Welcome to Sherpa, Daniel Reichelt on ip3-cpu5.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Mon Dec 4 12:40:03 2023. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1080 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (4000,0,0,4000)) and P+ (on = 0, p = (4000,0,0,-4000)). ISR handling: PDFs for hard scattering: CT14nnlo + CT14nnlo PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 string 95 0 0 1 0 1 0 cluster 96 0 0 1 0 1 0 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 0.5, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 0.5, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 0.5, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 0.5, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->VV, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->VV, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 0.5, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 0.5, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 0.5, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 0.5, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: Soft, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.5, now t0 = 0.5^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 0.5, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 0.5, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 0.5, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 0.5, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, d -> (d,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, db -> (db,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, u -> (u,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, s -> (s,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, c -> (c,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, b -> (b,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, t -> (t,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. II: Soft, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->VV, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear V->VV, G -> (G,G): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.5, now t0 = 0.5^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 0.5, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 0.5, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 0.5, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 0.5, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 55 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 55 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 55 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 5.81404e+09 pb +- ( 7.55324e+07 pb = 1.29914 % )  exp. eff: 2.39841e-05 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 2.39841e-07 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 4s elapsed / 5d 8h 36m 35s left ) -> ETA: Sat Dec 09 21:16 XS = 4.54334e+07 pb +- ( 4.54334e+07 pb = 100 % ) Event 2 ( 4s elapsed / 2d 17h 24m 55s left ) -> ETA: Thu Dec 07 06:05 XS = 9.08686e+06 pb +- ( 9.08664e+06 pb = 99 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 1.4632e+03,-0.0000e+00,-0.0000e+00, 1.4632e+03), p^2= 0.0000e+00, m= 0.0000e+00] (627,631) 0 [I] 1 u 41 ( -> 4) [( 4.9176e+02,-0.0000e+00,-0.0000e+00, 4.9176e+02), p^2= 0.0000e+00, m= 3.0000e-01] (631, 0) 0 [I] 1 G 56 ( -> 6) [( 4.3957e+02,-0.0000e+00,-0.0000e+00, 4.3957e+02), p^2= 0.0000e+00, m= 0.0000e+00] (650,627) 0 and Particle List with 3 elements [I] 1 d 6 ( -> 2) [( 3.9981e+03,-0.0000e+00,-0.0000e+00,-3.9981e+03), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 1 [I] 1 G 42 ( -> 4) [( 6.5553e-01,-0.0000e+00,-0.0000e+00,-6.5553e-01), p^2= 0.0000e+00, m= 0.0000e+00] (641,605) 1 [I] 1 ub 57 ( -> 6) [( 3.0606e-01,-0.0000e+00,-0.0000e+00,-3.0606e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,641) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 65 ( -> ) [( 1.6055e+03, 0.0000e+00, 0.0000e+00, 1.6055e+03), p^2= 3.5335e-01, m= 5.7933e-01] ( 0,650) 0 and Particle List with 2 elements [B] 1 uu_1 66 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,651) 1 [B] 1 u 62 ( -> ) [( 9.7942e-01, 0.0000e+00, 0.0000e+00,-9.7931e-01), p^2= 2.1555e-04, m= 0.0000e+00] (651, 0) 1 Event 3 ( 4s elapsed / 1d 20h 9m 55s left ) -> ETA: Wed Dec 06 08:50 XS = 8.04678e+06 pb +- ( 5.53991e+06 pb = 68 % ) Event 4 ( 4s elapsed / 1d 9h 15m 45s left ) -> ETA: Tue Dec 05 21:55 XS = 9.44906e+06 pb +- ( 5.04865e+06 pb = 53 % ) Event 5 ( 4s elapsed / 1d 2h 46m 35s left ) -> ETA: Tue Dec 05 15:26 XS = 7.42698e+06 pb +- ( 4.06922e+06 pb = 54 % ) Event 6 ( 4s elapsed / 22h 24m 21s left ) -> ETA: Tue Dec 05 11:04 XS = 7.01913e+06 pb +- ( 3.81013e+06 pb = 54 % ) Event 7 ( 4s elapsed / 19h 40m 52s left ) -> ETA: Tue Dec 05 08:21 XS = 6.63871e+06 pb +- ( 3.5843e+06 pb = 53 % ) Event 8 ( 4s elapsed / 17h 15m 20s left ) -> ETA: Tue Dec 05 05:55 XS = 1.52579e+07 pb +- ( 9.55967e+06 pb = 62 % ) Event 9 ( 4s elapsed / 15h 23m 59s left ) -> ETA: Tue Dec 05 04:04 XS = 1.44549e+07 pb +- ( 9.07813e+06 pb = 62 % ) Event 10 ( 5s elapsed / 13h 53m 15s left ) -> ETA: Tue Dec 05 02:33 XS = 1.607e+09 pb +- ( 1.59256e+09 pb = 99 % ) Event 20 ( 5s elapsed / 7h 25m 44s left ) -> ETA: Mon Dec 04 20:05 XS = 2.69491e+09 pb +- ( 1.98821e+09 pb = 73 % ) Event 30 ( 5s elapsed / 5h 17m 7s left ) -> ETA: Mon Dec 04 17:57 XS = 2.0143e+09 pb +- ( 1.41293e+09 pb = 70 % ) Event 40 ( 5s elapsed / 4h 6m 34s left ) -> ETA: Mon Dec 04 16:46 XS = 1.68387e+09 pb +- ( 1.11334e+09 pb = 66 % ) Event 50 ( 6s elapsed / 3h 28m 33s left ) -> ETA: Mon Dec 04 16:08 XS = 1.83905e+09 pb +- ( 9.8773e+08 pb = 53 % ) Event 60 ( 6s elapsed / 3h 3m 46s left ) -> ETA: Mon Dec 04 15:43 XS = 2.09688e+09 pb +- ( 9.64001e+08 pb = 45 % ) Event 70 ( 6s elapsed / 2h 45m 7s left ) -> ETA: Mon Dec 04 15:25 XS = 1.95795e+09 pb +- ( 8.51353e+08 pb = 43 % ) Event 80 ( 7s elapsed / 2h 30m 42s left ) -> ETA: Mon Dec 04 15:10 XS = 1.92929e+09 pb +- ( 7.52133e+08 pb = 38 % ) Event 90 ( 7s elapsed / 2h 20m 47s left ) -> ETA: Mon Dec 04 15:01 XS = 1.97029e+09 pb +- ( 7.03482e+08 pb = 35 % ) Event 100 ( 7s elapsed / 2h 10m 22s left ) -> ETA: Mon Dec 04 14:50 XS = 3.55507e+09 pb +- ( 1.71829e+09 pb = 48 % ) Event 200 ( 10s elapsed / 1h 30m 39s left ) -> ETA: Mon Dec 04 14:10 XS = 4.22484e+09 pb +- ( 1.28837e+09 pb = 30 % ) Event 300 ( 14s elapsed / 1h 19m 48s left ) -> ETA: Mon Dec 04 14:00 XS = 3.97765e+09 pb +- ( 1.11367e+09 pb = 27 % ) Event 400 ( 17s elapsed / 1h 14m 7s left ) -> ETA: Mon Dec 04 13:54 XS = 4.53117e+09 pb +- ( 1.09181e+09 pb = 24 % ) Event 500 ( 21s elapsed / 1h 10m 6s left ) -> ETA: Mon Dec 04 13:50 XS = 4.65095e+09 pb +- ( 1.05986e+09 pb = 22 % ) Event 600 ( 25s elapsed / 1h 9m 29s left ) -> ETA: Mon Dec 04 13:50 XS = 4.63483e+09 pb +- ( 9.55209e+08 pb = 20 % ) Event 700 ( 28s elapsed / 1h 7m 10s left ) -> ETA: Mon Dec 04 13:47 XS = 4.907e+09 pb +- ( 8.86683e+08 pb = 18 % ) Event 800 ( 32s elapsed / 1h 6m 45s left ) -> ETA: Mon Dec 04 13:47 XS = 4.84288e+09 pb +- ( 8.08058e+08 pb = 16 % ) Event 900 ( 35s elapsed / 1h 4m 50s left ) -> ETA: Mon Dec 04 13:45 XS = 4.83697e+09 pb +- ( 7.45997e+08 pb = 15 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 d 6 ( -> 2) [( 3.2122e+03,-0.0000e+00,-0.0000e+00, 3.2122e+03), p^2= 0.0000e+00, m= 3.0000e-01] (609, 0) 0 [I] 1 d 52 ( -> 4) [( 6.0336e+02,-0.0000e+00,-0.0000e+00, 6.0336e+02), p^2= 0.0000e+00, m= 3.0000e-01] (655, 0) 0 [I] 1 G 75 ( -> 6) [( 1.6348e+02,-0.0000e+00,-0.0000e+00, 1.6348e+02), p^2= 0.0000e+00, m= 0.0000e+00] (665,655) 0 [I] 1 d 94 ( -> 8) [( 1.7457e+01,-0.0000e+00,-0.0000e+00, 1.7457e+01), p^2= 0.0000e+00, m= 3.0000e-01] (684, 0) 0 [I] 1 d 110 ( -> 10) [( 2.3306e+00,-0.0000e+00,-0.0000e+00, 2.3306e+00), p^2= 0.0000e+00, m= 3.0000e-01] (692, 0) 0 and Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 1.8126e+03,-0.0000e+00,-0.0000e+00,-1.8126e+03), p^2= 0.0000e+00, m= 0.0000e+00] (611,609) 1 [I] 1 u 53 ( -> 4) [( 8.9097e+01,-0.0000e+00,-0.0000e+00,-8.9097e+01), p^2= 0.0000e+00, m= 3.0000e-01] (609, 0) 1 [I] 1 db 76 ( -> 6) [( 3.0566e+01,-0.0000e+00,-0.0000e+00,-3.0566e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,661) 1 [I] 1 G 95 ( -> 8) [( 1.5238e+02,-0.0000e+00,-0.0000e+00,-1.5238e+02), p^2= 0.0000e+00, m= 0.0000e+00] (683,611) 1 [I] 1 u 111 ( -> 10) [( 1.2561e+03,-0.0000e+00,-0.0000e+00,-1.2561e+03), p^2= 0.0000e+00, m= 3.0000e-01] (661, 0) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 123 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,692) 0 [B] 1 db 120 ( -> ) [( 4.8065e-01, 0.0000e+00, 0.0000e+00, 4.8060e-01), p^2= 4.3864e-05, m= 0.0000e+00] ( 0,684) 0 [B] 1 db 105 ( -> ) [( 3.3295e-01, 0.0000e+00, 0.0000e+00, 3.3292e-01), p^2= 