Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:45:00 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1029 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.7156e-07(3.86257e-09) GeV, BR= 6.87533e-06 % 23,-24,4,-3 Z --> W- c sb 1.73552e-07(3.8325e-09) GeV, BR= 6.95516e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.65506e-08(1.24872e-09) GeV, BR= 2.26628e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.9071e-08(1.29103e-09) GeV, BR= 2.36729e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 5.05231e-08(1.0186e-09) GeV, BR= 2.02473e-06 % 23,24,-2,1 Z --> W+ ub d 1.72639e-07(3.80386e-09) GeV, BR= 6.91858e-06 % 23,24,-4,3 Z --> W+ cb s 1.72471e-07(3.74821e-09) GeV, BR= 6.91182e-06 % 23,24,-12,11 Z --> W+ veb e- 5.90151e-08(1.30699e-09) GeV, BR= 2.36505e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.67581e-08(1.27387e-09) GeV, BR= 2.2746e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 5.06845e-08(1.02449e-09) GeV, BR= 2.0312e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.00172706 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.21341e-05) GeV [disabled], BR= 19.4203 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538892 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8518 % 25,-24,2,-1 h0 --> W- u db 0.00012855(1.01707e-06) GeV [disabled], BR= 7.4433 % 25,-24,4,-3 h0 --> W- c sb 0.000130609(1.00138e-06) GeV [disabled], BR= 7.56252 % 25,-24,12,-11 h0 --> W- ve e+ 4.39334e-05(3.40069e-07) GeV [disabled], BR= 2.54383 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.38639e-05(3.37598e-07) GeV [disabled], BR= 2.5398 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.32841e-05(3.37504e-07) GeV [disabled], BR= 2.50623 % 25,24,-2,1 h0 --> W+ ub d 0.000130762(1.01749e-06) GeV [disabled], BR= 7.57135 % 25,24,-4,3 h0 --> W+ cb s 0.00012969(1.01687e-06) GeV [disabled], BR= 7.50928 % 25,24,-12,11 h0 --> W+ veb e- 4.38502e-05(3.47688e-07) GeV [disabled], BR= 2.53901 % 25,24,-14,13 h0 --> W+ vmub mu- 4.38097e-05(3.4082e-07) GeV [disabled], BR= 2.53666 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.39041e-05(3.41855e-07) GeV [disabled], BR= 2.54213 % 25,23,1,-1 h0 --> Z d db 5.20484e-05(4.24273e-07) GeV [disabled], BR= 3.01369 % 25,23,2,-2 h0 --> Z u ub 4.13045e-05(3.30513e-07) GeV [disabled], BR= 2.39161 % 25,23,3,-3 h0 --> Z s sb 5.29918e-05(4.27644e-07) GeV [disabled], BR= 3.06832 % 25,23,4,-4 h0 --> Z c cb 4.10531e-05(3.34225e-07) GeV [disabled], BR= 2.37705 % 25,23,5,-5 h0 --> Z b bb 5.17041e-05(4.31988e-07) GeV [disabled], BR= 2.99376 % 25,23,11,-11 h0 --> Z e- e+ 1.17998e-05(9.60944e-08) GeV [disabled], BR= 0.68323 % 25,23,12,-12 h0 --> Z ve veb 2.32466e-05(1.92223e-07) GeV [disabled], BR= 1.34602 % 25,23,13,-13 h0 --> Z mu- mu+ 1.17752e-05(9.72171e-08) GeV [disabled], BR= 0.681808 % 25,23,14,-14 h0 --> Z vmu vmub 2.31767e-05(1.90986e-07) GeV [disabled], BR= 1.34198 % 25,23,15,-15 h0 --> Z tau- tau+ 1.13008e-05(8.97372e-08) GeV [disabled], BR= 0.654336 % 25,23,16,-16 h0 --> Z vtau vtaub 2.31963e-05(1.93246e-07) GeV [disabled], BR= 1.34311 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 62 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Oct 24 21:46:46 2024. Run_Parameter::Init(): Setting memory limit to 502.838 GB. Random::SetSeed(): Seed set to 1029 ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron 173:ewscheme=Gmu HEFT::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu alpha(Gmu) Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 1 1 1 1.777 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0 0 1 1 125.09 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} HEFT::InitEFTVertices() { ggh coupling is (5.08499e-05,0) [ \alpha_s = 0.118 ] yyh coupling is (-2.55499e-05,0) [ 1/\alpha = 132.119 ] } Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. Hard_Decay_Handler::SetDecayMasses(): Massive decay flavours: (none) Decay table for : W+. Total width: 2.085 GeV ---------------------------------------- 24,2,-1 W+ --> u db 0.7041 GeV, BR= 33.7698 % 24,4,-3 W+ --> c sb 0.7041 GeV, BR= 33.7698 % 24,12,-11 W+ --> ve e+ 0.2256 GeV, BR= 10.8201 % 24,14,-13 W+ --> vmu mu+ 0.2256 GeV, BR= 10.8201 % 24,16,-15 W+ --> vtau tau+ 