Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:45:00 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1034 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.70878e-07(3.8863e-09) GeV, BR= 6.84801e-06 % 23,-24,4,-3 Z --> W- c sb 1.65977e-07(3.77853e-09) GeV, BR= 6.65158e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.80061e-08(1.29563e-09) GeV, BR= 2.32461e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.63868e-08(1.29751e-09) GeV, BR= 2.25972e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 4.75209e-08(9.87171e-10) GeV, BR= 1.90441e-06 % 23,24,-2,1 Z --> W+ ub d 1.73609e-07(3.813e-09 ) GeV, BR= 6.95744e-06 % 23,24,-4,3 Z --> W+ cb s 1.71043e-07(3.86119e-09) GeV, BR= 6.85459e-06 % 23,24,-12,11 Z --> W+ veb e- 5.70829e-08(1.26769e-09) GeV, BR= 2.28762e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.58922e-08(1.25237e-09) GeV, BR= 2.2399e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 4.98885e-08(1.01503e-09) GeV, BR= 1.9993e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.0017278 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.20678e-05) GeV [disabled], BR= 19.412 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538663 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8455 % 25,-24,2,-1 h0 --> W- u db 0.000129972(1.01655e-06) GeV [disabled], BR= 7.5224 % 25,-24,4,-3 h0 --> W- c sb 0.000129335(1.00668e-06) GeV [disabled], BR= 7.48556 % 25,-24,12,-11 h0 --> W- ve e+ 4.35701e-05(3.41631e-07) GeV [disabled], BR= 2.52172 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.34724e-05(3.39594e-07) GeV [disabled], BR= 2.51606 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.32284e-05(3.31774e-07) GeV [disabled], BR= 2.50194 % 25,24,-2,1 h0 --> W+ ub d 0.00013262(1.01845e-06) GeV [disabled], BR= 7.67569 % 25,24,-4,3 h0 --> W+ cb s 0.00013101(1.00235e-06) GeV [disabled], BR= 7.58251 % 25,24,-12,11 h0 --> W+ veb e- 4.38451e-05(3.42438e-07) GeV [disabled], BR= 2.53763 % 25,24,-14,13 h0 --> W+ vmub mu- 4.42289e-05(3.33852e-07) GeV [disabled], BR= 2.55985 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.37208e-05(3.28401e-07) GeV [disabled], BR= 2.53044 % 25,23,1,-1 h0 --> Z d db 5.25367e-05(4.30335e-07) GeV [disabled], BR= 3.04068 % 25,23,2,-2 h0 --> Z u ub 4.07096e-05(3.42548e-07) GeV [disabled], BR= 2.35616 % 25,23,3,-3 h0 --> Z s sb 5.21118e-05(4.2645e-07) GeV [disabled], BR= 3.01609 % 25,23,4,-4 h0 --> Z c cb 3.99935e-05(3.34147e-07) GeV [disabled], BR= 2.31471 % 25,23,5,-5 h0 --> Z b bb 5.22132e-05(4.30595e-07) GeV [disabled], BR= 3.02196 % 25,23,11,-11 h0 --> Z e- e+ 1.17422e-05(9.57441e-08) GeV [disabled], BR= 0.679604 % 25,23,12,-12 h0 --> Z ve veb 2.29488e-05(1.89713e-07) GeV [disabled], BR= 1.32821 % 25,23,13,-13 h0 --> Z mu- mu+ 1.18234e-05(9.71232e-08) GeV [disabled], BR= 0.684307 % 25,23,14,-14 h0 --> Z vmu vmub 2.33025e-05(1.92339e-07) GeV [disabled], BR= 1.34868 % 25,23,15,-15 h0 --> Z tau- tau+ 1.11613e-05(8.96024e-08) GeV [disabled], BR= 0.645986 % 25,23,16,-16 h0 --> Z vtau vtaub 2.30421e-05(1.89826e-07) GeV [disabled], BR= 1.33361 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 62 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:46:46 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1034 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.70878e-07(3.8863e-09) GeV, BR= 6.84801e-06 % 23,-24,4,-3 Z --> W- c sb 1.65977e-07(3.77853e-09) GeV, BR= 6.65158e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.80061e-08(1.29563e-09) GeV, BR= 2.32461e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.63868e-08(1.29751e-09) GeV, BR= 2.25972e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 4.75209e-08(9.87171e-10) GeV, BR= 1.90441e-06 % 23,24,-2,1 Z --> W+ ub d 1.73609e-07(3.813e-09 ) GeV, BR= 6.95744e-06 % 23,24,-4,3 Z --> W+ cb s 1.71043e-07(3.86119e-09) GeV, BR= 6.85459e-06 % 23,24,-12,11 Z --> W+ veb e- 5.70829e-08(1.26769e-09) GeV, BR= 2.28762e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.58922e-08(1.25237e-09) GeV, BR= 