Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:45:00 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1039 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.69757e-07(3.81966e-09) GeV, BR= 6.80306e-06 % 23,-24,4,-3 Z --> W- c sb 1.73393e-07(3.83672e-09) GeV, BR= 6.94876e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.79657e-08(1.29361e-09) GeV, BR= 2.32299e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.77534e-08(1.28728e-09) GeV, BR= 2.31449e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 4.94978e-08(1.0086e-09) GeV, BR= 1.98364e-06 % 23,24,-2,1 Z --> W+ ub d 1.72143e-07(3.84029e-09) GeV, BR= 6.89867e-06 % 23,24,-4,3 Z --> W+ cb s 1.66823e-07(3.82186e-09) GeV, BR= 6.68548e-06 % 23,24,-12,11 Z --> W+ veb e- 5.61227e-08(1.26184e-09) GeV, BR= 2.24914e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.84033e-08(1.30817e-09) GeV, BR= 2.34053e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 5.09119e-08(1.02397e-09) GeV, BR= 2.04031e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.00172745 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.20592e-05) GeV [disabled], BR= 19.4159 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538771 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8485 % 25,-24,2,-1 h0 --> W- u db 0.000129712(1.0181e-06) GeV [disabled], BR= 7.50885 % 25,-24,4,-3 h0 --> W- c sb 0.000128922(1.00013e-06) GeV [disabled], BR= 7.46316 % 25,-24,12,-11 h0 --> W- ve e+ 4.37357e-05(3.40686e-07) GeV [disabled], BR= 2.53181 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.38719e-05(3.41099e-07) GeV [disabled], BR= 2.53969 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.38101e-05(3.28574e-07) GeV [disabled], BR= 2.53612 % 25,24,-2,1 h0 --> W+ ub d 0.000130237(9.92361e-07) GeV [disabled], BR= 7.53926 % 25,24,-4,3 h0 --> W+ cb s 0.00013331(1.00814e-06) GeV [disabled], BR= 7.71715 % 25,24,-12,11 h0 --> W+ veb e- 4.37831e-05(3.41908e-07) GeV [disabled], BR= 2.53455 % 25,24,-14,13 h0 --> W+ vmub mu- 4.39135e-05(3.40872e-07) GeV [disabled], BR= 2.5421 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.3208e-05(3.42635e-07) GeV [disabled], BR= 2.50126 % 25,23,1,-1 h0 --> Z d db 5.20026e-05(4.28541e-07) GeV [disabled], BR= 3.01037 % 25,23,2,-2 h0 --> Z u ub 4.0251e-05(3.36727e-07) GeV [disabled], BR= 2.33008 % 25,23,3,-3 h0 --> Z s sb 5.2054e-05(4.30706e-07) GeV [disabled], BR= 3.01334 % 25,23,4,-4 h0 --> Z c cb 3.99426e-05(3.29935e-07) GeV [disabled], BR= 2.31223 % 25,23,5,-5 h0 --> Z b bb 5.21436e-05(4.32657e-07) GeV [disabled], BR= 3.01853 % 25,23,11,-11 h0 --> Z e- e+ 1.17911e-05(9.73186e-08) GeV [disabled], BR= 0.682575 % 25,23,12,-12 h0 --> Z ve veb 2.34228e-05(1.93299e-07) GeV [disabled], BR= 1.35592 % 25,23,13,-13 h0 --> Z mu- mu+ 1.18404e-05(9.64689e-08) GeV [disabled], BR= 0.685426 % 25,23,14,-14 h0 --> Z vmu vmub 2.33653e-05(1.88779e-07) GeV [disabled], BR= 1.35259 % 25,23,15,-15 h0 --> Z tau- tau+ 1.15314e-05(8.93005e-08) GeV [disabled], BR= 0.667538 % 25,23,16,-16 h0 --> Z vtau vtaub 2.33951e-05(1.91771e-07) GeV [disabled], BR= 1.35431 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 62 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:46:46 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1039 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.69757e-07(3.81966e-09) GeV, BR= 6.80306e-06 % 23,-24,4,-3 Z --> W- c sb 1.73393e-07(3.83672e-09) GeV, BR= 6.94876e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.79657e-08(1.29361e-09) GeV, BR= 2.32299e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.77534e-08(1.28728e-09) GeV, BR= 2.31449e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 4.94978e-08(1.0086e-09) GeV, BR= 1.98364e-06 % 23,24,-2,1 Z --> W+ ub d 1.72143e-07(3.84029e-09) GeV, BR= 6.89867e-06 % 23,24,-4,3 Z --> W+ cb s 1.66823e-07(3.82186e-09) GeV, BR= 6.68548e-06 % 23,24,-12,11 Z --> W+ veb e- 5.61227e-08(1.26184e-09) GeV, BR= 2.24914e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.84033e-08(1.30817e-09) GeV, BR= 