2.1048e-05, m= 0.0000e+00] ( 0,665) 0 [B] 1 db 69 ( -> ) [( 3.4552e-01, 0.0000e+00, 0.0000e+00, 3.4549e-01), p^2= 2.2667e-05, m= 0.0000e+00] ( 0,609) 0 and Particle List with 3 elements [B] 1 ud_0 124 ( -> ) [( 6.2599e+02, 0.0000e+00, 0.0000e+00,-6.2599e+02), p^2= 1.3081e-01, m= 5.7933e-01] ( 0,683) 1 [B] 1 d 89 ( -> ) [( 1.6424e+00, 0.0000e+00, 0.0000e+00,-1.6424e+00), p^2= 9.0046e-07, m= 0.0000e+00] (660, 0) 1 [B] 1 ub 70 ( -> ) [( 3.1675e+01, 0.0000e+00, 0.0000e+00,-3.1675e+01), p^2= 3.3492e-04, m= 0.0000e+00] ( 0,660) 1 Event 1000 ( 38s elapsed / 1h 4m 11s left ) -> ETA: Mon Dec 04 13:44 XS = 4.76569e+09 pb +- ( 6.85921e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 ub 6 ( -> 2) [( 5.6693e+02,-0.0000e+00,-0.0000e+00, 5.6693e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,618) 0 [I] 1 G 45 ( -> 4) [( 2.5489e+02,-0.0000e+00,-0.0000e+00, 2.5489e+02), p^2= 0.0000e+00, m= 0.0000e+00] (633,632) 0 [I] 1 G 59 ( -> 6) [( 3.6233e+02,-0.0000e+00,-0.0000e+00, 3.6233e+02), p^2= 0.0000e+00, m= 0.0000e+00] (618,647) 0 [I] 1 G 72 ( -> 8) [( 1.1020e+03,-0.0000e+00,-0.0000e+00, 1.1020e+03), p^2= 0.0000e+00, m= 0.0000e+00] (670,633) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.9630e+03,-0.0000e+00,-0.0000e+00,-3.9630e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 s 46 ( -> 4) [( 1.2926e+01,-0.0000e+00,-0.0000e+00,-1.2926e+01), p^2= 0.0000e+00, m= 4.0000e-01] (603, 0) 1 [I] 1 d 60 ( -> 6) [( 1.9021e+00,-0.0000e+00,-0.0000e+00,-1.9021e+00), p^2= 0.0000e+00, m= 3.0000e-01] (640, 0) 1 [I] 1 G 73 ( -> 8) [( 2.0751e+01,-0.0000e+00,-0.0000e+00,-2.0751e+01), p^2= 0.0000e+00, m= 0.0000e+00] (669,601) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 90 ( -> ) [( 1.4262e+03, 0.0000e+00, 0.0000e+00, 1.4262e+03), p^2= 2.6121e-01, m= 5.7933e-01] ( 0,670) 0 [B] 1 u 40 ( -> ) [( 9.0031e-01, 0.0000e+00, 0.0000e+00, 9.0031e-01), p^2= 1.0409e-07, m= 0.0000e+00] (632, 0) 0 [B] 1 u 89 ( -> ) [( 2.8672e+02, 0.0000e+00, 0.0000e+00, 2.8672e+02), p^2= 1.0558e-02, m= 0.0000e+00] (647, 0) 0 and Particle List with 2 elements [B] 1 uu_1 91 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,669) 1 [B] 1 sb 54 ( -> ) [( 1.3963e+00, 0.0000e+00, 0.0000e+00,-1.3962e+00), p^2= 3.0730e-04, m= 0.0000e+00] ( 0,640) 1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 3.0002e+03,-0.0000e+00,-0.0000e+00, 3.0002e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 0 [I] 1 u 31 ( -> 4) [( 8.0133e+02,-0.0000e+00,-0.0000e+00, 8.0133e+02), p^2= 0.0000e+00, m= 3.0000e-01] (607, 0) 0 [I] 1 G 53 ( -> 6) [( 1.9104e+02,-0.0000e+00,-0.0000e+00, 1.9104e+02), p^2= 0.0000e+00, m= 0.0000e+00] (647,605) 0 [I] 1 u 74 ( -> 8) [( 5.4087e+00,-0.0000e+00,-0.0000e+00, 5.4087e+00), p^2= 0.0000e+00, m= 3.0000e-01] (662, 0) 0 [I] 1 ub 88 ( -> 10) [( 4.7112e-01,-0.0000e+00,-0.0000e+00, 4.7112e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,662) 0 