2.2399e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 4.98885e-08(1.01503e-09) GeV, BR= 1.9993e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.0017278 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.20678e-05) GeV [disabled], BR= 19.412 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538663 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8455 % 25,-24,2,-1 h0 --> W- u db 0.000129972(1.01655e-06) GeV [disabled], BR= 7.5224 % 25,-24,4,-3 h0 --> W- c sb 0.000129335(1.00668e-06) GeV [disabled], BR= 7.48556 % 25,-24,12,-11 h0 --> W- ve e+ 4.35701e-05(3.41631e-07) GeV [disabled], BR= 2.52172 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.34724e-05(3.39594e-07) GeV [disabled], BR= 2.51606 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.32284e-05(3.31774e-07) GeV [disabled], BR= 2.50194 % 25,24,-2,1 h0 --> W+ ub d 0.00013262(1.01845e-06) GeV [disabled], BR= 7.67569 % 25,24,-4,3 h0 --> W+ cb s 0.00013101(1.00235e-06) GeV [disabled], BR= 7.58251 % 25,24,-12,11 h0 --> W+ veb e- 4.38451e-05(3.42438e-07) GeV [disabled], BR= 2.53763 % 25,24,-14,13 h0 --> W+ vmub mu- 4.42289e-05(3.33852e-07) GeV [disabled], BR= 2.55985 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.37208e-05(3.28401e-07) GeV [disabled], BR= 2.53044 % 25,23,1,-1 h0 --> Z d db 5.25367e-05(4.30335e-07) GeV [disabled], BR= 3.04068 % 25,23,2,-2 h0 --> Z u ub 4.07096e-05(3.42548e-07) GeV [disabled], BR= 2.35616 % 25,23,3,-3 h0 --> Z s sb 5.21118e-05(4.2645e-07) GeV [disabled], BR= 3.01609 % 25,23,4,-4 h0 --> Z c cb 3.99935e-05(3.34147e-07) GeV [disabled], BR= 2.31471 % 25,23,5,-5 h0 --> Z b bb 5.22132e-05(4.30595e-07) GeV [disabled], BR= 3.02196 % 25,23,11,-11 h0 --> Z e- e+ 1.17422e-05(9.57441e-08) GeV [disabled], BR= 0.679604 % 25,23,12,-12 h0 --> Z ve veb 2.29488e-05(1.89713e-07) GeV [disabled], BR= 1.32821 % 25,23,13,-13 h0 --> Z mu- mu+ 1.18234e-05(9.71232e-08) GeV [disabled], BR= 0.684307 % 25,23,14,-14 h0 --> Z vmu vmub 2.33025e-05(1.92339e-07) GeV [disabled], BR= 1.34868 % 25,23,15,-15 h0 --> Z tau- tau+ 1.11613e-05(8.96024e-08) GeV [disabled], BR= 0.645986 % 25,23,16,-16 h0 --> Z vtau vtaub 2.30421e-05(1.89826e-07) GeV [disabled], BR= 1.33361 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 62 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 4s elapsed / 5d 6h 6m 35s left ) -> ETA: Wed Oct 30 02:53 XS = 0.0704507 pb +- ( 0.0704507 pb = 100 % ) Event 2 ( 4s elapsed / 2d 15h 11m 35s left ) -> ETA: Sun Oct 27 11:58 XS = 0.0707669 pb +- ( 0.000316246 pb = 0 % ) Event 3 ( 4s elapsed / 1d 18h 18m 48s left ) -> ETA: Sat Oct 26 16:05 XS = 0.0705537 pb +- ( 0.000280724 pb = 0 % ) Event 4 ( 4s elapsed / 1d 7h 48m 15s left ) -> ETA: Sat Oct 26 05:35 XS = 0.0707275 pb +- ( 0.000263857 pb = 0 % ) Event 5 ( 4s elapsed / 1d 1h 29m 55s left ) -> ETA: Fri Oct 25 23:16 XS = 0.0709562 pb +- ( 0.00030668 pb = 0 % ) Event 6 ( 4s elapsed / 21h 23m 15s left ) -> ETA: Fri Oct 25 19:10 XS = 0.0713258 pb +- ( 0.000446438 pb = 0 % ) Event 7 ( 4s elapsed / 18h 24m 41s left ) -> ETA: Fri Oct 25 16:11 XS = 0.0710661 pb +- ( 0.000458022 pb = 0 % ) Event 8 ( 4s elapsed / 16h 10m 45s left ) -> ETA: Fri Oct 25 13:57 XS = 0.0709565 pb +- ( 0.000411522 pb = 0 % ) Event 9 ( 4s elapsed / 14h 26m 35s left ) -> ETA: Fri Oct 25 12:13 XS = 0.070962 pb +- ( 0.00036297 pb = 0 % ) Event 10 ( 4s elapsed / 13h 3m 15s left ) -> ETA: Fri Oct 25 10:50 XS = 0.0689237 pb +- ( 0.00206393 pb = 2 % ) Event 20 ( 5s elapsed / 6h 56m 35s left ) -> ETA: Fri Oct 25 04:43 XS = 0.0696097 pb +- ( 0.00101954 pb = 1 % ) Event 30 ( 5s elapsed / 4h 52m 41s left ) -> ETA: Fri Oct 25 02:39 XS = 0.0698168 pb +- ( 0.000803963 pb = 1 % ) Event 40 ( 5s elapsed / 3h 48m 39s left ) -> ETA: Fri Oct 25 01:35 XS = 0.070181 pb +- ( 0.000615087 pb = 0 % ) Event 50 ( 5s elapsed / 3h 10m 34s left ) -> ETA: Fri Oct 25 00:57 XS = 0.0704535 pb +- ( 0.000506298 pb = 0 % ) Event 60 ( 5s elapsed / 2h 44m 37s left ) -> ETA: Fri Oct 25 00:31 XS = 0.0701065 pb +- ( 0.000562357 pb = 0 % ) Event 70 ( 6s elapsed / 2h 27m 2s left ) -> ETA: Fri Oct 25 00:13 XS = 0.0703077 pb +- ( 0.000485904 pb = 0 % ) Event 80 ( 6s elapsed / 2h 13m 26s left ) -> ETA: Fri Oct 25 00:00 XS = 0.0704603 pb +- ( 0.000429153 pb = 0 % ) Event 90 ( 6s elapsed / 2h 2m 51s left ) -> ETA: Thu Oct 24 23:49 XS = 0.0705127 pb +- ( 0.000383281 pb = 0 % ) Event 100 ( 6s elapsed / 1h 54m 13s left ) -> ETA: Thu Oct 24 23:41 XS = 0.0705814 pb +- ( 0.000347306 pb = 0 % ) Event 200 ( 9s elapsed / 1h 16m 15s left ) -> ETA: Thu Oct 24 23:03 XS = 0.0685694 pb +- ( 0.000816689 pb = 1 % ) Event 300 ( 11s elapsed / 1h 3m 41s left ) -> ETA: Thu Oct 24 22:50 XS = 0.0681542 pb +- ( 0.000715741 pb = 1 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.430888,-0.000334675,-1.65395e-06,-0.00923931) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-0.804483,-9.5138e-05,-0.000122395,-0.145509) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.192312,0.000188089,8.43093e-05,-0.192365) (2) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.0807715,-9.90475e-06,-9.88174e-05,0.29117) (3) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.0210384,0.000249023,0.000152074,0.0321582) (4) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.079473,2.60625e-06,-1.35173e-05,0.0237847) (5) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-5.67287e-07,-7.60628e-11,4.29967e-11,-4.8427e-07) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-2.49578e-10,-1.3986e-13,4.3375e-13,-2.49557e-10) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (1.24603e-11,1.42428e-13,-1.51781e-13,-1.24505e-11) (2) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-1.0967e-08,-3.75909e-11,-1.13215e-11,1.09669e-08) (3) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (2.94786e-11,-5.91083e-13,3.15692e-13,2.94733e-11) (4) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (7.45518e-09,1.42654e-11,-4.27319e-12,7.45518e-09) (5) Event 400 ( 13s elapsed / 57m 36s left ) -> ETA: Thu Oct 24 22:44 XS = 0.0683459 pb +- ( 0.000613628 pb = 0 % ) Event 500 ( 16s elapsed / 56m 15s left ) -> ETA: Thu Oct 24 22:43 XS = 0.0686 pb +- ( 0.00052665 pb = 0 % ) Event 600 ( 19s elapsed / 53m 37s left ) -> ETA: Thu Oct 24 22:40 XS = 0.0685519 pb +- ( 0.000492563 pb = 0 % ) Event 700 ( 21s elapsed / 51m 52s left ) -> ETA: Thu Oct 24 22:39 XS = 0.068815 pb +- ( 0.00043769 pb = 0 % ) Event 800 ( 24s elapsed / 50m 7s left ) -> ETA: Thu Oct 24 22:37  Memory usage increased by 18 MB, now 158 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.06891 pb +- ( 0.000401338 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.604293,0.000196387,0.00048795,0.326416) (2) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (3.14305e-07,4.17734e-11,3.2592e-10,8.43307e-07) (2) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.801716,0.000155835,-0.000836629,-0.370212) (3) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (7.03965e-08,9.16059e-13,-1.30312e-10,-4.51987e-08) (3) Event 900 ( 26s elapsed / 49m 10s left ) -> ETA: Thu Oct 24 22:36 XS = 0.0689814 pb +- ( 0.000376849 pb = 0 % ) Event 1000 ( 29s elapsed / 48m left ) -> ETA: Thu Oct 24 22:35 XS = 0.0690058 pb +- ( 0.000354052 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 6 ( -> 3) [( 5.9257e+01,-0.0000e+00,-0.0000e+00, 5.9257e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 0 [I] 1 d 14 ( -> 5) [( 8.7298e+02,-0.0000e+00,-0.0000e+00, 8.7298e+02), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 u 37 ( -> 7) [( 4.6890e+02,-0.0000e+00,-0.0000e+00, 4.6890e+02), p^2= 0.0000e+00, m= 3.0000e-01] (636, 0) 0 [I] 1 u 53 ( -> 9) [( 1.5032e+03,-0.0000e+00,-0.0000e+00, 1.5032e+03), p^2= 0.0000e+00, m= 3.0000e-01] (647, 0) 0 [I] 1 G 71 ( -> 11) [( 5.9585e+02,-0.0000e+00,-0.0000e+00, 5.9585e+02), p^2= 0.0000e+00, m= 0.0000e+00] (660,647) 0 [I] 1 d 88 ( -> 13) [( 1.2045e+03,-0.0000e+00,-0.0000e+00, 1.2045e+03), p^2= 0.0000e+00, m= 3.0000e-01] (665, 