2.34053e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 5.09119e-08(1.02397e-09) GeV, BR= 2.04031e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.00172745 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.20592e-05) GeV [disabled], BR= 19.4159 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538771 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8485 % 25,-24,2,-1 h0 --> W- u db 0.000129712(1.0181e-06) GeV [disabled], BR= 7.50885 % 25,-24,4,-3 h0 --> W- c sb 0.000128922(1.00013e-06) GeV [disabled], BR= 7.46316 % 25,-24,12,-11 h0 --> W- ve e+ 4.37357e-05(3.40686e-07) GeV [disabled], BR= 2.53181 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.38719e-05(3.41099e-07) GeV [disabled], BR= 2.53969 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.38101e-05(3.28574e-07) GeV [disabled], BR= 2.53612 % 25,24,-2,1 h0 --> W+ ub d 0.000130237(9.92361e-07) GeV [disabled], BR= 7.53926 % 25,24,-4,3 h0 --> W+ cb s 0.00013331(1.00814e-06) GeV [disabled], BR= 7.71715 % 25,24,-12,11 h0 --> W+ veb e- 4.37831e-05(3.41908e-07) GeV [disabled], BR= 2.53455 % 25,24,-14,13 h0 --> W+ vmub mu- 4.39135e-05(3.40872e-07) GeV [disabled], BR= 2.5421 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.3208e-05(3.42635e-07) GeV [disabled], BR= 2.50126 % 25,23,1,-1 h0 --> Z d db 5.20026e-05(4.28541e-07) GeV [disabled], BR= 3.01037 % 25,23,2,-2 h0 --> Z u ub 4.0251e-05(3.36727e-07) GeV [disabled], BR= 2.33008 % 25,23,3,-3 h0 --> Z s sb 5.2054e-05(4.30706e-07) GeV [disabled], BR= 3.01334 % 25,23,4,-4 h0 --> Z c cb 3.99426e-05(3.29935e-07) GeV [disabled], BR= 2.31223 % 25,23,5,-5 h0 --> Z b bb 5.21436e-05(4.32657e-07) GeV [disabled], BR= 3.01853 % 25,23,11,-11 h0 --> Z e- e+ 1.17911e-05(9.73186e-08) GeV [disabled], BR= 0.682575 % 25,23,12,-12 h0 --> Z ve veb 2.34228e-05(1.93299e-07) GeV [disabled], BR= 1.35592 % 25,23,13,-13 h0 --> Z mu- mu+ 1.18404e-05(9.64689e-08) GeV [disabled], BR= 0.685426 % 25,23,14,-14 h0 --> Z vmu vmub 2.33653e-05(1.88779e-07) GeV [disabled], BR= 1.35259 % 25,23,15,-15 h0 --> Z tau- tau+ 1.15314e-05(8.93005e-08) GeV [disabled], BR= 0.667538 % 25,23,16,-16 h0 --> Z vtau vtaub 2.33951e-05(1.91771e-07) GeV [disabled], BR= 1.35431 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 62 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 4s elapsed / 5d 6h 23m 15s left ) -> ETA: Wed Oct 30 03:10 XS = 0.071633 pb +- ( 0.071633 pb = 100 % ) Event 2 ( 4s elapsed / 2d 15h 36m 35s left ) -> ETA: Sun Oct 27 12:23 XS = 0.071824 pb +- ( 0.000191028 pb = 0 % ) Event 3 ( 4s elapsed / 1d 18h 35m 28s left ) -> ETA: Sat Oct 26 16:22 XS = 0.0529653 pb +- ( 0.018859 pb = 35 % ) Event 4 ( 4s elapsed / 1d 8h 4m 55s left ) -> ETA: Sat Oct 26 05:51 XS = 0.0574889 pb +- ( 0.0140817 pb = 24 % ) Event 5 ( 4s elapsed / 1d 1h 49m 55s left ) -> ETA: Fri Oct 25 23:36 XS = 0.0601186 pb +- ( 0.0112201 pb = 18 % ) Event 6 ( 4s elapsed / 21h 34m 22s left ) -> ETA: Fri Oct 25 19:21 XS = 0.0619016 pb +- ( 0.00933311 pb = 15 % ) Event 7 ( 4s elapsed / 18h 36m 35s left ) -> ETA: Fri Oct 25 16:23 XS = 0.0633767 pb +- ( 0.00802466 pb = 12 % ) Event 8 ( 4s elapsed / 16h 23m 15s left ) -> ETA: Fri Oct 25 14:10 XS = 0.0641766 pb +- ( 0.00699544 pb = 10 % ) Event 9 ( 4s elapsed / 14h 39m 33s left ) -> ETA: Fri Oct 25 12:26 XS = 0.0648645 pb +- ( 0.00620763 pb = 9 % ) Event 10 ( 4s elapsed / 13h 16m 35s left ) -> ETA: Fri Oct 25 11:03 XS = 0.065732 pb +- ( 0.00561964 pb = 8 % ) Event 20 ( 5s elapsed / 7h 1m 34s left ) -> ETA: Fri Oct 25 04:48 XS = 0.0685181 pb +- ( 0.00283513 pb = 4 % ) Event 30 ( 5s elapsed / 4h 55m 28s left ) -> ETA: Fri Oct 25 02:42 XS = 0.0670367 pb +- ( 0.003024 pb = 4 % ) Event 40 ( 5s elapsed / 3h 49m 54s left ) -> ETA: Fri Oct 25 01:36 XS = 0.0670945 pb +- ( 0.00244973 pb = 3 % ) Event 50 ( 5s elapsed / 3h 10m 14s left ) -> ETA: Fri Oct 25 00:57 XS = 0.0668222 pb +- ( 0.00218839 pb = 3 % ) Event 60 ( 6s elapsed / 2h 47m 7s left ) -> ETA: Fri Oct 25 00:34 XS = 0.0673672 pb +- ( 0.00188452 pb = 2 % ) Event 