7531e+02), p^2= 0.0000e+00, m= 3.0000e-01] (722, 0) 0 [I] 1 G 160 ( -> 17) [( 8.6118e+02,-0.0000e+00,-0.0000e+00, 8.6118e+02), p^2= 0.0000e+00, m= 0.0000e+00] (736,722) 0 and Particle List with 8 elements [I] 1 G 7 ( -> 3) [( 7.2268e+00,-0.0000e+00,-0.0000e+00,-7.2268e+00), p^2=-5.5201e-13, m= 0.0000e+00] (601,602) 1 [I] 1 G 15 ( -> 5) [( 1.6399e+03,-0.0000e+00,-0.0000e+00,-1.6399e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,679) 1 [I] 1 G 43 ( -> 7) [( 1.8615e+03,-0.0000e+00,-0.0000e+00,-1.8615e+03), p^2= 0.0000e+00, m= 0.0000e+00] (657,601) 1 [I] 1 db 66 ( -> 9) [( 2.6378e+01,-0.0000e+00,-0.0000e+00,-2.6378e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,661) 1 [I] 1 G 85 ( -> 11) [( 1.2646e+03,-0.0000e+00,-0.0000e+00,-1.2646e+03), p^2= 0.0000e+00, m= 0.0000e+00] (679,657) 1 [I] 1 d 111 ( -> 13) [( 1.3067e+03,-0.0000e+00,-0.0000e+00,-1.3067e+03), p^2= 0.0000e+00, m= 3.0000e-01] (696, 0) 1 [I] 1 u 134 ( -> 15) [( 3.9097e+02,-0.0000e+00,-0.0000e+00,-3.9097e+02), p^2= 0.0000e+00, m= 3.0000e-01] (661, 0) 1 [I] 1 sb 161 ( -> 17) [( 1.4663e+00,-0.0000e+00,-0.0000e+00,-1.4663e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,696) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 173 ( -> ) [( 9.2379e+02, 0.0000e+00, 0.0000e+00, 9.2379e+02), p^2= 6.5968e-02, m= 5.7933e-01] ( 0,736) 0 [B] 1 db 155 ( -> ) [( 2.5209e+01, 0.0000e+00, 0.0000e+00, 2.5209e+01), p^2= 4.9124e-05, m= 0.0000e+00] ( 0,702) 0 [B] 1 db 78 ( -> ) [( 8.0310e+02, 0.0000e+00, 0.0000e+00, 8.0310e+02), p^2= 4.9857e-02, m= 0.0000e+00] ( 0,644) 0 and Particle List with 2 elements [B] 1 ud_0 174 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,740) 1 [B] 1 s 170 ( -> ) [( 1.2752e+00, 0.0000e+00, 0.0000e+00,-1.2752e+00), p^2= 1.7271e-04, m= 0.0000e+00] (740, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 4000 ( 1m 43s elapsed / 41m 21s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 62 MB, now 271 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691217 pb +- ( 0.000166394 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 8 elements [I] 1 G 7 ( -> 3) [( 2.9274e+02,-0.0000e+00,-0.0000e+00, 2.9274e+02), p^2=-3.3281e-11, m= 0.0000e+00] (601,602) 0 [I] 1 G 14 ( -> 5) [( 2.7242e+02,-0.0000e+00,-0.0000e+00, 2.7242e+02), p^2= 0.0000e+00, m= 0.0000e+00] (638,601) 0 [I] 1 u 34 ( -> 7) [( 1.5807e+03,-0.0000e+00,-0.0000e+00, 1.5807e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 u 61 ( -> 9) [( 1.6480e+03,-0.0000e+00,-0.0000e+00, 1.6480e+03), p^2= 0.0000e+00, m= 3.0000e-01] (673, 0) 0 [I] 1 G 84 ( -> 11) [( 5.4840e+02,-0.0000e+00,-0.0000e+00, 5.4840e+02), p^2= 0.0000e+00, m= 0.0000e+00] (688,673) 0 [I] 1 db 99 ( -> 13) [( 4.2265e+01,-0.0000e+00,-0.0000e+00, 4.2265e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,688) 0 [I] 1 u 119 ( -> 15) [( 1.1928e+03,-0.0000e+00,-0.0000e+00, 1.1928e+03), p^2= 0.0000e+00, m= 3.0000e-01] (716, 0) 0 [I] 1 G 136 ( -> 17) [( 4.5486e+02,-0.0000e+00,-0.0000e+00, 