0) 0 [I] 1 G 100 ( -> 15) [( 6.5421e+02,-0.0000e+00,-0.0000e+00, 6.5421e+02), p^2= 0.0000e+00, m= 0.0000e+00] (676,665) 0 and Particle List with 7 elements [I] 1 G 7 ( -> 3) [( 6.6015e+01,-0.0000e+00,-0.0000e+00,-6.6015e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,602) 1 [I] 1 G 15 ( -> 5) [( 2.1473e+03,-0.0000e+00,-0.0000e+00,-2.1473e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,623) 1 [I] 1 G 38 ( -> 7) [( 1.8634e+02,-0.0000e+00,-0.0000e+00,-1.8634e+02), p^2= 0.0000e+00, m= 0.0000e+00] (623,635) 1 [I] 1 G 54 ( -> 9) [( 9.4828e+02,-0.0000e+00,-0.0000e+00,-9.4828e+02), p^2= 0.0000e+00, m= 0.0000e+00] (645,601) 1 [I] 1 G 72 ( -> 11) [( 2.5726e+03,-0.0000e+00,-0.0000e+00,-2.5726e+03), p^2= 0.0000e+00, m= 0.0000e+00] (635,656) 1 [I] 1 G 89 ( -> 13) [( 5.7648e+02,-0.0000e+00,-0.0000e+00,-5.7648e+02), p^2= 0.0000e+00, m= 0.0000e+00] (656,664) 1 [I] 1 db 101 ( -> 15) [( 1.2749e+00,-0.0000e+00,-0.0000e+00,-1.2749e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,645) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 116 ( -> ) [( 8.9941e+02, 0.0000e+00, 0.0000e+00, 8.9941e+02), p^2= 9.6019e-02, m= 7.7133e-01] ( 0,676) 0 [B] 1 db 95 ( -> ) [( 8.0518e-01, 0.0000e+00, 0.0000e+00, 8.0518e-01), p^2= 7.6953e-08, m= 0.0000e+00] ( 0,660) 0 [B] 1 ub 66 ( -> ) [( 5.8097e+00, 0.0000e+00, 0.0000e+00, 5.8097e+00), p^2= 4.0063e-06, m= 0.0000e+00] ( 0,636) 0 [B] 1 ub 48 ( -> ) [( 2.3502e+02, 0.0000e+00, 0.0000e+00, 2.3502e+02), p^2= 6.5564e-03, m= 0.0000e+00] ( 0,602) 0 and Particle List with 3 elements [B] 1 uu_1 118 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,679) 1 [B] 1 d 113 ( -> ) [( 4.3991e-01, 0.0000e+00, 0.0000e+00,-4.3989e-01), p^2= 1.5201e-05, m= 0.0000e+00] (679, 0) 1 [B] 1 d 117 ( -> ) [( 1.2843e+00, 0.0000e+00, 0.0000e+00,-1.2842e+00), p^2= 1.2956e-04, m= 0.0000e+00] (664, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (1.28707,0.000334171,-0.000353067,-1.23258) (4) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (4.84929e-06,-1.82292e-10,-5.22685e-10,-3.75847e-06) (4) Event 2000 ( 54s elapsed / 44m 18s left ) -> ETA: Thu Oct 24 22:32  Memory usage increased by 19 MB, now 177 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689997 pb +- ( 0.000254762 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 6 ( -> 3) [( 2.1858e+02,-0.0000e+00,-0.0000e+00, 2.1858e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 0 [I] 1 G 14 ( -> 5) [( 9.9695e+01,-0.0000e+00,-0.0000e+00, 9.9695e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,625) 0 [I] 1 u 40 ( -> 7) [( 4.6393e+02,-0.0000e+00,-0.0000e+00, 4.6393e+02), p^2= 0.0000e+00, m= 3.0000e-01] (625, 0) 0 [I] 1 G 58 ( -> 9) [( 1.2160e+03,-0.0000e+00,-0.0000e+00, 1.2160e+03), p^2= 0.0000e+00, m= 0.0000e+00] (651,602) 0 [I] 1 d 80 ( -> 11) [( 2.7325e+03,-0.0000e+00,-0.0000e+00, 2.7325e+03), p^2= 0.0000e+00, m= 3.0000e-01] (675, 0) 0 [I] 1 u 104 ( -> 13) [( 8.4021e+02,-0.0000e+00,-0.0000e+00, 8.4021e+02), p^2= 0.0000e+00, m= 3.0000e-01] (683, 0) 0 [I] 1 ub 119 ( -> 15) [( 7.8125e+02,-0.0000e+00,-0.0000e+00, 7.8125e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,683) 0 and Particle List with 7 elements [I] 1 G 7 ( -> 3) [( 1.7897e+01,-0.0000e+00,-0.0000e+00,-1.7897e+01), p^2= 1.2716e-13, m= 0.0000e+00] (601,602) 1 [I] 1 u 15 ( -> 5) [( 5.2346e+03,-0.0000e+00,-0.0000e+00,-5.2346e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 G 41 ( -> 7) [( 8.0130e+01,-0.0000e+00,-0.0000e+00,-8.0130e+01), p^2= 0.0000e+00, m= 0.0000e+00] (641,601) 1 [I] 1 db 59 ( -> 9) [( 1.1628e+01,-0.0000e+00,-0.0000e+00,-1.1628e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,641) 1 [I] 1 G 81 ( -> 11) [( 1.0656e+03,-0.0000e+00,-0.0000e+00,-1.0656e+03), p^2= 0.0000e+00, m= 0.0000e+00] (674,665) 1 [I] 1 G 105 ( -> 13) [( 8.4646e+01,-0.0000e+00,-0.0000e+00,-8.4646e+01), p^2= 0.0000e+00, m= 0.0000e+00] (688,674) 1 [I] 1 sb 120 ( -> 15) [( 