70 ( 6s elapsed / 2h 29m 10s left ) -> ETA: Fri Oct 25 00:16 XS = 0.0678692 pb +- ( 0.00162052 pb = 2 % ) Event 80 ( 6s elapsed / 2h 16m 33s left ) -> ETA: Fri Oct 25 00:03 XS = 0.0684724 pb +- ( 0.00142958 pb = 2 % ) Event 90 ( 6s elapsed / 2h 6m 10s left ) -> ETA: Thu Oct 24 23:53 XS = 0.0687501 pb +- ( 0.00127309 pb = 1 % ) Event 100 ( 7s elapsed / 1h 57m 22s left ) -> ETA: Thu Oct 24 23:44 XS = 0.0685315 pb +- ( 0.00123991 pb = 1 % ) Event 200 ( 9s elapsed / 1h 21m 35s left ) -> ETA: Thu Oct 24 23:08 XS = 0.0694634 pb +- ( 0.000719197 pb = 1 % ) Event 300 ( 12s elapsed / 1h 7m 17s left ) -> ETA: Thu Oct 24 22:54 XS = 0.068889 pb +- ( 0.000670716 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.152158,3.60607e-05,9.72356e-05,-0.0543613) (1) Blob_List::FourMomentumConservation throws four momentum error for Hard Collision : (8.50378e-11,0,0,8.52651e-11) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-0.120557,-2.94923e-05,-4.62519e-05,0.0296487) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-0.0544324,-8.42239e-06,-3.92187e-05,-0.0114795) (2) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.0228312,1.854e-06,-1.1765e-05,0.0361921) (3) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-1.25135e-06,-1.03505e-09,-8.00993e-10,1.37805e-06) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (1.60114e-10,1.75443e-13,-4.79838e-13,1.60121e-10) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-7.85533e-10,-7.49778e-12,3.26419e-12,7.85647e-10) (2) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-1.2261e-09,-2.16701e-11,1.37135e-13,-1.22591e-09) (3) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (2.83912e-10,1.15535e-12,-4.63929e-12,-2.83897e-10) (4) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (1.04095e-12,-1.77774e-14,-3.6221e-14,1.03562e-12) (5) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-7.87756,0.287861,0.189265,-7.86191) (4) Event 400 ( 14s elapsed / 1h 50s left ) -> ETA: Thu Oct 24 22:47 XS = 0.069161 pb +- ( 0.000538055 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.497914,-6.86206e-05,0.000121194,-0.0161936) (2) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-0.742133,-2.55802e-06,2.93077e-05,-0.00288041) (5) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-8.63349e-06,4.7075e-09,-1.09306e-08,-8.69869e-06) (2) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.366337,-0.00037806,5.15051e-05,0.139631) (3) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-1.32725e-06,-7.10241e-10,1.95185e-09,4.45152e-07) (3) Event 500 ( 17s elapsed / 56m 34s left ) -> ETA: Thu Oct 24 22:43 XS = 0.0687628 pb +- ( 0.000529594 pb = 0 % ) Event 600 ( 19s elapsed / 53m 47s left ) -> ETA: Thu Oct 24 22:40 XS = 0.068957 pb +- ( 0.000471974 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 700 ( 22s elapsed / 53m 11s left ) -> ETA: Thu Oct 24 22:40  Memory usage increased by 17 MB, now 157 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691066 pb +- ( 0.000424029 pb = 0 % ) Event 800 ( 24s elapsed / 51m 11s left ) -> ETA: Thu Oct 24 22:38 XS = 0.0691217 pb +- ( 0.000397349 pb = 0 % ) Event 900 ( 27s elapsed / 50m 14s left ) -> ETA: Thu Oct 24 22:37 XS = 0.0690788 pb +- ( 0.000379082 pb = 0 % ) Event 1000 ( 29s elapsed / 48m 42s left ) -> ETA: Thu Oct 24 22:36 XS = 0.0690845 pb +- ( 0.000360884 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.99925,0.000269827,-0.000520867,-0.157485) (4) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-3.10371e-08,-2.41357e-10,2.89916e-10,-2.01153e-07) (4) WARNING: last allowed error message from 'FourMomentumConservation' Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (1.49665,0.00182483,4.76171e-05,0.0624539) (5) Event 2000 ( 54s elapsed / 44m 39s left ) -> ETA: Thu Oct 24 22:32  Memory usage increased by 69 MB, now 226 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691661 pb +- ( 0.000246312 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 11 elements [I] 1 G 7 ( -> 3) [( 5.2111e+01,-0.0000e+00,-0.0000e+00, 