and Particle List with 5 elements [I] 1 G 6 ( -> 2) [( 2.7462e+02,-0.0000e+00,-0.0000e+00,-2.7462e+02), p^2= 0.0000e+00, m= 0.0000e+00] (622,615) 1 [I] 1 u 32 ( -> 4) [( 6.1105e+02,-0.0000e+00,-0.0000e+00,-6.1105e+02), p^2= 0.0000e+00, m= 3.0000e-01] (615, 0) 1 [I] 1 u 54 ( -> 6) [( 1.5694e+03,-0.0000e+00,-0.0000e+00,-1.5694e+03), p^2= 0.0000e+00, m= 3.0000e-01] (656, 0) 1 [I] 1 G 75 ( -> 8) [( 1.4642e+03,-0.0000e+00,-0.0000e+00,-1.4642e+03), p^2= 0.0000e+00, m= 0.0000e+00] (665,656) 1 [I] 1 G 89 ( -> 10) [( 3.1550e+01,-0.0000e+00,-0.0000e+00,-3.1550e+01), p^2= 0.0000e+00, m= 0.0000e+00] (672,665) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 98 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,673) 0 [B] 1 u 95 ( -> ) [( 5.2838e-01, 0.0000e+00, 0.0000e+00, 5.2835e-01), p^2= 3.8638e-05, m= 0.0000e+00] (673, 0) 0 [B] 1 ub 83 ( -> ) [( 1.0619e+00, 0.0000e+00, 0.0000e+00, 1.0618e+00), p^2= 1.5605e-04, m= 0.0000e+00] ( 0,647) 0 and Particle List with 2 elements [B] 1 ud_0 99 ( -> ) [( 3.8585e+01, 0.0000e+00, 0.0000e+00,-3.8585e+01), p^2= 6.6647e-03, m= 5.7933e-01] ( 0,672) 1 [B] 1 ub 69 ( -> ) [( 1.0580e+01, 0.0000e+00, 0.0000e+00,-1.0580e+01), p^2= 5.0110e-04, m= 0.0000e+00] ( 0,622) 1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 6 ( -> 2) [( 2.8089e+03,-0.0000e+00,-0.0000e+00, 2.8089e+03), p^2= 0.0000e+00, m= 0.0000e+00] (607,605) 0 [I] 1 G 61 ( -> 4) [( 7.9187e+02,-0.0000e+00,-0.0000e+00, 7.9187e+02), p^2= 0.0000e+00, m= 0.0000e+00] (661,607) 0 [I] 1 ub 81 ( -> 6) [( 1.2054e+02,-0.0000e+00,-0.0000e+00, 1.2054e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,661) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.9907e+03,-0.0000e+00,-0.0000e+00,-3.9907e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,606) 1 [I] 1 G 62 ( -> 4) [( 3.9803e+00,-0.0000e+00,-0.0000e+00,-3.9803e+00), p^2= 0.0000e+00, m= 0.0000e+00] (606,666) 1 [I] 1 sb 82 ( -> 6) [( 4.0111e+00,-0.0000e+00,-0.0000e+00,-4.0111e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,604) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 94 ( -> ) [( 2.6709e+02, 0.0000e+00, 0.0000e+00, 2.6709e+02), p^2= 5.6333e-02, m= 5.7933e-01] ( 0,697) 0 [B] 1 u 89 ( -> ) [( 3.0915e-01, 0.0000e+00, 0.0000e+00, 3.0915e-01), p^2= 7.5469e-08, m= 0.0000e+00] (697, 0) 0 [B] 1 u 93 ( -> ) [( 1.1314e+01, 0.0000e+00, 0.0000e+00, 1.1314e+01), p^2= 1.0108e-04, m= 0.0000e+00] (605, 0) 0 and Particle List with 3 elements [B] 1 uu_1 96 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,698) 1 [B] 1 s 90 ( -> ) [( 4.8605e-01, 0.0000e+00, 0.0000e+00,-4.8600e-01), p^2= 4.0987e-05, m= 0.0000e+00] (698, 0) 1 [B] 1 d 95 ( -> ) [( 7.8243e-01, 0.0000e+00, 0.0000e+00,-7.8237e-01), p^2= 1.0622e-04, m= 0.0000e+00] (666, 0) 1 Event 2000 ( 1m 13s elapsed / 1h 7s left ) -> ETA: Mon Dec 04 13:41 XS = 5.79841e+09 pb +- ( 8.07187e+08 pb = 13 % ) Event 3000 ( 1m 50s elapsed / 59m 25s left ) -> ETA: Mon Dec 04 13:41 XS = 5.36324e+09 pb +- ( 5.92086e+08 pb = 11 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 4000 ( 2m 25s elapsed / 58m 15s left ) -> ETA: Mon Dec 04 13:40 XS = 6.16531e+09 pb +- ( 5.90285e+08 pb = 9 % ) Pythia8 hadronisation failed. Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 5000 ( 3m 1s elapsed / 57m 25s left ) -> ETA: Mon Dec 04 13:40 XS = 5.93318e+09 pb +- ( 4.98644e+08 pb = 8 % ) Event 6000 ( 3m 34s elapsed / 56m 4s left ) -> ETA: Mon Dec 04 13:39 XS = 6.13808e+09 pb +- ( 4.96828e+08 pb = 8 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 7000 ( 4m 11s elapsed / 55m 36s left ) -> ETA: Mon Dec 04 13:39 XS = 6.17723e+09 pb +- ( 4.51574e+08 pb = 7 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 8000 ( 4m 46s elapsed / 54m 59s left ) -> ETA: Mon Dec 04 13:39 XS = 5.95408e+09 pb +- ( 4.03461e+08 pb = 6 % ) Event 9000 ( 5m 23s elapsed / 54m 29s left ) -> ETA: Mon Dec 04 13:39 XS = 5.85516e+09 pb +- ( 3.75168e+08 pb = 6 % ) Event 10000 ( 5m 59s elapsed / 53m 59s left ) -> ETA: Mon Dec 04 13:40 XS = 5.84124e+09 pb +- ( 3.50133e+08 pb = 5 % ) Pythia8 hadronisation failed. Event 20000 ( 12m 5s elapsed / 48m 22s left ) -> ETA: Mon Dec 04 13:40 XS = 5.72128e+09 pb +- ( 2.49245e+08 pb = 4 % ) Event 30000 ( 18m 3s elapsed / 42m 8s left ) -> ETA: Mon Dec 04 13:40 XS = 5.89983e+09 pb +- ( 2.06435e+08 pb = 3 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 40000 ( 24m 4s elapsed / 36m 7s left ) -> ETA: Mon Dec 04 13:40 XS = 5.87364e+09 pb +- ( 1.73959e+08 pb = 2 % ) Event 50000 ( 30m 7s elapsed / 30m 7s left ) -> ETA: Mon Dec 04 13:40 XS = 5.82694e+09 pb +- ( 1.55811e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 60000 ( 36m 9s elapsed / 24m 6s left ) -> ETA: Mon Dec 04 13:40 XS = 5.84424e+09 pb +- ( 1.64758e+08 pb = 2 % ) Event 70000 ( 42m 9s elapsed / 18m 3s left ) -> ETA: Mon Dec 04 13:40 XS = 5.78736e+09 pb +- ( 1.47744e+08 pb = 2 % ) Event 80000 ( 48m 12s elapsed / 12m 3s left ) -> ETA: Mon Dec 04 13:40 XS = 5.77306e+09 pb +- ( 1.35644e+08 pb = 2 % ) Event 90000 ( 54m 10s elapsed / 6m 1s left ) -> ETA: Mon Dec 04 13:40 XS = 5.74529e+09 pb +- ( 1.24734e+08 pb = 2 % ) Event 100000 ( 3616 s total ) = 2.38974e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/1080){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  5.70237e+09 0 % 1.16367e+08 2.04 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100000 Errors { From "Hadronization:Pythia8": 5 (100005) -> 0 % } New events { From "Beam_Remnants:Parametrised": 305 (100310) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 305 fails in creating good beam breakups. Remnant Kinematics: 305 errors (no kinematics found) and 83 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1h 20s on Mon Dec 4 13:40:23 2023 (User: 1h 10s, System: 0s, Children User: 0s, Children System: 0s)