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : W-. Total width: 2.085 GeV ---------------------------------------- -24,-2,1 W- --> ub d 0.7041 GeV, BR= 33.7698 % -24,-4,3 W- --> cb s 0.7041 GeV, BR= 33.7698 % -24,-12,11 W- --> veb e- 0.2256 GeV, BR= 10.8201 % -24,-14,13 W- --> vmub mu- 0.2256 GeV, BR= 10.8201 % -24,-16,15 W- --> vtaub tau- 0.2256 GeV, BR= 10.8201 % ---------------------------------------- Decay table for : Z. Total width: 2.4953 GeV Flavour width: 2.4952 GeV ---------------------------------------- 23,1,-1 Z --> d db 0.3828 GeV, BR= 15.3408 % 23,2,-2 Z --> u ub 0.298 GeV, BR= 11.9424 % 23,3,-3 Z --> s sb 0.3828 GeV, BR= 15.3408 % 23,4,-4 Z --> c cb 0.298 GeV, BR= 11.9424 % 23,5,-5 Z --> b bb 0.3828 GeV, BR= 15.3408 % 23,11,-11 Z --> e- e+ 0.084 GeV, BR= 3.36633 % 23,12,-12 Z --> ve veb 0.1663 GeV, BR= 6.66453 % 23,13,-13 Z --> mu- mu+ 0.084 GeV, BR= 3.36633 % 23,14,-14 Z --> vmu vmub 0.1663 GeV, BR= 6.66453 % 23,15,-15 Z --> tau- tau+ 0.084 GeV, BR= 3.36633 % 23,16,-16 Z --> vtau vtaub 0.1663 GeV, BR= 6.66453 % 23,-24,2,-1 Z --> W- u db 1.7156e-07(3.86257e-09) GeV, BR= 6.87533e-06 % 23,-24,4,-3 Z --> W- c sb 1.73552e-07(3.8325e-09) GeV, BR= 6.95516e-06 % 23,-24,12,-11 Z --> W- ve e+ 5.65506e-08(1.24872e-09) GeV, BR= 2.26628e-06 % 23,-24,14,-13 Z --> W- vmu mu+ 5.9071e-08(1.29103e-09) GeV, BR= 2.36729e-06 % 23,-24,16,-15 Z --> W- vtau tau+ 5.05231e-08(1.0186e-09) GeV, BR= 2.02473e-06 % 23,24,-2,1 Z --> W+ ub d 1.72639e-07(3.80386e-09) GeV, BR= 6.91858e-06 % 23,24,-4,3 Z --> W+ cb s 1.72471e-07(3.74821e-09) GeV, BR= 6.91182e-06 % 23,24,-12,11 Z --> W+ veb e- 5.90151e-08(1.30699e-09) GeV, BR= 2.36505e-06 % 23,24,-14,13 Z --> W+ vmub mu- 5.67581e-08(1.27387e-09) GeV, BR= 2.2746e-06 % 23,24,-16,15 Z --> W+ vtaub tau- 5.06845e-08(1.02449e-09) GeV, BR= 2.0312e-06 % ---------------------------------------- Decay table for : h0. Total width: 0.00172706 GeV Flavour width: 0 GeV ---------------------------------------- 25,21,21 h0 --> G G 0.0003354 (1.21341e-05) GeV [disabled], BR= 19.4203 % 25,22,22 h0 --> P P 9.307e-06 GeV, BR= 0.538892 % 25,15,-15 h0 --> tau- tau+ 0.0002565 GeV [disabled], BR= 14.8518 % 25,-24,2,-1 h0 --> W- u db 0.00012855(1.01707e-06) GeV [disabled], BR= 7.4433 % 25,-24,4,-3 h0 --> W- c sb 0.000130609(1.00138e-06) GeV [disabled], BR= 7.56252 % 25,-24,12,-11 h0 --> W- ve e+ 4.39334e-05(3.40069e-07) GeV [disabled], BR= 2.54383 % 25,-24,14,-13 h0 --> W- vmu mu+ 4.38639e-05(3.37598e-07) GeV [disabled], BR= 2.5398 % 25,-24,16,-15 h0 --> W- vtau tau+ 4.32841e-05(3.37504e-07) GeV [disabled], BR= 2.50623 % 25,24,-2,1 h0 --> W+ ub d 0.000130762(1.01749e-06) GeV [disabled], BR= 7.57135 % 25,24,-4,3 h0 --> W+ cb s 0.00012969(1.01687e-06) GeV [disabled], BR= 7.50928 % 25,24,-12,11 h0 --> W+ veb e- 4.38502e-05(3.47688e-07) GeV [disabled], BR= 2.53901 % 25,24,-14,13 h0 --> W+ vmub mu- 4.38097e-05(3.4082e-07) GeV [disabled], BR= 2.53666 % 25,24,-16,15 h0 --> W+ vtaub tau- 4.39041e-05(3.41855e-07) GeV [disabled], BR= 2.54213 % 25,23,1,-1 h0 --> Z d db 5.20484e-05(4.24273e-07) GeV [disabled], BR= 3.01369 % 25,23,2,-2 h0 --> Z u ub 4.13045e-05(3.30513e-07) GeV [disabled], BR= 2.39161 % 25,23,3,-3 h0 --> Z s sb 5.29918e-05(4.27644e-07) GeV [disabled], BR= 3.06832 % 25,23,4,-4 h0 --> Z c cb 4.10531e-05(3.34225e-07) GeV [disabled], BR= 2.37705 % 25,23,5,-5 h0 --> Z b bb 5.17041e-05(4.31988e-07) GeV [disabled], BR= 2.99376 % 25,23,11,-11 h0 --> Z e- e+ 1.17998e-05(9.60944e-08) GeV [disabled], BR= 0.68323 % 25,23,12,-12 h0 --> Z ve veb 2.32466e-05(1.92223e-07) GeV [disabled], BR= 1.34602 % 25,23,13,-13 h0 --> Z mu- mu+ 1.17752e-05(9.72171e-08) GeV [disabled], BR= 0.681808 % 25,23,14,-14 h0 --> Z vmu vmub 2.31767e-05(1.90986e-07) GeV [disabled], BR= 1.34198 % 25,23,15,-15 h0 --> Z tau- tau+ 1.13008e-05(8.97372e-08) GeV [disabled], BR= 0.654336 % 25,23,16,-16 h0 --> Z vtau vtaub 2.31963e-05(1.93246e-07) GeV [disabled], BR= 1.34311 % ---------------------------------------- Decay table for : t. Total width: 1.32 GeV ---------------------------------------- 6,24,5 t --> W+ b 1.32 GeV, BR= 100 % ---------------------------------------- Decay table for : tb. Total width: 1.32 GeV ---------------------------------------- -6,-24,-5 