4.5486e+02), p^2= 0.0000e+00, m= 0.0000e+00] (725,716) 0 and Particle List with 8 elements [I] 1 G 6 ( -> 3) [( 1.3363e+01,-0.0000e+00,-0.0000e+00,-1.3363e+01), p^2= 5.6970e-13, m= 0.0000e+00] (602,601) 1 [I] 1 G 15 ( -> 5) [( 1.5780e+02,-0.0000e+00,-0.0000e+00,-1.5780e+02), p^2= 0.0000e+00, m= 0.0000e+00] (643,602) 1 [I] 1 G 35 ( -> 7) [( 3.3877e+03,-0.0000e+00,-0.0000e+00,-3.3877e+03), p^2= 0.0000e+00, m= 0.0000e+00] (665,643) 1 [I] 1 G 62 ( -> 9) [( 1.2163e+03,-0.0000e+00,-0.0000e+00,-1.2163e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,672) 1 [I] 1 u 85 ( -> 11) [( 1.6523e+02,-0.0000e+00,-0.0000e+00,-1.6523e+02), p^2= 0.0000e+00, m= 3.0000e-01] (672, 0) 1 [I] 1 u 100 ( -> 13) [( 1.5564e+03,-0.0000e+00,-0.0000e+00,-1.5564e+03), p^2= 0.0000e+00, m= 3.0000e-01] (692, 0) 1 [I] 1 db 120 ( -> 15) [( 1.1682e+00,-0.0000e+00,-0.0000e+00,-1.1682e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,692) 1 [I] 1 G 137 ( -> 17) [( 8.5100e-01,-0.0000e+00,-0.0000e+00,-8.5100e-01), p^2= 0.0000e+00, m= 0.0000e+00] (727,718) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 147 ( -> ) [( 4.3537e+02, 0.0000e+00, 0.0000e+00, 4.3537e+02), p^2= 5.4878e-02, m= 5.7933e-01] ( 0,725) 0 [B] 1 ub 130 ( -> ) [( 6.3176e+00, 0.0000e+00, 0.0000e+00, 6.3176e+00), p^2= 1.1555e-05, m= 0.0000e+00] ( 0,703) 0 [B] 1 d 113 ( -> ) [( 1.0410e+00, 0.0000e+00, 0.0000e+00, 1.0410e+00), p^2= 3.1373e-07, m= 0.0000e+00] (703, 0) 0 [B] 1 ub 79 ( -> ) [( 2.5071e+01, 0.0000e+00, 0.0000e+00, 2.5071e+01), p^2= 1.8198e-04, m= 0.0000e+00] ( 0,638) 0 and Particle List with 3 elements [B] 1 ud_0 148 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,727) 1 [B] 1 d 131 ( -> ) [( 4.6814e-01, 0.0000e+00, 0.0000e+00,-4.6812e-01), p^2= 2.5063e-05, m= 0.0000e+00] (718, 0) 1 [B] 1 ub 114 ( -> ) [( 7.1615e-01, 0.0000e+00, 0.0000e+00,-7.1611e-01), p^2= 5.8651e-05, m= 0.0000e+00] ( 0,665) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 7 ( -> 3) [( 1.4019e+00,-0.0000e+00,-0.0000e+00, 1.4019e+00), p^2= 5.9768e-14, m= 0.0000e+00] (601,602) 0 [I] 1 G 14 ( -> 5) [( 3.3226e+03,-0.0000e+00,-0.0000e+00, 3.3226e+03), p^2= 0.0000e+00, m= 0.0000e+00] (644,601) 0 [I] 1 G 43 ( -> 7) [( 1.7691e+03,-0.0000e+00,-0.0000e+00, 1.7691e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,653) 0 [I] 1 ub 60 ( -> 9) [( 1.8773e+02,-0.0000e+00,-0.0000e+00, 1.8773e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,669) 0 [I] 1 G 81 ( -> 11) [( 1.2030e+03,-0.0000e+00,-0.0000e+00, 1.2030e+03), p^2= 0.0000e+00, m= 0.0000e+00] (678,644) 0 [I] 1 u 98 ( -> 13) [( 4.5941e-01, 0.0000e+00, 0.0000e+00, 4.5941e-01), p^2= 0.0000e+00, m= 3.0000e-01] (669, 0) 0 [I] 1 s 107 ( -> 15) [( 1.4494e+01,-0.0000e+00,-0.0000e+00, 1.4494e+01), p^2= 0.0000e+00, m= 4.0000e-01] (693, 0) 0 and Particle List with 7 elements [I] 1 G 6 ( -> 3) [( 2.7904e+03,-0.0000e+00,-0.0000e+00,-2.7904e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 1 [I] 1 G 15 ( -> 5) [( 