4.1477e+00,-0.0000e+00,-0.0000e+00,-4.1477e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,688) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 132 ( -> ) [( 1.3041e+02, 0.0000e+00, 0.0000e+00, 1.3041e+02), p^2= 1.5577e-02, m= 5.7933e-01] ( 0,675) 0 [B] 1 db 99 ( -> ) [( 1.7463e+01, 0.0000e+00, 0.0000e+00, 1.7463e+01), p^2= 2.7932e-04, m= 0.0000e+00] ( 0,651) 0 and Particle List with 3 elements [B] 1 ud_0 134 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,700) 1 [B] 1 s 129 ( -> ) [( 4.0983e-01, 0.0000e+00, 0.0000e+00,-4.0981e-01), p^2= 1.6948e-05, m= 0.0000e+00] (700, 0) 1 [B] 1 d 75 ( -> ) [( 9.3236e-01, 0.0000e+00, 0.0000e+00,-9.3231e-01), p^2= 8.7717e-05, m= 0.0000e+00] (665, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.367222,-8.71655e-06,-0.000246837,0.0410576) (5) WARNING: last allowed error message from 'FourMomentumConservation' Blob_List::FourMomentumConservation throws four momentum error for Hard Collision : (-1.75504e-12,0,0,-1.72662e-12) (1) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 9 elements [I] 1 G 6 ( -> 3) [( 1.7790e+02,-0.0000e+00,-0.0000e+00, 1.7790e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 0 [I] 1 G 14 ( -> 5) [( 1.3802e+03,-0.0000e+00,-0.0000e+00, 1.3802e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,628) 0 [I] 1 G 33 ( -> 7) [( 3.2768e+02,-0.0000e+00,-0.0000e+00, 3.2768e+02), p^2= 0.0000e+00, m= 0.0000e+00] (646,602) 0 [I] 1 G 54 ( -> 9) [( 1.4530e+02,-0.0000e+00,-0.0000e+00, 1.4530e+02), p^2= 0.0000e+00, m= 0.0000e+00] (628,655) 0 [I] 1 G 68 ( -> 11) [( 1.4458e+02,-0.0000e+00,-0.0000e+00, 1.4458e+02), p^2= 0.0000e+00, m= 0.0000e+00] (661,646) 0 [I] 1 d 83 ( -> 13) [( 9.1196e+02,-0.0000e+00,-0.0000e+00, 9.1196e+02), p^2= 0.0000e+00, m= 3.0000e-01] (655, 0) 0 [I] 1 d 99 ( -> 15) [( 4.0799e+02,-0.0000e+00,-0.0000e+00, 4.0799e+02), p^2= 0.0000e+00, m= 3.0000e-01] (686, 0) 0 [I] 1 u 117 ( -> 17) [( 9.5921e+02,-0.0000e+00,-0.0000e+00, 9.5921e+02), p^2= 0.0000e+00, m= 3.0000e-01] (692, 0) 0 [I] 1 db 134 ( -> 19) [( 3.2331e+02,-0.0000e+00,-0.0000e+00, 3.2331e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,692) 0 and Particle List with 9 elements [I] 1 G 7 ( -> 3) [( 2.1989e+01,-0.0000e+00,-0.0000e+00,-2.1989e+01), p^2=-7.8120e-13, m= 0.0000e+00] (601,602) 1 [I] 1 d 15 ( -> 5) [( 7.5105e+01,-0.0000e+00,-0.0000e+00,-7.5105e+01), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 G 34 ( -> 7) [( 5.2618e+03,-0.0000e+00,-0.0000e+00,-5.2618e+03), p^2= 0.0000e+00, m= 0.0000e+00] (645,601) 1 [I] 1 G 55 ( -> 9) [( 1.3253e+02,-0.0000e+00,-0.0000e+00,-1.3253e+02), p^2= 0.0000e+00, m= 0.0000e+00] (649,645) 1 [I] 1 G 69 ( -> 11) [( 2.2904e+02,-0.0000e+00,-0.0000e+00,-2.2904e+02), p^2= 0.0000e+00, m= 0.0000e+00] (658,649) 1 [I] 1 d 84 ( -> 13) [( 7.2146e+02,-0.0000e+00,-0.0000e+00,-7.2146e+02), p^2= 0.0000e+00, m= 3.0000e-01] (667, 0) 1 [I] 1 G 100 ( -> 15) [( 4.9486e+01,-0.0000e+00,-0.0000e+00,-4.9486e+01), p^2= 0.0000e+00, m= 0.0000e+00] (682,667) 1 [I] 1 G 118 ( -> 17) [( 6.6976e+00,-0.0000e+00,-0.0000e+00,-6.6976e+00), p^2= 0.0000e+00, m= 0.0000e+00] (697,682) 1 [I] 1 G 135 ( -> 19) [( 9.1181e-01,-0.0000e+00,-0.0000e+00,-9.1181e-01), p^2= 0.0000e+00, m= 0.0000e+00] (703,697) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 145 ( -> ) [( 1.1825e+03, 0.0000e+00, 0.0000e+00, 1.1825e+03), p^2= 1.0998e-01, m= 7.7133e-01] ( 0,661) 0 [B] 1 ub 129 ( -> ) [( 5.3942e+02, 0.0000e+00, 0.0000e+00, 5.3942e+02), p^2= 2.2887e-02, m= 0.0000e+00] ( 0,686) 0 and Particle List with 2 elements [B] 1 uu_1 147 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,703) 1 [B] 1 db 94 ( -> ) [( 9.6476e-01, 0.0000e+00, 0.0000e+00,-9.6469e-01), p^2= 1.3066e-04, m= 0.0000e+00] ( 0,658) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 3000 ( 1m 18s elapsed / 42m 14s left ) -> ETA: Thu Oct 24 22:30  Memory usage increased by 17 MB, now 195 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690263 pb +- ( 0.000200518 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 13 elements [I] 1 G 6 ( -> 3) [( 