tb --> W- bb 1.32 GeV, BR= 100 % ---------------------------------------- +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes . done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests done ( 62 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 62 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Amegic/MC_2_1__j__j__h0 Process_Group::CalculateTotalXSec(): Calculate xs for '2_1__j__j__h0' (Amegic) 2_1__j__j__h0 : 12.8803 pb +- ( 0.00851845 pb = 0.0661355 % )  exp. eff: 80.2781 % reduce max for 2_1__j__j__h0 to 1 ( eps = 0.001 -> exp. eff 0.802781 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Ahadic Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- Event 1 ( 4s elapsed / 5d 6h 23m 15s left ) -> ETA: Wed Oct 30 03:10 XS = 0.0716989 pb +- ( 0.0716989 pb = 100 % ) Event 2 ( 4s elapsed / 2d 15h 19m 55s left ) -> ETA: Sun Oct 27 12:06 XS = 0.0705773 pb +- ( 0.00112166 pb = 1 % ) Event 3 ( 4s elapsed / 1d 18h 29m 55s left ) -> ETA: Sat Oct 26 16:16 XS = 0.0708276 pb +- ( 0.000694302 pb = 0 % ) Event 4 ( 4s elapsed / 1d 7h 56m 35s left ) -> ETA: Sat Oct 26 05:43 XS = 0.0707461 pb +- ( 0.000497668 pb = 0 % ) Event 5 ( 4s elapsed / 1d 1h 36m 35s left ) -> ETA: Fri Oct 25 23:23 XS = 0.07108 pb +- ( 0.000510007 pb = 0 % ) Event 6 ( 4s elapsed / 21h 26m 2s left ) -> ETA: Fri Oct 25 19:12 XS = 0.0711511 pb +- ( 0.00042244 pb = 0 % ) Event 7 ( 4s elapsed / 18h 29m 26s left ) -> ETA: Fri Oct 25 16:16 XS = 0.0709268 pb +- ( 0.000421643 pb = 0 % ) Event 8 ( 4s elapsed / 16h 14m 55s left ) -> ETA: Fri Oct 25 14:01 XS = 0.0708003 pb +- ( 0.000386428 pb = 0 % ) Event 9 ( 4s elapsed / 14h 28m 26s left ) -> ETA: Fri Oct 25 12:15 XS = 0.0706953 pb +- ( 0.000356633 pb = 0 % ) Event 10 ( 4s elapsed / 13h 9m 55s left ) -> ETA: Fri Oct 25 10:56 XS = 0.0709331 pb +- ( 0.000397884 pb = 0 % ) Event 20 ( 4s elapsed / 6h 55m 45s left ) -> ETA: Fri Oct 25 04:42 XS = 0.0698814 pb +- ( 0.001111 pb = 1 % ) Event 30 ( 5s elapsed / 4h 59m 21s left ) -> ETA: Fri Oct 25 02:46 XS = 0.0702837 pb +- ( 0.000748751 pb = 1 % ) Event 40 ( 5s elapsed / 3h 52m 49s left ) -> ETA: Fri Oct 25 01:39 XS = 0.0705032 pb +- ( 0.000584908 pb = 0 % ) Event 50 ( 5s elapsed / 3h 13m 34s left ) -> ETA: Fri Oct 25 01:00 XS = 0.0708275 pb +- ( 0.000525254 pb = 0 % ) Event 60 ( 6s elapsed / 2h 47m 40s left ) -> ETA: Fri Oct 25 00:34 XS = 0.0700035 pb +- ( 0.000926867 pb = 1 % ) Event 70 ( 6s elapsed / 2h 28m 56s left ) -> ETA: Fri Oct 25 00:15 XS = 0.0701195 pb +- ( 0.000795456 pb = 1 % ) Event 80 ( 6s elapsed / 2h 15m 30s left ) -> ETA: Fri Oct 25 00:02 XS = 0.0703764 pb +- ( 0.000707405 pb = 1 % ) Event 90 ( 6s elapsed / 2h 5m 4s left ) -> ETA: Thu Oct 24 23:52 XS = 0.0704525 pb +- ( 0.000630486 pb = 0 % ) Event 100 ( 6s elapsed / 1h 56m 3s left ) -> ETA: Thu Oct 24 23:43 XS = 0.0706377 pb +- ( 0.000577909 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (1.08654,0.00255858,-0.000584934,-0.305315) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-2.33995,8.48991e-05,0.00080452,-0.269163) (1) Blob_List::FourMomentumConservation throws four momentum error for Shower : (-1.35843,-0.000234826,0.000549796,0.571367) (2) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.177387,-5.91163e-05,0.000174023,-0.00803682) (3) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.531629,0.000154785,-0.00011025,-0.464091) (4) Blob_List::FourMomentumConservation throws four momentum error for Shower : (0.190796,-0.000786621,0.000916661,-0.180762) (5) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-9.2259e-08,-6.33709e-10,-1.09664e-10,4.55132e-07) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-1.91491e-07,-2.72287e-11,-2.21461e-10,-1.91491e-07) (1) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-4.32792e-11,1.52978e-12,1.75882e-12,-4.3217e-11) (2) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (2.07159e-11,-1.04905e-12,6.31439e-15,-2.06875e-11) (3) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (3.64686e-12,1.57596e-13,3.1869e-13,-3.62466e-12) (4) Blob_List::FourMomentumConservation throws four momentum error for Hadron Decay : (-6.76756e-11,8.11601e-13,3.06505e-13,-6.76579e-11) (5) Event 200 ( 9s elapsed / 1h 16m 30s left ) -> ETA: Thu Oct 24 23:03 XS = 0.0695451 pb +- ( 0.000699589 pb = 1 % ) Event 300 ( 11s elapsed / 1h 5m 4s left ) -> ETA: Thu Oct 24 22:52  Memory usage increased by 31 MB, now 169 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0695743 pb +- ( 0.000527881 pb = 0 % ) Event 400 ( 13s elapsed / 58m 5s left ) -> ETA: Thu Oct 24 22:45 XS = 0.0696061 pb +- ( 0.000435079 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 9 elements [I] 1 G 6 ( -> 3) [( 4.0713e+02,-0.0000e+00,-0.0000e+00, 4.0713e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,601) 0 [I] 1 sb 14 ( -> 5) [( 4.7830e+01,-0.0000e+00,-0.0000e+00, 4.7830e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,602) 0 [I] 1 d 33 ( -> 7) [( 1.8937e+03,-0.0000e+00,-0.0000e+00, 1.8937e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 58 ( -> 9) [( 6.6630e+01,-0.0000e+00,-0.0000e+00, 6.6630e+01), p^2= 0.0000e+00, m= 0.0000e+00] (649,630) 0 [I] 1 G 76 ( -> 11) [( 2.3050e+03,-0.0000e+00,-0.0000e+00, 2.3050e+03), p^2= 0.0000e+00, m= 0.0000e+00] (672,649) 0 [I] 1 G 108 ( -> 13) [( 6.8842e+02,-0.0000e+00,-0.0000e+00, 6.8842e+02), p^2= 0.0000e+00, m= 0.0000e+00] (692,672) 0 [I] 1 G 118 ( -> 15) [( 7.2756e+02,-0.0000e+00,-0.0000e+00, 7.2756e+02), p^2= 0.0000e+00, m= 0.0000e+00] (702,682) 0 [I] 1 G 129 ( -> 17) [( 1.9880e+02,-0.0000e+00,-0.0000e+00, 1.9880e+02), p^2= 0.0000e+00, m= 0.0000e+00] (682,724) 0 [I] 1 G 142 ( -> 19) [( 8.9556e+01,-0.0000e+00,-0.0000e+00, 8.9556e+01), p^2= 0.0000e+00, m= 0.0000e+00] (724,692) 0 and Particle List with 9 elements [I] 1 G 7 ( -> 3) [( 9.6084e+00,-0.0000e+00,-0.0000e+00,-9.6084e+00), p^2=-1.0241e-13, m= 0.0000e+00] (601,602) 1 [I] 1 u 15 ( -> 5) [( 9.9422e+02,-0.0000e+00,-0.0000e+00,-9.9422e+02), p^2= 0.0000e+00, m= 3.0000e-01] (628, 0) 1 [I] 1 u 34 ( -> 7) [( 1.8723e+03,-0.0000e+00,-0.0000e+00,-1.8723e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 sb 59 ( -> 9) [( 1.1243e+02,-0.0000e+00,-0.0000e+00,-1.1243e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,651) 1 [I] 1 G 77 ( -> 11) [( 3.5007e+03,-0.0000e+00,-0.0000e+00,-3.5007e+03), p^2= 0.0000e+00, m= 0.0000e+00] (651,682) 1 [I] 1 G 109 ( -> 13) [( 6.7497e+00,-0.0000e+00,-0.0000e+00,-6.7497e+00), p^2= 0.0000e+00, m= 0.0000e+00] (672,601) 1 [I] 1 G 119 ( -> 15) [( 6.6714e-01,-0.0000e+00,-0.0000e+00,-6.6714e-01), p^2= 0.0000e+00, m= 0.0000e+00] (682,699) 1 [I] 1 G 130 ( -> 17) [( 1.6297e+00,-0.0000e+00,-0.0000e+00,-1.6297e+00), p^2= 0.0000e+00, m= 0.0000e+00] (713,628) 1 [I] 1 u 143 ( -> 19) [( 3.1430e-01,-0.0000e+00,-0.0000e+00,-3.1430e-01), p^2= 0.0000e+00, m= 3.0000e-01] (699, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 150 ( -> ) [( 4.4706e+01, 0.0000e+00, 0.0000e+00, 4.4706e+01), p^2= 3.5931e-03, m= 7.7133e-01] ( 0,702) 0 [B] 1 s 28 ( -> ) [( 3.0632e+01, 0.0000e+00, 0.0000e+00, 3.0632e+01), p^2= 1.6868e-03, m= 0.0000e+00] (630, 0) 0 and Particle List with 4 elements [B] 1 ud_0 152 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,672) 1 [B] 1 ub 147 ( -> ) [( 4.9466e-01, 0.0000e+00, 0.0000e+00,-4.9463e-01), p^2= 2.4973e-05, m= 0.0000e+00] ( 0,713) 1 [B] 1 s 71 ( -> ) [( 5.1991e-01, 0.0000e+00, 0.0000e+00,-5.1988e-01), p^2= 2.7588e-05, m= 0.0000e+00] (648, 0) 1 [B] 1 ub 53 ( -> ) [( 3.1242e-01, 0.0000e+00, 0.0000e+00,-3.1241e-01), p^2= 9.9621e-06, m= 0.0000e+00] ( 0,648) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 16s elapsed / 54m 7s left ) -> ETA: Thu Oct 24 22:41 XS = 0.0690442 pb +- ( 0.000478683 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (4.01018,0.000359595,-0.000306228,0.00450075) (2) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (3.5072e-06,-4.54224e-10,4.70315e-10,3.72858e-06) (2) Event 600 ( 18s elapsed / 51m 44s left ) -> ETA: Thu Oct 24 22:38 XS = 0.0689035 pb +- ( 0.000458944 pb = 0 % ) Event 700 ( 21s elapsed / 49m 58s left ) -> ETA: Thu Oct 24 22:37 XS = 0.0688323 pb +- ( 0.000440829 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (1.35194,0.000335704,-5.23976e-05,-0.207804) (3) Blob_List::FourMomentumConservation throws four momentum error for Hard Decay : (-2.6148e-12,1.77636e-15,7.10543e-15,-2.50111e-12) (1) Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (2.98436e-05,4.43754e-09,2.68297e-09,2.98194e-05) (3) Event 