5.2111e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,602) 0 [I] 1 u 14 ( -> 5) [( 1.9999e+00,-0.0000e+00,-0.0000e+00, 1.9999e+00), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 G 27 ( -> 7) [( 1.0670e+02,-0.0000e+00,-0.0000e+00, 1.0670e+02), p^2= 0.0000e+00, m= 0.0000e+00] (632,601) 0 [I] 1 db 47 ( -> 9) [( 2.3935e+03,-0.0000e+00,-0.0000e+00, 2.3935e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,632) 0 [I] 1 d 73 ( -> 11) [( 1.3922e+03,-0.0000e+00,-0.0000e+00, 1.3922e+03), p^2= 0.0000e+00, m= 3.0000e-01] (621, 0) 0 [I] 1 G 89 ( -> 13) [( 1.4127e+03,-0.0000e+00,-0.0000e+00, 1.4127e+03), p^2= 0.0000e+00, m= 0.0000e+00] (684,654) 0 [I] 1 G 118 ( -> 15) [( 6.1936e+02,-0.0000e+00,-0.0000e+00, 6.1936e+02), p^2= 0.0000e+00, m= 0.0000e+00] (701,684) 0 [I] 1 u 142 ( -> 17) [( 2.5653e+02,-0.0000e+00,-0.0000e+00, 2.5653e+02), p^2= 0.0000e+00, m= 3.0000e-01] (719, 0) 0 [I] 1 G 167 ( -> 19) [( 2.4515e+02,-0.0000e+00,-0.0000e+00, 2.4515e+02), p^2= 0.0000e+00, m= 0.0000e+00] (730,719) 0 [I] 1 G 185 ( -> 21) [( 1.6896e+01,-0.0000e+00,-0.0000e+00, 1.6896e+01), p^2= 0.0000e+00, m= 0.0000e+00] (743,730) 0 [I] 1 ub 203 ( -> 23) [( 1.0661e+00,-0.0000e+00,-0.0000e+00, 1.0661e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,743) 0 and Particle List with 11 elements [I] 1 G 6 ( -> 3) [( 7.5069e+01,-0.0000e+00,-0.0000e+00,-7.5069e+01), p^2= 2.1336e-12, m= 0.0000e+00] (602,601) 1 [I] 1 d 15 ( -> 5) [( 2.6755e+02,-0.0000e+00,-0.0000e+00,-2.6755e+02), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 28 ( -> 7) [( 1.1787e+03,-0.0000e+00,-0.0000e+00,-1.1787e+03), p^2= 0.0000e+00, m= 0.0000e+00] (624,602) 1 [I] 1 u 48 ( -> 9) [( 3.4796e+03,-0.0000e+00,-0.0000e+00,-3.4796e+03), p^2= 0.0000e+00, m= 3.0000e-01] (622, 0) 1 [I] 1 G 74 ( -> 11) [( 2.6251e+02,-0.0000e+00,-0.0000e+00,-2.6251e+02), p^2= 0.0000e+00, m= 0.0000e+00] (658,624) 1 [I] 1 G 90 ( -> 13) [( 3.9734e+02,-0.0000e+00,-0.0000e+00,-3.9734e+02), p^2= 0.0000e+00, m= 0.0000e+00] (676,658) 1 [I] 1 G 119 ( -> 15) [( 2.2779e+02,-0.0000e+00,-0.0000e+00,-2.2779e+02), p^2= 0.0000e+00, m= 0.0000e+00] (702,676) 1 [I] 1 ub 143 ( -> 17) [( 2.0022e+02,-0.0000e+00,-0.0000e+00,-2.0022e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,702) 1 [I] 1 G 168 ( -> 19) [( 1.8816e+02,-0.0000e+00,-0.0000e+00,-1.8816e+02), p^2= 0.0000e+00, m= 0.0000e+00] (723,721) 1 [I] 1 G 186 ( -> 21) [( 1.1311e+02,-0.0000e+00,-0.0000e+00,-1.1311e+02), p^2= 0.0000e+00, m= 0.0000e+00] (746,723) 1 [I] 1 G 204 ( -> 23) [( 4.0453e+01,-0.0000e+00,-0.0000e+00,-4.0453e+01), p^2= 0.0000e+00, m= 0.0000e+00] (755,746) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 212 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,701) 0 [B] 1 d 68 ( -> ) [( 1.0277e+00, 0.0000e+00, 0.0000e+00, 1.0276e+00), p^2= 7.8224e-05, m= 0.0000e+00] (654, 0) 0 [B] 1 ub 21 ( -> ) [( 8.0082e-01, 0.0000e+00, 0.0000e+00, 8.0079e-01), p^2= 4.7502e-05, m= 0.0000e+00] ( 0,621) 0 and Particle List with 3 elements [B] 1 ud_0 214 ( -> ) [( 4.7173e+01, 0.0000e+00, 0.0000e+00,-4.7173e+01), p^2= 4.3348e-03, m= 5.7933e-01] ( 0,755) 1 [B] 1 u 162 ( -> ) [( 5.5378e-01, 0.0000e+00, 0.0000e+00,-5.5378e-01), p^2= 5.9737e-07, m= 0.0000e+00] (721, 0) 1 [B] 1 db 22 ( -> ) [( 2.1803e+01, 0.0000e+00, 0.0000e+00,-2.1803e+01), p^2= 9.2599e-04, m= 0.0000e+00] ( 0,622) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 3000 ( 1m 17s elapsed / 41m 42s left ) -> ETA: Thu Oct 24 22:29 XS = 0.0692115 pb +- ( 0.000198926 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 10 elements [I] 1 G 7 ( -> 3) [( 5.4169e+01,-0.0000e+00,-0.0000e+00, 5.4169e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,602) 0 [I] 1 u 14 ( -> 5) [( 2.0046e+03,-0.0000e+00,-0.0000e+00, 2.0046e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 u 43 ( -> 7) [( 4.6940e+02,-0.0000e+00,-0.0000e+00, 4.6940e+02), p^2= 0.0000e+00, m= 3.0000e-01] (655, 0) 0 [I] 1 d 65 ( -> 9) [( 2.0645e+03,-0.0000e+00,-0.0000e+00, 2.0645e+03), p^2= 0.0000e+00, m= 3.0000e-01] (665, 0) 0 [I] 