8.8359e+01,-0.0000e+00,-0.0000e+00, 8.8359e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 0 [I] 1 ub 14 ( -> 5) [( 5.6238e+00,-0.0000e+00,-0.0000e+00, 5.6238e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,602) 0 [I] 1 d 37 ( -> 7) [( 6.7604e+02,-0.0000e+00,-0.0000e+00, 6.7604e+02), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 52 ( -> 9) [( 3.8624e+02,-0.0000e+00,-0.0000e+00, 3.8624e+02), p^2= 0.0000e+00, m= 0.0000e+00] (644,628) 0 [I] 1 G 73 ( -> 11) [( 1.5091e+03,-0.0000e+00,-0.0000e+00, 1.5091e+03), p^2= 0.0000e+00, m= 0.0000e+00] (662,644) 0 [I] 1 db 89 ( -> 13) [( 2.1795e+03,-0.0000e+00,-0.0000e+00, 2.1795e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,662) 0 [I] 1 db 110 ( -> 15) [( 5.5141e+01,-0.0000e+00,-0.0000e+00, 5.5141e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,676) 0 [I] 1 db 124 ( -> 17) [( 2.2814e+01,-0.0000e+00,-0.0000e+00, 2.2814e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,685) 0 [I] 1 u 140 ( -> 19) [( 1.3728e+03,-0.0000e+00,-0.0000e+00, 1.3728e+03), p^2= 0.0000e+00, m= 3.0000e-01] (704, 0) 0 [I] 1 G 161 ( -> 21) [( 7.9364e+01,-0.0000e+00,-0.0000e+00, 7.9364e+01), p^2= 0.0000e+00, m= 0.0000e+00] (714,704) 0 [I] 1 G 178 ( -> 23) [( 1.1351e+02,-0.0000e+00,-0.0000e+00, 1.1351e+02), p^2= 0.0000e+00, m= 0.0000e+00] (719,714) 0 [I] 1 G 192 ( -> 25) [( 7.5456e+00,-0.0000e+00,-0.0000e+00, 7.5456e+00), p^2= 0.0000e+00, m= 0.0000e+00] (743,701) 0 [I] 1 G 207 ( -> 27) [( 1.8810e+00,-0.0000e+00,-0.0000e+00, 1.8810e+00), p^2= 0.0000e+00, m= 0.0000e+00] (701,743) 0 and Particle List with 13 elements [I] 1 G 7 ( -> 3) [( 4.4273e+01,-0.0000e+00,-0.0000e+00,-4.4273e+01), p^2=-6.2915e-13, m= 0.0000e+00] (601,602) 1 [I] 1 d 15 ( -> 5) [( 2.3992e+03,-0.0000e+00,-0.0000e+00,-2.3992e+03), p^2= 0.0000e+00, m= 3.0000e-01] (621, 0) 1 [I] 1 u 38 ( -> 7) [( 3.1199e+02,-0.0000e+00,-0.0000e+00,-3.1199e+02), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 G 53 ( -> 9) [( 1.3646e+02,-0.0000e+00,-0.0000e+00,-1.3646e+02), p^2= 0.0000e+00, m= 0.0000e+00] (647,601) 1 [I] 1 d 74 ( -> 11) [( 1.6044e+03,-0.0000e+00,-0.0000e+00,-1.6044e+03), p^2= 0.0000e+00, m= 3.0000e-01] (657, 0) 1 [I] 1 ub 90 ( -> 13) [( 1.9295e+01,-0.0000e+00,-0.0000e+00,-1.9295e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,672) 1 [I] 1 G 111 ( -> 15) [( 1.2485e+02,-0.0000e+00,-0.0000e+00,-1.2485e+02), p^2= 0.0000e+00, m= 0.0000e+00] (684,647) 1 [I] 1 G 125 ( -> 17) [( 4.5125e+02,-0.0000e+00,-0.0000e+00,-4.5125e+02), p^2= 0.0000e+00, m= 0.0000e+00] (691,657) 1 [I] 1 G 141 ( -> 19) [( 6.4265e+02,-0.0000e+00,-0.0000e+00,-6.4265e+02), p^2= 0.0000e+00, m= 0.0000e+00] (672,701) 1 [I] 1 d 162 ( -> 21) [( 3.1206e+02,-0.0000e+00,-0.0000e+00,-3.1206e+02), p^2= 0.0000e+00, m= 3.0000e-01] (716, 0) 1 [I] 1 G 179 ( -> 23) [( 2.4811e+02,-0.0000e+00,-0.0000e+00,-2.4811e+02), p^2= 0.0000e+00, m= 0.0000e+00] (723,691) 1 [I] 1 G 193 ( -> 25) [( 1.3222e+02,-0.0000e+00,-0.0000e+00,-1.3222e+02), p^2= 0.0000e+00, m= 0.0000e+00] (701,739) 1 [I] 1 G 208 ( -> 27) [( 6.5934e+01,-0.0000e+00,-0.0000e+00,-6.5934e+01), p^2= 0.0000e+00, m= 0.0000e+00] (739,716) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 216 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,719) 0 [B] 1 d 135 ( -> ) [( 5.7675e-01, 0.0000e+00, 0.0000e+00, 5.7673e-01), p^2= 2.2104e-05, m= 0.0000e+00] (628, 0) 0 [B] 1 d 119 ( -> ) [( 6.1723e-01, 0.0000e+00, 0.0000e+00, 6.1721e-01), p^2= 2.5316e-05, m= 0.0000e+00] (685, 0) 0 [B] 1 d 104 ( -> ) [( 8.4417e-01, 0.0000e+00, 0.0000e+00, 8.4414e-01), p^2= 4.7354e-05, m= 0.0000e+00] (676, 0) 0 and Particle List with 5 elements [B] 1 ud_0 219 ( -> ) [( 1.5652e+00, 0.0000e+00, 0.0000e+00,-1.5651e+00), p^2= 4.5172e-05, m= 5.7933e-01] ( 0,723) 1 [B] 1 db 173 ( -> ) [( 3.2395e-01, 0.0000e+00, 0.0000e+00,-3.2395e-01), p^2= 1.9352e-06, m= 0.0000e+00] ( 0,684) 1 [B] 1 u 105 ( -> ) [( 4.1451e+00, 0.0000e+00, 0.0000e+00,-4.1451e+00), p^2= 3.1683e-04, m= 0.0000e+00] (629, 0) 1 [B] 1 db 84 ( -> ) [( 