800 ( 23s elapsed / 48m 41s left ) -> ETA: Thu Oct 24 22:35 XS = 0.0689422 pb +- ( 0.000405538 pb = 0 % ) Event 900 ( 25s elapsed / 47m 29s left ) -> ETA: Thu Oct 24 22:34 XS = 0.0690913 pb +- ( 0.00036971 pb = 0 % ) Blob_List::FourMomentumConservation throws four momentum error for Soft Collision : (0.330473,0.000184294,0.000147075,0.300179) (4) Blob_List::FourMomentumConservation throws four momentum error for Hard Decay : (1.22782e-11,-4.26326e-14,3.01981e-13,-1.21361e-11) (2) WARNING: last allowed error message from 'FourMomentumConservation' Blob_List::FourMomentumConservation throws four momentum error for Fragmentation : (-3.60437e-06,-3.27161e-09,6.13125e-09,-3.58393e-06) (4) Event 1000 ( 28s elapsed / 46m 20s left ) -> ETA: Thu Oct 24 22:33 XS = 0.0692117 pb +- ( 0.000340944 pb = 0 % ) Event 2000 ( 51s elapsed / 41m 43s left ) -> ETA: Thu Oct 24 22:29 XS = 0.0691918 pb +- ( 0.000243857 pb = 0 % ) Event 3000 ( 1m 16s elapsed / 41m 3s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 35 MB, now 204 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689832 pb +- ( 0.000208359 pb = 0 % ) Event 4000 ( 1m 41s elapsed / 40m 33s left ) -> ETA: Thu Oct 24 22:29 XS = 0.0688659 pb +- ( 0.00018525 pb = 0 % ) Event 5000 ( 2m 6s elapsed / 40m 3s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 26 MB, now 230 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.068869 pb +- ( 0.000166313 pb = 0 % ) Event 6000 ( 2m 33s elapsed / 39m 59s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 26 MB, now 256 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689238 pb +- ( 0.00014907 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 11 elements [I] 1 G 7 ( -> 3) [( 9.8107e+01,-0.0000e+00,-0.0000e+00, 9.8107e+01), p^2= 2.7884e-12, m= 0.0000e+00] (601,602) 0 [I] 1 u 14 ( -> 5) [( 3.4417e+03,-0.0000e+00,-0.0000e+00, 3.4417e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 G 34 ( -> 7) [( 3.0095e+02,-0.0000e+00,-0.0000e+00, 3.0095e+02), p^2= 0.0000e+00, m= 0.0000e+00] (654,601) 0 [I] 1 d 63 ( -> 9) [( 2.0166e+03,-0.0000e+00,-0.0000e+00, 2.0166e+03), p^2= 0.0000e+00, m= 3.0000e-01] (676, 0) 0 [I] 1 G 91 ( -> 11) [( 4.3935e+02,-0.0000e+00,-0.0000e+00, 4.3935e+02), p^2= 0.0000e+00, m= 0.0000e+00] (688,676) 0 [I] 1 G 109 ( -> 13) [( 1.3065e+02,-0.0000e+00,-0.0000e+00, 1.3065e+02), p^2= 0.0000e+00, m= 0.0000e+00] (701,688) 0 [I] 1 G 122 ( -> 15) [( 8.7623e+00,-0.0000e+00,-0.0000e+00, 8.7623e+00), p^2= 0.0000e+00, m= 0.0000e+00] (712,701) 0 [I] 1 sb 139 ( -> 17) [( 3.4385e+01,-0.0000e+00,-0.0000e+00, 3.4385e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,712) 0 [I] 1 G 153 ( -> 19) [( 2.1720e+01,-0.0000e+00,-0.0000e+00, 2.1720e+01), p^2= 0.0000e+00, m= 0.0000e+00] (734,729) 0 [I] 1 G 169 ( -> 21) [( 6.0948e+00,-0.0000e+00,-0.0000e+00, 6.0948e+00), p^2= 0.0000e+00, m= 0.0000e+00] (743,734) 0 [I] 1 G 182 ( -> 23) [( 1.3627e-01,-0.0000e+00,-0.0000e+00, 1.3627e-01), p^2= 0.0000e+00, m= 0.0000e+00] (758,743) 0 and Particle List with 11 elements [I] 1 G 6 ( -> 3) [( 3.9873e+01,-0.0000e+00,-0.0000e+00,-3.9873e+01), p^2= 5.6663e-13, m= 0.0000e+00] (602,601) 1 [I] 1 d 15 ( -> 5) [( 1.1134e+03,-0.0000e+00,-0.0000e+00,-1.1134e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 35 ( -> 7) [( 2.6771e+02,-0.0000e+00,-0.0000e+00,-2.6771e+02), p^2= 0.0000e+00, m= 0.0000e+00] (662,602) 1 [I] 1 d 64 ( -> 9) [( 1.2202e+03,-0.0000e+00,-0.0000e+00,-1.2202e+03), p^2= 0.0000e+00, m= 3.0000e-01] (682, 0) 1 [I] 1 G 92 ( -> 11) [( 6.7637e+02,-0.0000e+00,-0.0000e+00,-6.7637e+02), p^2= 0.0000e+00, m= 0.0000e+00] (692,682) 1 [I] 1 G 110 ( -> 13) [( 6.5118e+01,-0.0000e+00,-0.0000e+00,-6.5118e+01), p^2= 0.0000e+00, m= 0.0000e+00] (702,692) 1 [I] 1 G 123 ( -> 15) [( 1.5655e+03,-0.0000e+00,-0.0000e+00,-1.5655e+03), p^2= 0.0000e+00, m= 0.0000e+00] (716,702) 1 [I] 1 G 140 ( -> 17) [( 2.6430e+02,-0.0000e+00,-0.0000e+00,-2.6430e+02), p^2= 0.0000e+00, m= 0.0000e+00] (725,716) 1 [I] 1 G 154 ( -> 19) [( 1.6701e+02,-0.0000e+00,-0.0000e+00,-1.6701e+02), p^2= 0.0000e+00, m= 0.0000e+00] (739,725) 1 [I] 1 G 170 ( -> 21) [( 2.2721e+02,-0.0000e+00,-0.0000e+00,-2.2721e+02), p^2= 0.0000e+00, m= 0.0000e+00] (748,739) 1 [I] 1 G 183 ( -> 23) [( 