4.1689e+02,-0.0000e+00,-0.0000e+00,-4.1689e+02), p^2= 0.0000e+00, m= 0.0000e+00] (645,602) 1 [I] 1 ub 44 ( -> 7) [( 8.6576e+02,-0.0000e+00,-0.0000e+00,-8.6576e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,645) 1 [I] 1 G 61 ( -> 9) [( 1.9579e+03,-0.0000e+00,-0.0000e+00,-1.9579e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,666) 1 [I] 1 G 82 ( -> 11) [( 1.2383e+02,-0.0000e+00,-0.0000e+00,-1.2383e+02), p^2= 0.0000e+00, m= 0.0000e+00] (675,657) 1 [I] 1 s 99 ( -> 13) [( 5.8720e+01, 0.0000e+00, 0.0000e+00,-5.8720e+01), p^2= 0.0000e+00, m= 4.0000e-01] (666, 0) 1 [I] 1 G 108 ( -> 15) [( 4.9651e+01,-0.0000e+00,-0.0000e+00,-4.9651e+01), p^2= 0.0000e+00, m= 0.0000e+00] (688,691) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 120 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,693) 0 [B] 1 sb 117 ( -> ) [( 8.2580e-01, 0.0000e+00, 0.0000e+00, 8.2576e-01), p^2= 7.8448e-05, m= 0.0000e+00] ( 0,678) 0 [B] 1 u 76 ( -> ) [( 3.5154e-01, 0.0000e+00, 0.0000e+00, 3.5152e-01), p^2= 1.4216e-05, m= 0.0000e+00] (653, 0) 0 and Particle List with 4 elements [B] 1 ud_0 122 ( -> ) [( 2.0095e+02, 0.0000e+00, 0.0000e+00,-2.0095e+02), p^2= 2.3085e-02, m= 5.7933e-01] ( 0,675) 1 [B] 1 sb 102 ( -> ) [( 1.2671e+00, 0.0000e+00, 0.0000e+00,-1.2671e+00), p^2= 9.1790e-07, m= 0.0000e+00] ( 0,688) 1 [B] 1 u 55 ( -> ) [( 3.4128e-01, 0.0000e+00, 0.0000e+00,-3.4128e-01), p^2= 6.6585e-08, m= 0.0000e+00] (657, 0) 1 [B] 1 u 121 ( -> ) [( 3.4356e+01, 0.0000e+00, 0.0000e+00,-3.4356e+01), p^2= 6.7478e-04, m= 0.0000e+00] (691, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 5000 ( 2m 7s elapsed / 40m 28s left ) -> ETA: Thu Oct 24 22:29 XS = 0.0692111 pb +- ( 0.000147446 pb = 0 % ) Event 6000 ( 2m 31s elapsed / 39m 32s left ) -> ETA: Thu Oct 24 22:28 XS = 0.0692407 pb +- ( 0.000133111 pb = 0 % ) Event 7000 ( 2m 55s elapsed / 38m 48s left ) -> ETA: Thu Oct 24 22:28 XS = 0.0692057 pb +- ( 0.000124668 pb = 0 % ) Event 8000 ( 3m 19s elapsed / 38m 11s left ) -> ETA: Thu Oct 24 22:28 XS = 0.069242 pb +- ( 0.000115855 pb = 0 % ) Event 9000 ( 3m 43s elapsed / 37m 41s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 26 MB, now 297 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0692119 pb +- ( 0.000109862 pb = 0 % ) Event 10000 ( 4m 8s elapsed / 37m 15s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 53 MB, now 351 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691533 pb +- ( 0.000106153 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Decay_Handler_Base::TreatInitialBlob:("Initial particle Delta(1232)++b not onshell: sqrt|p^2|=1.232 vs. m=1.232") Event 20000 ( 8m 16s elapsed / 33m 5s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 139 MB, now 490 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690774 pb +- ( 7.64381e-05 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 30000 ( 28m 34s elapsed / 1h 6m 39s left ) -> ETA: Thu Oct 24 23:22  Memory usage increased by 204 MB, now 694 