3.8982e-01, 0.0000e+00, 0.0000e+00,-3.8981e-01), p^2= 2.8021e-06, m= 0.0000e+00] ( 0,621) 1 [B] 1 db 32 ( -> ) [( 9.2084e-01, 0.0000e+00, 0.0000e+00,-9.2083e-01), p^2= 1.5636e-05, m= 0.0000e+00] ( 0,629) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 4000 ( 1m 42s elapsed / 41m 2s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 22 MB, now 217 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689203 pb +- ( 0.000177749 pb = 0 % ) Event 5000 ( 2m 7s elapsed / 40m 19s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 58 MB, now 275 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689891 pb +- ( 0.000156487 pb = 0 % ) Event 6000 ( 2m 30s elapsed / 39m 19s left ) -> ETA: Thu Oct 24 22:28 XS = 0.0689901 pb +- ( 0.000142517 pb = 0 % ) Decay_Handler_Base::TreatInitialBlob:("Initial particle Delta(1232)++b not onshell: sqrt|p^2|=1.232 vs. m=1.232") Event 7000 ( 2m 56s elapsed / 39m 8s left ) -> ETA: Thu Oct 24 22:28  Memory usage increased by 31 MB, now 306 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689888 pb +- ( 0.000132454 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 10 elements [I] 1 G 6 ( -> 3) [( 1.6513e+01,-0.0000e+00,-0.0000e+00, 1.6513e+01), p^2= 3.5200e-13, m= 0.0000e+00] (602,601) 0 [I] 1 d 14 ( -> 5) [( 1.1237e+03,-0.0000e+00,-0.0000e+00, 1.1237e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 33 ( -> 7) [( 8.4937e+02,-0.0000e+00,-0.0000e+00, 8.4937e+02), p^2= 0.0000e+00, m= 0.0000e+00] (641,602) 0 [I] 1 G 50 ( -> 9) [( 1.2585e+02,-0.0000e+00,-0.0000e+00, 1.2585e+02), p^2= 0.0000e+00, m= 0.0000e+00] (659,641) 0 [I] 1 u 67 ( -> 11) [( 4.2577e+03,-0.0000e+00,-0.0000e+00, 4.2577e+03), p^2= 0.0000e+00, m= 3.0000e-01] (660, 0) 0 [I] 1 G 89 ( -> 13) [( 8.9273e+01,-0.0000e+00,-0.0000e+00, 8.9273e+01), p^2= 0.0000e+00, m= 0.0000e+00] (699,660) 0 [I] 1 sb 113 ( -> 15) [( 3.6440e+00,-0.0000e+00,-0.0000e+00, 3.6440e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,699) 0 [I] 1 G 126 ( -> 17) [( 1.7840e+01,-0.0000e+00,-0.0000e+00, 1.7840e+01), p^2= 0.0000e+00, m= 0.0000e+00] (711,706) 0 [I] 1 G 139 ( -> 19) [( 6.3740e+00,-0.0000e+00,-0.0000e+00, 6.3740e+00), p^2= 0.0000e+00, m= 0.0000e+00] (718,711) 0 [I] 1 G 154 ( -> 21) [( 8.0668e+00,-0.0000e+00,-0.0000e+00, 8.0668e+00), p^2= 0.0000e+00, m= 0.0000e+00] (731,718) 0 and Particle List with 10 elements [I] 1 G 7 ( -> 3) [( 2.3689e+02,-0.0000e+00,-0.0000e+00,-2.3689e+02), p^2= 1.3466e-11, m= 0.0000e+00] (601,602) 1 [I] 1 G 15 ( -> 5) [( 1.1430e+02,-0.0000e+00,-0.0000e+00,-1.1430e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,624) 1 [I] 1 G 34 ( -> 7) [( 1.0921e+02,-0.0000e+00,-0.0000e+00,-1.0921e+02), p^2= 0.0000e+00, m= 0.0000e+00] (624,640) 1 [I] 1 u 51 ( -> 9) [( 2.3329e+02,-0.0000e+00,-0.0000e+00,-2.3329e+02), p^2= 0.0000e+00, m= 3.0000e-01] (640, 0) 1 [I] 1 G 68 ( -> 11) [( 1.7985e+03,-0.0000e+00,-0.0000e+00,-1.7985e+03), p^2= 0.0000e+00, m= 0.0000e+00] (671,601) 1 [I] 1 G 90 ( -> 13) [( 2.9728e+02,-0.0000e+00,-0.0000e+00,-2.9728e+02), p^2= 0.0000e+00, m= 0.0000e+00] (697,671) 1 [I] 1 G 114 ( -> 15) [( 2.6503e+03,-0.0000e+00,-0.0000e+00,-2.6503e+03), p^2= 0.0000e+00, m= 0.0000e+00] (702,697) 1 [I] 1 G 127 ( -> 17) [( 3.8306e+01,-0.0000e+00,-0.0000e+00,-3.8306e+01), p^2= 0.0000e+00, m= 0.0000e+00] (712,702) 1 [I] 1 G 140 ( -> 19) [( 1.8836e+02,-0.0000e+00,-0.0000e+00,-1.8836e+02), p^2= 0.0000e+00, m= 0.0000e+00] (722,712) 1 [I] 1 G 155 ( -> 21) [( 2.3756e+02,-0.0000e+00,-0.0000e+00,-2.3756e+02), p^2= 0.0000e+00, m= 0.0000e+00] (718,722) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 167 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,731) 0 [B] 1 s 121 ( -> ) [( 1.1342e+00, 0.0000e+00, 0.0000e+00, 1.1341e+00), p^2= 1.0202e-04, m= 0.0000e+00] (706, 0) 0 [B] 1 ub 84 ( -> ) [( 5.7355e-01, 0.0000e+00, 0.0000e+00, 5.7353e-01), p^2= 2.6089e-05, m= 0.0000e+00] ( 0,659) 0 and Particle List with 1 elements [B] 1 ud_0 168 ( -> ) [( 5.9601e+02, 0.0000e+00, 0.0000e+00,-5.9601e+02), p^2= 