8.7659e+02,-0.0000e+00,-0.0000e+00,-8.7659e+02), p^2= 0.0000e+00, m= 0.0000e+00] (760,748) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 193 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,758) 0 [B] 1 s 148 ( -> ) [( 5.5374e-01, 0.0000e+00, 0.0000e+00, 5.5371e-01), p^2= 2.6876e-05, m= 0.0000e+00] (729, 0) 0 [B] 1 db 85 ( -> ) [( 9.9143e-01, 0.0000e+00, 0.0000e+00, 9.9138e-01), p^2= 8.6155e-05, m= 0.0000e+00] ( 0,654) 0 and Particle List with 2 elements [B] 1 uu_1 194 ( -> ) [( 1.3615e+01, 0.0000e+00, 0.0000e+00,-1.3615e+01), p^2= 1.5084e-03, m= 7.7133e-01] ( 0,760) 1 [B] 1 db 86 ( -> ) [( 3.0286e+00, 0.0000e+00, 0.0000e+00,-3.0286e+00), p^2= 7.4644e-05, m= 0.0000e+00] ( 0,662) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 G 7 ( -> 3) [( 2.7564e+01,-0.0000e+00,-0.0000e+00, 2.7564e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,602) 0 [I] 1 sb 14 ( -> 5) [( 7.0179e+00,-0.0000e+00,-0.0000e+00, 7.0179e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,601) 0 [I] 1 G 30 ( -> 7) [( 3.6539e+03,-0.0000e+00,-0.0000e+00, 3.6539e+03), p^2= 0.0000e+00, m= 0.0000e+00] (641,635) 0 [I] 1 u 45 ( -> 9) [( 2.7647e+03,-0.0000e+00,-0.0000e+00, 2.7647e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 db 66 ( -> 11) [( 2.7130e+01,-0.0000e+00,-0.0000e+00, 2.7130e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,641) 0 [I] 1 sb 83 ( -> 13) [( 1.6632e+01,-0.0000e+00,-0.0000e+00, 1.6632e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,664) 0 and Particle List with 6 elements [I] 1 G 6 ( -> 3) [( 1.4192e+02,-0.0000e+00,-0.0000e+00,-1.4192e+02), p^2= 8.0671e-12, m= 0.0000e+00] (602,601) 1 [I] 1 G 15 ( -> 5) [( 5.8861e+02,-0.0000e+00,-0.0000e+00,-5.8861e+02), p^2= 0.0000e+00, m= 0.0000e+00] (627,602) 1 [I] 1 G 31 ( -> 7) [( 2.4316e+02,-0.0000e+00,-0.0000e+00,-2.4316e+02), p^2= 0.0000e+00, m= 0.0000e+00] (635,627) 1 [I] 1 G 46 ( -> 9) [( 1.1513e+03,-0.0000e+00,-0.0000e+00,-1.1513e+03), p^2= 0.0000e+00, m= 0.0000e+00] (651,635) 1 [I] 1 s 67 ( -> 11) [( 6.2825e+01,-0.0000e+00,-0.0000e+00,-6.2825e+01), p^2= 0.0000e+00, m= 4.0000e-01] (601, 0) 1 [I] 1 G 84 ( -> 13) [( 1.1117e+03,-0.0000e+00,-0.0000e+00,-1.1117e+03), p^2= 0.0000e+00, m= 0.0000e+00] (665,674) 1 and the corresponding remnants are Particle List with 6 elements [B] 1 uu_1 104 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,682) 0 [B] 1 s 100 ( -> ) [( 6.0464e-01, 0.0000e+00, 0.0000e+00, 6.0462e-01), p^2= 1.6298e-05, m= 0.0000e+00] (682, 0) 0 [B] 1 d 77 ( -> ) [( 6.5697e-01, 0.0000e+00, 0.0000e+00, 6.5696e-01), p^2= 1.9242e-05, m= 0.0000e+00] (664, 0) 0 [B] 1 ub 61 ( -> ) [( 6.3928e-01, 0.0000e+00, 0.0000e+00, 6.3927e-01), p^2= 1.8220e-05, m= 0.0000e+00] ( 0,655) 0 [B] 1 s 25 ( -> ) [( 6.6520e-01, 0.0000e+00, 0.0000e+00, 6.6519e-01), p^2= 1.9727e-05, m= 0.0000e+00] (635, 0) 0 [B] 1 d 103 ( -> ) [( 4.7191e-01, 0.0000e+00, 0.0000e+00, 4.7190e-01), p^2= 9.9283e-06, m= 0.0000e+00] (655, 0) 0 and Particle List with 3 elements [B] 1 uu_1 106 ( -> ) [( 2.0838e+03, 0.0000e+00, 0.0000e+00,-2.0838e+03), p^2= 1.8376e-01, m= 7.7133e-01] ( 0,651) 1 [B] 1 sb 78 ( -> ) [( 4.0923e-01, 0.0000e+00, 0.0000e+00,-4.0923e-01), p^2= 7.0871e-09, m= 0.0000e+00] ( 0,665) 1 [B] 1 d 105 ( -> ) [( 1.1162e+03, 0.0000e+00, 0.0000e+00,-1.1162e+03), p^2= 5.2728e-02, m= 0.0000e+00] (674, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 8 elements [I] 1 G 6 ( -> 3) [( 1.3280e+02,-0.0000e+00,-0.0000e+00, 1.3280e+02), p^2= 7.5488e-12, m= 0.0000e+00] (602,601) 0 [I] 1 G 14 ( -> 5) [( 5.2966e+02,-0.0000e+00,-0.0000e+00, 5.2966e+02), p^2= 0.0000e+00, m= 0.0000e+00] (629,602) 0 [I] 1 u 34 ( -> 7) [( 2.3967e+02,-0.0000e+00,-0.0000e+00, 2.3967e+02), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 u 60 ( -> 9) [( 5.9778e+02,-0.0000e+00,-0.0000e+00, 5.9778e+02), p^2= 0.0000e+00, m= 3.0000e-01] (660, 0) 0 [I] 1 G 86 ( -> 11) [( 7.7165e+02,-0.0000e+00,-0.0000e+00, 7.7165e+02), p^2= 0.0000e+00, m= 0.0000e+00] (685,629) 0 [I] 1 sb 99 ( -> 13) [( 3.4873e+02,-0.0000e+00,-0.0000e+00, 3.4873e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,685) 0 [I] 1 G 110 ( -> 15) [( 7.5605e+02,-0.0000e+00,-0.0000e+00, 7.5605e+02), p^2= 0.0000e+00, m= 0.0000e+00] (707,699) 0 [I] 1 G 124 ( -> 17) [( 