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691064 pb +- ( 6.19765e-05 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 40000 ( 32m 48s elapsed / 49m 12s left ) -> ETA: Thu Oct 24 23:08  Memory usage increased by 175 MB, now 870 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691289 pb +- ( 5.32663e-05 pb = 0 % ) Event 50000 ( 37m 2s elapsed / 37m 2s left ) -> ETA: Thu Oct 24 23:00  Memory usage increased by 138 MB, now 1008 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690974 pb +- ( 4.80877e-05 pb = 0 % ) Event 60000 ( 41m 12s elapsed / 27m 28s left ) -> ETA: Thu Oct 24 22:55  Memory usage increased by 210 MB, now 1219 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690992 pb +- ( 4.37721e-05 pb = 0 % ) Decay_Handler_Base::TreatInitialBlob:("Initial particle Delta(1232)++b not onshell: sqrt|p^2|=1.232 vs. m=1.232") Event 70000 ( 45m 4s elapsed / 19m 19s left ) -> ETA: Thu Oct 24 22:51  Memory usage increased by 157 MB, now 1377 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691323 pb +- ( 4.01926e-05 pb = 0 % ) Event 80000 ( 48m 58s elapsed / 12m 14s left ) -> ETA: Thu Oct 24 22:48  Memory usage increased by 141 MB, now 1518 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.06912 pb +- ( 3.77731e-05 pb = 0 % ) Event 90000 ( 52m 52s elapsed / 5m 52s left ) -> ETA: Thu Oct 24 22:45  Memory usage increased by 216 MB, now 1734 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691087 pb +- ( 3.57758e-05 pb = 0 % ) Event 100000 ( 3447 s total ) = 2.50651e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/1048){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  0.0691039 0 % 3.39694e-05 0.04 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100000 New events { From "Beam_Remnants:Parametrised": 70 (100275) -> 0 % From "Jet_Evolution:CFP": 203 (488030) -> 0 % } Retried events { From "Hadron_Decays": 2 (102345) -> 0 % } Retried phases { From "Hadron_Decay_Handler::RejectExclusiveChannelsFromFragmentation": 754 (0) -> 754. } Retried methods { From "Decay_Channel::GenerateKinematics": 227 (20812358) -> 0 % } } Blob_List: Momentum Fail Statistics { Signal Process : 18 fails Hard Decay : 42 fails Hard Collision : 57 fails Soft Collision : 203 fails Shower : 1420 fails Fragmentation : 203 fails Hadron Decay : 16329 fails } Error messages from 'FourMomentumConservation' exceeded frequency limit: 35/20 Decay_Channel: Kinematics max fail statistics { B+ --> D*(2007)b D+ K pi maximal fail by 2.28849. } WARNING: You are using an unsupported development branch. Gluon_Splitter::~Gluon_Splitter with 18075 kinematic fails. Decay_Handler_Base::~Decay_Handler_Base with 2 particles not on their mass shell. Remnant handling yields 70 fails in creating good beam breakups. Remnant Kinematics: 70 errors (no kinematics found) and 8 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 57m 32s on Thu Oct 24 22:44:19 2024 (User: 46m 37s, System: 10m 22s, Children User: 0s, Children System: 0s)