1 G 83 ( -> 11) [( 1.6660e+02,-0.0000e+00,-0.0000e+00, 1.6660e+02), p^2= 0.0000e+00, m= 0.0000e+00] (679,665) 0 [I] 1 d 108 ( -> 13) [( 3.8209e+01,-0.0000e+00,-0.0000e+00, 3.8209e+01), p^2= 0.0000e+00, m= 3.0000e-01] (692, 0) 0 [I] 1 d 122 ( -> 15) [( 1.2415e+02,-0.0000e+00,-0.0000e+00, 1.2415e+02), p^2= 0.0000e+00, m= 3.0000e-01] (698, 0) 0 [I] 1 sb 144 ( -> 17) [( 8.0829e+01,-0.0000e+00,-0.0000e+00, 8.0829e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,698) 0 [I] 1 G 166 ( -> 19) [( 1.4924e+03,-0.0000e+00,-0.0000e+00, 1.4924e+03), p^2= 0.0000e+00, m= 0.0000e+00] (733,727) 0 [I] 1 G 183 ( -> 21) [( 2.7858e+00,-0.0000e+00,-0.0000e+00, 2.7858e+00), p^2= 0.0000e+00, m= 0.0000e+00] (740,733) 0 and Particle List with 10 elements [I] 1 G 6 ( -> 3) [( 7.2217e+01,-0.0000e+00,-0.0000e+00,-7.2217e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 1 [I] 1 d 15 ( -> 5) [( 1.3018e+03,-0.0000e+00,-0.0000e+00,-1.3018e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 db 44 ( -> 7) [( 1.6689e+03,-0.0000e+00,-0.0000e+00,-1.6689e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,602) 1 [I] 1 G 66 ( -> 9) [( 1.9031e+02,-0.0000e+00,-0.0000e+00,-1.9031e+02), p^2= 0.0000e+00, m= 0.0000e+00] (664,658) 1 [I] 1 d 84 ( -> 11) [( 1.6723e+03,-0.0000e+00,-0.0000e+00,-1.6723e+03), p^2= 0.0000e+00, m= 3.0000e-01] (682, 0) 1 [I] 1 sb 109 ( -> 13) [( 9.1832e+01,-0.0000e+00,-0.0000e+00,-9.1832e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,682) 1 [I] 1 sb 123 ( -> 15) [( 1.6677e+02,-0.0000e+00,-0.0000e+00,-1.6677e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,697) 1 [I] 1 G 145 ( -> 17) [( 1.9081e+02,-0.0000e+00,-0.0000e+00,-1.9081e+02), p^2= 0.0000e+00, m= 0.0000e+00] (718,711) 1 [I] 1 G 167 ( -> 19) [( 7.6023e+02,-0.0000e+00,-0.0000e+00,-7.6023e+02), p^2= 0.0000e+00, m= 0.0000e+00] (735,718) 1 [I] 1 G 184 ( -> 21) [( 3.4984e+02,-0.0000e+00,-0.0000e+00,-3.4984e+02), p^2= 0.0000e+00, m= 0.0000e+00] (744,735) 1 and the corresponding remnants are Particle List with 6 elements [B] 1 ud_0 192 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,740) 0 [B] 1 s 161 ( -> ) [( 7.3152e-01, 0.0000e+00, 0.0000e+00, 7.3150e-01), p^2= 3.1452e-05, m= 0.0000e+00] (727, 0) 0 [B] 1 db 138 ( -> ) [( 3.2435e-01, 0.0000e+00, 0.0000e+00, 3.2435e-01), p^2= 6.1834e-06, m= 0.0000e+00] ( 0,692) 0 [B] 1 db 116 ( -> ) [( 4.0926e-01, 0.0000e+00, 0.0000e+00, 4.0924e-01), p^2= 9.8441e-06, m= 0.0000e+00] ( 0,679) 0 [B] 1 db 78 ( -> ) [( 3.4039e-01, 0.0000e+00, 0.0000e+00, 3.4038e-01), p^2= 6.8100e-06, m= 0.0000e+00] ( 0,655) 0 [B] 1 ub 59 ( -> ) [( 4.9884e-01, 0.0000e+00, 0.0000e+00, 4.9883e-01), p^2= 1.4625e-05, m= 0.0000e+00] ( 0,601) 0 and Particle List with 4 elements [B] 1 uu_1 193 ( -> ) [( 1.2332e+01, 0.0000e+00, 0.0000e+00,-1.2332e+01), p^2= 5.8809e-04, m= 7.7133e-01] ( 0,744) 1 [B] 1 s 139 ( -> ) [( 1.4813e+01, 0.0000e+00, 0.0000e+00,-1.4813e+01), p^2= 8.4850e-04, m= 0.0000e+00] (711, 0) 1 [B] 1 s 117 ( -> ) [( 2.1352e+00, 0.0000e+00, 0.0000e+00,-2.1352e+00), p^2= 1.7629e-05, m= 0.0000e+00] (697, 0) 1 [B] 1 G 194 ( -> ) [( 5.7453e+00, 0.0000e+00, 0.0000e+00,-5.7453e+00), p^2= 1.2764e-04, m= 0.0000e+00] (658,664) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 4000 ( 1m 42s elapsed / 40m 50s left ) -> ETA: Thu Oct 24 22:29 XS = 0.069186 pb +- ( 0.000172965 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 G 6 ( -> 3) [( 1.9386e+01,-0.0000e+00,-0.0000e+00, 1.9386e+01), p^2=-8.2648e-13, m= 0.0000e+00] (602,601) 0 [I] 1 d 14 ( -> 5) [( 2.0514e+03,-0.0000e+00,-0.0000e+00, 2.0514e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 d 30 ( -> 7) [( 3.3290e+03,-0.0000e+00,-0.0000e+00, 3.3290e+03), p^2= 0.0000e+00, m= 3.0000e-01] (630, 0) 0 [I] 1 G 48 ( -> 9) [( 9.9718e+02,-0.0000e+00,-0.0000e+00, 9.9718e+02), p^2= 0.0000e+00, m= 0.0000e+00] (652,630) 0 [I] 1 G 65 ( -> 11) [( 9.8009e+01,-0.0000e+00,-0.0000e+00, 9.8009e+01), p^2= 0.0000e+00, m= 0.0000e+00] (654,652) 0 [I] 1 ub 78 ( -> 13) [( 4.1182e+00,-0.0000e+00,-0.0000e+00, 