3.9840e+02,-0.0000e+00,-0.0000e+00, 3.9840e+02), p^2= 0.0000e+00, m= 0.0000e+00] (720,707) 0 and Particle List with 8 elements [I] 1 G 7 ( -> 3) [( 2.9457e+01,-0.0000e+00,-0.0000e+00,-2.9457e+01), p^2=-4.1861e-13, m= 0.0000e+00] (601,602) 1 [I] 1 G 15 ( -> 5) [( 3.2775e+02,-0.0000e+00,-0.0000e+00,-3.2775e+02), p^2= 0.0000e+00, m= 0.0000e+00] (640,601) 1 [I] 1 d 35 ( -> 7) [( 2.0543e+03,-0.0000e+00,-0.0000e+00,-2.0543e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 d 61 ( -> 9) [( 4.0421e+03,-0.0000e+00,-0.0000e+00,-4.0421e+03), p^2= 0.0000e+00, m= 3.0000e-01] (667, 0) 1 [I] 1 s 87 ( -> 11) [( 3.2427e+01,-0.0000e+00,-0.0000e+00,-3.2427e+01), p^2= 0.0000e+00, m= 4.0000e-01] (683, 0) 1 [I] 1 G 100 ( -> 13) [( 2.9105e-01,-0.0000e+00,-0.0000e+00,-2.9105e-01), p^2= 0.0000e+00, m= 0.0000e+00] (696,683) 1 [I] 1 G 111 ( -> 15) [( 1.0575e+01,-0.0000e+00,-0.0000e+00,-1.0575e+01), p^2= 0.0000e+00, m= 0.0000e+00] (701,696) 1 [I] 1 db 125 ( -> 17) [( 1.4743e+00,-0.0000e+00,-0.0000e+00,-1.4743e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,701) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 133 ( -> ) [( 2.6230e+03, 0.0000e+00, 0.0000e+00, 2.6230e+03), p^2= 3.4194e-01, m= 5.7933e-01] ( 0,720) 0 [B] 1 s 105 ( -> ) [( 2.0025e+00, 0.0000e+00, 0.0000e+00, 2.0025e+00), p^2= 1.9929e-07, m= 0.0000e+00] (699, 0) 0 [B] 1 ub 55 ( -> ) [( 1.0022e+02, 0.0000e+00, 0.0000e+00, 1.0022e+02), p^2= 4.9916e-04, m= 0.0000e+00] ( 0,660) 0 and Particle List with 2 elements [B] 1 uu_1 134 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,640) 1 [B] 1 sb 94 ( -> ) [( 1.6437e+00, 0.0000e+00, 0.0000e+00,-1.6436e+00), p^2= 2.2261e-04, m= 0.0000e+00] ( 0,667) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 8 elements [I] 1 G 7 ( -> 3) [( 5.3751e+01,-0.0000e+00,-0.0000e+00, 5.3751e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,602) 0 [I] 1 u 14 ( -> 5) [( 6.6037e+02,-0.0000e+00,-0.0000e+00, 6.6037e+02), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 d 52 ( -> 7) [( 1.3303e+03,-0.0000e+00,-0.0000e+00, 1.3303e+03), p^2= 0.0000e+00, m= 3.0000e-01] (691, 0) 0 [I] 1 ub 74 ( -> 9) [( 5.2377e+02,-0.0000e+00,-0.0000e+00, 5.2377e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 [I] 1 sb 90 ( -> 11) [( 3.7842e+02,-0.0000e+00,-0.0000e+00, 3.7842e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,691) 0 [I] 1 G 107 ( -> 13) [( 2.0501e+02,-0.0000e+00,-0.0000e+00, 2.0501e+02), p^2= 0.0000e+00, m= 0.0000e+00] (710,703) 0 [I] 1 G 128 ( -> 15) [( 1.2362e+02,-0.0000e+00,-0.0000e+00, 1.2362e+02), p^2= 0.0000e+00, m= 0.0000e+00] (725,710) 0 [I] 1 sb 145 ( -> 17) [( 1.5592e+02,-0.0000e+00,-0.0000e+00, 1.5592e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,725) 0 and Particle List with 8 elements [I] 1 G 6 ( -> 3) [( 7.2778e+01,-0.0000e+00,-0.0000e+00,-7.2778e+01), p^2= 2.0685e-12, m= 0.0000e+00] (602,601) 1 [I] 1 u 15 ( -> 5) [( 4.7857e+03,-0.0000e+00,-0.0000e+00,-4.7857e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 53 ( -> 7) [( 3.0614e+02,-0.0000e+00,-0.0000e+00,-3.0614e+02), p^2= 0.0000e+00, m= 0.0000e+00] (678,602) 1 [I] 1 d 75 ( -> 9) [( 3.5737e+00,-0.0000e+00,-0.0000e+00,-3.5737e+00), p^2= 0.0000e+00, m= 3.0000e-01] (688, 0) 1 [I] 1 G 91 ( -> 11) [( 6.4123e+02,-0.0000e+00,-0.0000e+00,-6.4123e+02), p^2= 0.0000e+00, m= 0.0000e+00] (697,688) 1 [I] 1 G 108 ( -> 13) [( 6.7429e+02,-0.0000e+00,-0.0000e+00,-6.7429e+02), p^2= 0.0000e+00, m= 0.0000e+00] (707,697) 1 [I] 1 d 129 ( -> 15) [( 1.2419e+01,-0.0000e+00,-0.0000e+00,-1.2419e+01), p^2= 0.0000e+00, m= 3.0000e-01] (720, 0) 1 [I] 1 ub 146 ( -> 17) [( 2.1162e+00,-0.0000e+00,-0.0000e+00,-2.1162e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,720) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 156 ( -> ) [( 2.7536e+03, 0.0000e+00, 0.0000e+00, 2.7536e+03), p^2= 3.3463e-01, m= 7.7133e-01] ( 0,734) 0 [B] 1 s 152 ( -> ) [( 5.9326e-01, 0.0000e+00, 0.0000e+00, 5.9326e-01), p^2= 1.5534e-08, m= 0.0000e+00] (734, 0) 0 [B] 1 s 102 ( -> ) [( 3.1463e+02, 0.0000e+00, 0.0000e+00, 3.1463e+02), p^2= 4.3690e-03, m= 0.0000e+00] (703, 0) 0 and Particle List with 4 elements [B] 1 ud_0 158 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,735) 1 [B] 1 u 153 ( -> ) [( 7.6230e-01, 