8.0724e-02, m= 5.7933e-01] ( 0,718) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 8000 ( 3m 22s elapsed / 38m 48s left ) -> ETA: Thu Oct 24 22:29 XS = 0.06901 pb +- ( 0.000123589 pb = 0 % ) Event 9000 ( 3m 49s elapsed / 38m 35s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 24 MB, now 331 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689816 pb +- ( 0.000117257 pb = 0 % ) Event 10000 ( 4m 15s elapsed / 38m 16s left ) -> ETA: Thu Oct 24 22:29 XS = 0.0689797 pb +- ( 0.000111448 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 20000 ( 9h 16m 22s elapsed / 1d 13h 5m 30s left ) -> ETA: Sat Oct 26 20:08 XS = 0.0690104 pb +- ( 7.853e-05 pb = 0 % ) Decay_Handler_Base::TreatInitialBlob:("Initial particle Delta(1232)++b not onshell: sqrt|p^2|=1.232 vs. m=1.232") Event 30000 ( 9h 19m 38s elapsed / 21h 45m 50s left ) -> ETA: Sat Oct 26 04:52 XS = 0.0689863 pb +- ( 6.48314e-05 pb = 0 % ) Event 40000 ( 9h 22m 49s elapsed / 14h 4m 14s left ) -> ETA: Fri Oct 25 21:13  Memory usage increased by 182 MB, now 513 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689871 pb +- ( 5.59598e-05 pb = 0 % ) Decay_Handler_Base::TreatInitialBlob:("Initial particle Delta(1232)++ not onshell: sqrt|p^2|=1.232 vs. m=1.232") Event 50000 ( 9h 26m 3s elapsed / 9h 26m 3s left ) -> ETA: Fri Oct 25 16:38  Memory usage increased by 162 MB, now 676 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690365 pb +- ( 4.95858e-05 pb = 0 % ) Event 60000 ( 9h 29m 20s elapsed / 6h 19m 33s left ) -> ETA: Fri Oct 25 13:35  Memory usage increased by 170 MB, now 847 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690445 pb +- ( 4.52739e-05 pb = 0 % ) Event 70000 ( 9h 32m 32s elapsed / 4h 5m 22s left ) -> ETA: Fri Oct 25 11:24  Memory usage increased by 201 MB, now 1048 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690608 pb +- ( 4.17771e-05 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 80000 ( 9h 35m 44s elapsed / 2h 23m 56s left ) -> ETA: Fri Oct 25 09:46  Memory usage increased by 175 MB, now 1224 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690765 pb +- ( 3.89091e-05 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 90000 ( 9h 38m 57s elapsed / 1h 4m 19s left ) -> ETA: Fri Oct 25 08:30  Memory usage increased by 143 MB, now 1367 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690961 pb +- ( 3.65825e-05 pb = 0 % ) Event 100000 ( 34928 s total ) = 247366 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/1034){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  0.069114 0 % 3.45151e-05 0.04 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100000 New events { From "Beam_Remnants:Parametrised": 56 (100292) -> 0 % From "Jet_Evolution:CFP": 233 (491033) -> 0 % } Retried events { From "Hadron_Decays": 3 (102547) -> 0 % } Retried phases { From "Hadron_Decay_Handler::RejectExclusiveChannelsFromFragmentation": 862 (0) -> 862. } Retried methods { From "Decay_Channel::GenerateKinematics": 211 (20946296) -> 0 % } } Blob_List: Momentum Fail Statistics { Signal Process : 27 fails Hard Decay : 47 fails Hard Collision : 60 fails Soft Collision : 233 fails Shower : 1658 fails Fragmentation : 233 fails Hadron Decay : 19407 fails } Error messages from 'FourMomentumConservation' exceeded frequency limit: 35/20 Decay_Channel: Kinematics max fail statistics { B --> D*(2007)b D+ K pi+b maximal fail by 2.43243. B --> D+b vmu mu+ maximal fail by 1.30221. Omega(b)- --> ss_1 c cb s maximal fail by 1.33023. } WARNING: You are using an unsupported development branch. Gluon_Splitter::~Gluon_Splitter with 18187 kinematic fails. Decay_Handler_Base::~Decay_Handler_Base with 3 particles not on their mass shell. Remnant handling yields 56 fails in creating good beam breakups. Remnant Kinematics: 56 errors (no kinematics found) and 7 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 9h 42m 19s on Fri Oct 25 07:29:06 2024 (User: 35m 14s, System: 5m 26s, Children User: 0s, Children System: 0s)