4.1182e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,654) 0 and Particle List with 6 elements [I] 1 G 7 ( -> 3) [( 2.0179e+02,-0.0000e+00,-0.0000e+00,-2.0179e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,602) 1 [I] 1 u 15 ( -> 5) [( 1.7594e+03,-0.0000e+00,-0.0000e+00,-1.7594e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 G 31 ( -> 7) [( 2.8543e+02,-0.0000e+00,-0.0000e+00,-2.8543e+02), p^2= 0.0000e+00, m= 0.0000e+00] (638,601) 1 [I] 1 G 49 ( -> 9) [( 8.9262e+01,-0.0000e+00,-0.0000e+00,-8.9262e+01), p^2= 0.0000e+00, m= 0.0000e+00] (648,638) 1 [I] 1 u 66 ( -> 11) [( 1.9285e+03,-0.0000e+00,-0.0000e+00,-1.9285e+03), p^2= 0.0000e+00, m= 3.0000e-01] (657, 0) 1 [I] 1 s 79 ( -> 13) [( 1.0402e+03,-0.0000e+00,-0.0000e+00,-1.0402e+03), p^2= 0.0000e+00, m= 4.0000e-01] (669, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 92 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,671) 0 [B] 1 u 88 ( -> ) [( 3.1547e-01, 0.0000e+00, 0.0000e+00, 3.1545e-01), p^2= 1.4617e-05, m= 0.0000e+00] (671, 0) 0 [B] 1 db 43 ( -> ) [( 6.0663e-01, 0.0000e+00, 0.0000e+00, 6.0658e-01), p^2= 5.4050e-05, m= 0.0000e+00] ( 0,602) 0 and Particle List with 3 elements [B] 1 ud_0 93 ( -> ) [( 8.5088e+02, 0.0000e+00, 0.0000e+00,-8.5088e+02), p^2= 8.2027e-02, m= 5.7933e-01] ( 0,669) 1 [B] 1 sb 89 ( -> ) [( 4.7052e-01, 0.0000e+00, 0.0000e+00,-4.7052e-01), p^2= 2.5083e-08, m= 0.0000e+00] ( 0,657) 1 [B] 1 ub 73 ( -> ) [( 3.4407e+02, 0.0000e+00, 0.0000e+00,-3.4407e+02), p^2= 1.3413e-02, m= 0.0000e+00] ( 0,648) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 10 elements [I] 1 G 7 ( -> 3) [( 1.3135e+02,-0.0000e+00,-0.0000e+00, 1.3135e+02), p^2= 7.4662e-12, m= 0.0000e+00] (601,602) 0 [I] 1 G 14 ( -> 5) [( 3.8117e+02,-0.0000e+00,-0.0000e+00, 3.8117e+02), p^2= 0.0000e+00, m= 0.0000e+00] (634,601) 0 [I] 1 G 41 ( -> 7) [( 5.1170e+02,-0.0000e+00,-0.0000e+00, 5.1170e+02), p^2= 0.0000e+00, m= 0.0000e+00] (646,634) 0 [I] 1 sb 59 ( -> 9) [( 1.1859e+00,-0.0000e+00,-0.0000e+00, 1.1859e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,646) 0 [I] 1 G 73 ( -> 11) [( 2.6924e+03,-0.0000e+00,-0.0000e+00, 2.6924e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,668) 0 [I] 1 G 97 ( -> 13) [( 2.6468e+02,-0.0000e+00,-0.0000e+00, 2.6468e+02), p^2= 0.0000e+00, m= 0.0000e+00] (668,684) 0 [I] 1 u 115 ( -> 15) [( 2.0592e+03,-0.0000e+00,-0.0000e+00, 2.0592e+03), p^2= 0.0000e+00, m= 3.0000e-01] (684, 0) 0 [I] 1 G 133 ( -> 17) [( 8.6656e+01,-0.0000e+00,-0.0000e+00, 8.6656e+01), p^2= 0.0000e+00, m= 0.0000e+00] (717,662) 0 [I] 1 u 152 ( -> 19) [( 3.6319e+02,-0.0000e+00,-0.0000e+00, 3.6319e+02), p^2= 0.0000e+00, m= 3.0000e-01] (720, 0) 0 [I] 1 G 177 ( -> 21) [( 7.1704e+00,-0.0000e+00,-0.0000e+00, 7.1704e+00), p^2= 0.0000e+00, m= 0.0000e+00] (747,720) 0 and Particle List with 10 elements [I] 1 G 6 ( -> 3) [( 2.9783e+01,-0.0000e+00,-0.0000e+00,-2.9783e+01), p^2= 2.1162e-13, m= 0.0000e+00] (602,601) 1 [I] 1 G 15 ( -> 5) [( 4.7289e+02,-0.0000e+00,-0.0000e+00,-4.7289e+02), p^2= 0.0000e+00, m= 0.0000e+00] (630,602) 1 [I] 1 G 42 ( -> 7) [( 1.7964e+02,-0.0000e+00,-0.0000e+00,-1.7964e+02), p^2= 0.0000e+00, m= 0.0000e+00] (648,630) 1 [I] 1 G 60 ( -> 9) [( 6.7465e+02,-0.0000e+00,-0.0000e+00,-6.7465e+02), p^2= 0.0000e+00, m= 0.0000e+00] (657,648) 1 [I] 1 d 74 ( -> 11) [( 1.3572e+03,-0.0000e+00,-0.0000e+00,-1.3572e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 98 ( -> 13) [( 1.3556e+03,-0.0000e+00,-0.0000e+00,-1.3556e+03), p^2= 0.0000e+00, m= 0.0000e+00] (690,657) 1 [I] 1 G 116 ( -> 15) [( 2.7820e+02,-0.0000e+00,-0.0000e+00,-2.7820e+02), p^2= 0.0000e+00, m= 0.0000e+00] (694,690) 1 [I] 1 G 134 ( -> 17) [( 4.6045e+02,-0.0000e+00,-0.0000e+00,-4.6045e+02), p^2= 0.0000e+00, m= 0.0000e+00] (713,694) 1 [I] 1 u 153 ( -> 19) [( 1.3779e+03,-0.0000e+00,-0.0000e+00,-1.3779e+03), p^2= 0.0000e+00, m= 3.0000e-01] (726, 0) 1 [I] 1 G 178 ( -> 21) [( 1.3633e+02,-0.0000e+00,-0.0000e+00,-1.3633e+02), p^2= 0.0000e+00, m= 0.0000e+00] (749,726) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 