0.0000e+00, 0.0000e+00,-7.6227e-01), p^2= 4.4383e-05, m= 0.0000e+00] (735, 0) 1 [B] 1 db 140 ( -> ) [( 6.5489e-01, 0.0000e+00, 0.0000e+00,-6.5486e-01), p^2= 3.2757e-05, m= 0.0000e+00] ( 0,707) 1 [B] 1 db 85 ( -> ) [( 3.5607e-01, 0.0000e+00, 0.0000e+00,-3.5606e-01), p^2= 9.6836e-06, m= 0.0000e+00] ( 0,678) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 7000 ( 2m 59s elapsed / 39m 43s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 56 MB, now 313 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0689597 pb +- ( 0.000136273 pb = 0 % ) Event 8000 ( 3m 25s elapsed / 39m 22s left ) -> ETA: Thu Oct 24 22:29 XS = 0.0689441 pb +- ( 0.000127922 pb = 0 % ) Event 9000 ( 3m 52s elapsed / 39m 8s left ) -> ETA: Thu Oct 24 22:29 XS = 0.068992 pb +- ( 0.000119597 pb = 0 % ) Event 10000 ( 4m 19s elapsed / 38m 51s left ) -> ETA: Thu Oct 24 22:30 XS = 0.0689989 pb +- ( 0.000113146 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 20000 ( 8m 34s elapsed / 34m 19s left ) -> ETA: Thu Oct 24 22:29  Memory usage increased by 182 MB, now 496 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691002 pb +- ( 7.85283e-05 pb = 0 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Decay_Handler_Base::TreatInitialBlob:("Initial particle Delta(1232)- not onshell: sqrt|p^2|=1.232 vs. m=1.232") Event 30000 ( 13m 52s elapsed / 32m 22s left ) -> ETA: Thu Oct 24 22:33  Memory usage increased by 168 MB, now 664 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690835 pb +- ( 6.39167e-05 pb = 0 % ) Charge conservation failed for Fragmentation : 1. Will ignore event. Event 40000 ( 18m 21s elapsed / 27m 32s left ) -> ETA: Thu Oct 24 22:32  Memory usage increased by 171 MB, now 835 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0690848 pb +- ( 5.51264e-05 pb = 0 % ) Event 50000 ( 23m 7s elapsed / 23m 7s left ) -> ETA: Thu Oct 24 22:33  Memory usage increased by 168 MB, now 1004 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691379 pb +- ( 4.87959e-05 pb = 0 % ) Event 60000 ( 28m 3s elapsed / 18m 42s left ) -> ETA: Thu Oct 24 22:33  Memory usage increased by 232 MB, now 1237 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691784 pb +- ( 4.41087e-05 pb = 0 % ) Event 70000 ( 32m 44s elapsed / 14m 1s left ) -> ETA: Thu Oct 24 22:33  Memory usage increased by 149 MB, now 1386 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0691952 pb +- ( 4.06756e-05 pb = 0 % ) Event 80000 ( 37m 34s elapsed / 9m 23s left ) -> ETA: Thu Oct 24 22:33  Memory usage increased by 191 MB, now 1577 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0692039 pb +- ( 3.79714e-05 pb = 0 % ) Event 90000 ( 42m 13s elapsed / 4m 41s left ) -> ETA: Thu Oct 24 22:33  Memory usage increased by 114 MB, now 1692 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 0.0692149 pb +- ( 3.57031e-05 pb = 0 % ) Event 100001 ( 2803 s total ) = 3.08241e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/1029){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  0.0692042 0 % 3.40067e-05 0.04 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100001 New events { From "Beam_Remnants:Parametrised": 68 (100295) -> 0 % From "Jet_Evolution:CFP": 225 (490998) -> 0 % } Retried events { From "Hadron_Decays": 1 (102582) -> 0 % } Retried phases { From "Hadron_Decay_Handler::RejectExclusiveChannelsFromFragmentation": 893 (0) -> 893. } Retried methods { From "Decay_Channel::GenerateKinematics": 231 (20967700) -> 0 % } } Blob_List: Momentum Fail Statistics { Signal Process : 22 fails Hard Decay : 49 fails Hard Collision : 58 fails Soft Collision : 225 fails Shower : 1685 fails Fragmentation : 225 fails Hadron Decay : 19357 fails } Error messages from 'FourMomentumConservation' exceeded frequency limit: 35/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Gluon_Splitter::~Gluon_Splitter with 18288 kinematic fails. Decay_Handler_Base::~Decay_Handler_Base with 1 particles not on their mass shell. Remnant handling yields 68 fails in creating good beam breakups. Remnant Kinematics: 68 errors (no kinematics found) and 20 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 46m 48s on Thu Oct 24 22:33:35 2024 (User: 45m 41s, System: 40s, Children User: 0s, Children System: 0s)