188 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,747) 0 [B] 1 ub 171 ( -> ) [( 8.1145e-01, 0.0000e+00, 0.0000e+00, 8.1141e-01), p^2= 7.3475e-05, m= 0.0000e+00] ( 0,717) 0 [B] 1 s 68 ( -> ) [( 4.0226e-01, 0.0000e+00, 0.0000e+00, 4.0224e-01), p^2= 1.8056e-05, m= 0.0000e+00] (662, 0) 0 and Particle List with 2 elements [B] 1 uu_1 189 ( -> ) [( 1.4546e+02, 0.0000e+00, 0.0000e+00,-1.4546e+02), p^2= 1.6160e-02, m= 7.7133e-01] ( 0,749) 1 [B] 1 ub 172 ( -> ) [( 3.1868e+01, 0.0000e+00, 0.0000e+00,-3.1868e+01), p^2= 7.7567e-04, m= 0.0000e+00] ( 0,713) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 5000 ( 2m 5s elapsed / 39m 48s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 42 MB, now 269 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691057 pb +- ( 0.000157741 pb = 0 % ) Event 6000 ( 2m 29s elapsed / 39m 6s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 38 MB, now 308 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691184 pb +- ( 0.000143212 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 9 elements [I] 1 G 7 ( -> 3) [( 4.3875e+01,-0.0000e+00,-0.0000e+00, 4.3875e+01), p^2= 6.2350e-13, m= 0.0000e+00] (601,602) 0 [I] 1 d 14 ( -> 5) [( 2.0454e+02,-0.0000e+00,-0.0000e+00, 2.0454e+02), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 d 35 ( -> 7) [( 2.7174e+03,-0.0000e+00,-0.0000e+00, 2.7174e+03), p^2= 0.0000e+00, m= 3.0000e-01] (632, 0) 0 [I] 1 G 63 ( -> 9) [( 1.2119e+03,-0.0000e+00,-0.0000e+00, 1.2119e+03), p^2= 0.0000e+00, m= 0.0000e+00] (660,601) 0 [I] 1 u 83 ( -> 11) [( 2.2215e+03,-0.0000e+00,-0.0000e+00, 2.2215e+03), p^2= 0.0000e+00, m= 3.0000e-01] (679, 0) 0 [I] 1 G 104 ( -> 13) [( 3.6458e+01,-0.0000e+00,-0.0000e+00, 3.6458e+01), p^2= 0.0000e+00, m= 0.0000e+00] (687,679) 0 [I] 1 G 115 ( -> 15) [( 4.4996e+01,-0.0000e+00,-0.0000e+00, 4.4996e+01), p^2= 0.0000e+00, m= 0.0000e+00] (699,687) 0 [I] 1 G 137 ( -> 17) [( 3.4402e+00,-0.0000e+00,-0.0000e+00, 3.4402e+00), p^2= 0.0000e+00, m= 0.0000e+00] (704,699) 0 [I] 1 G 151 ( -> 19) [( 1.4476e+01,-0.0000e+00,-0.0000e+00, 1.4476e+01), p^2= 0.0000e+00, m= 0.0000e+00] (720,704) 0 and Particle List with 9 elements [I] 1 G 6 ( -> 3) [( 8.9159e+01,-0.0000e+00,-0.0000e+00,-8.9159e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 1 [I] 1 u 15 ( -> 5) [( 7.6315e+02,-0.0000e+00,-0.0000e+00,-7.6315e+02), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 d 36 ( -> 7) [( 3.5671e+02,-0.0000e+00,-0.0000e+00,-3.5671e+02), p^2= 0.0000e+00, m= 3.0000e-01] (639, 0) 1 [I] 1 G 64 ( -> 9) [( 6.3325e+02,-0.0000e+00,-0.0000e+00,-6.3325e+02), p^2= 0.0000e+00, m= 0.0000e+00] (655,639) 1 [I] 1 G 84 ( -> 11) [( 1.7828e+02,-0.0000e+00,-0.0000e+00,-1.7828e+02), p^2= 0.0000e+00, m= 0.0000e+00] (676,655) 1 [I] 1 u 105 ( -> 13) [( 1.3183e+03,-0.0000e+00,-0.0000e+00,-1.3183e+03), p^2= 0.0000e+00, m= 3.0000e-01] (684, 0) 1 [I] 1 u 116 ( -> 15) [( 2.1257e+03,-0.0000e+00,-0.0000e+00,-2.1257e+03), p^2= 0.0000e+00, m= 3.0000e-01] (698, 0) 1 [I] 1 G 138 ( -> 17) [( 2.7677e+02,-0.0000e+00,-0.0000e+00,-2.7677e+02), p^2= 0.0000e+00, m= 0.0000e+00] (710,698) 1 [I] 1 G 152 ( -> 19) [( 2.6006e+02,-0.0000e+00,-0.0000e+00,-2.6006e+02), p^2= 0.0000e+00, m= 0.0000e+00] (713,710) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 163 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,720) 0 [B] 1 ub 99 ( -> ) [( 3.0340e-01, 0.0000e+00, 0.0000e+00, 3.0338e-01), p^2= 8.7342e-06, m= 0.0000e+00] ( 0,660) 0 [B] 1 db 30 ( -> ) [( 1.1240e+00, 0.0000e+00, 0.0000e+00, 1.1239e+00), p^2= 1.1987e-04, m= 0.0000e+00] ( 0,632) 0 and Particle List with 4 elements [B] 1 ud_0 164 ( -> ) [( 4.3747e+02, 0.0000e+00, 0.0000e+00,-4.3747e+02), p^2= 5.1989e-02, m= 5.7933e-01] ( 0,713) 1 [B] 1 ub 132 ( -> ) [( 3.3051e-01, 0.0000e+00, 0.0000e+00,-3.3051e-01), p^2= 2.9675e-08, m= 0.0000e+00] ( 0,684) 1 [B] 1 ub 110 ( -> ) [( 1.0601e+00, 0.0000e+00, 0.0000e+00,-1.0601e+00), p^2= 3.0530e-07, m= 0.0000e+00] ( 0,676) 1 [B] 1 db 58 ( -> ) [( 5.9714e+01, 0.0000e+00, 0.0000e+00,-5.9714e+01), p^2= 9.6865e-04, m= 0.0000e+00] ( 0,602) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 7000 ( 2m 53s elapsed / 38m 19s left ) -> ETA: Thu Oct 24 22:28 XS = 0.0691245 pb +- ( 0.000131885 pb = 0 % ) Event 8000 ( 3m 18s elapsed / 37m 58s left ) -> ETA: Thu Oct 24 22:28 XS = 0.0691095 pb +- ( 0.000123595 pb = 0 % ) Event 9000 ( 3m 45s elapsed / 37m 55s left ) -> ETA: Thu Oct 24 22:28 XS = 0.0691257 pb +- ( 0.00011669 pb = 0 % ) Event 10000 ( 4m 20s elapsed / 39m 5s left ) -> ETA: Thu Oct 24 22:30 XS = 0.0692077 pb +- ( 0.00010825 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Decay_Handler_Base::TreatInitialBlob:("Initial particle Delta(1232)- not onshell: sqrt|p^2|=1.232 vs. m=1.232") Event 20000 ( 8m 44s elapsed / 34m 56s left ) -> ETA: Thu Oct 24 22:30  Memory usage increased by 225 MB, now 533 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691563 pb +- ( 7.70921e-05 pb = 0 % ) Event 30000 ( 13m 4s elapsed / 30m 31s left ) -> ETA: Thu Oct 24 22:30  Memory usage increased by 128 MB, now 662 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691522 pb +- ( 6.2797e-05 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 40000 ( 17m 24s elapsed / 26m 6s left ) -> ETA: Thu Oct 24 22:30  Memory usage increased by 177 MB, now 839 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0692104 pb +- ( 5.36289e-05 pb = 0 % ) Event 50000 ( 21m 47s elapsed / 21m 47s left ) -> ETA: Thu Oct 24 22:30  Memory usage increased by 167 MB, now 1007 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0692178 pb +- ( 4.79726e-05 pb = 0 % ) Decay_Handler_Base::TreatInitialBlob:("Initial particle Delta(1232)++ not onshell: sqrt|p^2|=1.232 vs. m=1.232") Event 60000 ( 26m 49s elapsed / 17m 53s left ) -> ETA: Thu Oct 24 22:31  Memory usage increased by 170 MB, now 1177 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691914 pb +- ( 4.41032e-05 pb = 0 % ) Event 70000 ( 32m 1s elapsed / 13m 43s left ) -> ETA: Thu Oct 24 22:32  Memory usage increased by 172 MB, now 1349 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691776 pb +- ( 4.09849e-05 pb = 0 % ) Charge conservation failed for Fragmentation : -1. Will ignore event. Event 80000 ( 36m 49s elapsed / 9m 12s left ) -> ETA: Thu Oct 24 22:32  Memory usage increased by 219 MB, now 1568 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691904 pb +- ( 3.82541e-05 pb = 0 % ) Event 90000 ( 41m 36s elapsed / 4m 37s left ) -> ETA: Thu Oct 24 22:33  Memory usage increased by 124 MB, now 1693 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691719 pb +- ( 3.62526e-05 pb = 0 % ) Event 100001 ( 2749 s total ) = 3.14296e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/1039){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  0.0691615 0 % 3.4481e-05 0.04 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100001 New events { From "Beam_Remnants:Parametrised": 61 (100308) -> 0 % From "Jet_Evolution:CFP": 244 (489605) -> 0 % } Retried events { From "Hadron_Decays": 2 (102582) -> 0 % } Retried phases { From "Hadron_Decay_Handler::RejectExclusiveChannelsFromFragmentation": 872 (0) -> 872. } Retried methods { From "Decay_Channel::GenerateKinematics": 235 (20902780) -> 0 % } } Blob_List: Momentum Fail Statistics { Signal Process : 32 fails Hard Decay : 71 fails Hard Collision : 67 fails Soft Collision : 244 fails Shower : 1777 fails Fragmentation : 244 fails Hadron Decay : 20428 fails } Error messages from 'FourMomentumConservation' exceeded frequency limit: 35/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Gluon_Splitter::~Gluon_Splitter with 18288 kinematic fails. Singlet_Checker::~Singlet_Checker with 3 errors in total. Decay_Handler_Base::~Decay_Handler_Base with 2 particles not on their mass shell. Remnant handling yields 61 fails in creating good beam breakups. Remnant Kinematics: 61 errors (no kinematics found) and 9 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 45m 54s on Thu Oct 24 22:32:40 2024 (User: 45m 7s, System: 20s, Children User: 0s, Children System: 0s)