Welcome to Sherpa, Daniel Reichelt on ip3-cpu3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Apr 10 15:30:51 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1492 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 5s elapsed / 60d 9h 59m 54s left ) -> ETA: Mon Jun 10 01:30 XS = 1.0628e+08 pb +- ( 1.0628e+08 pb = 100 % ) Event 2 ( 5s elapsed / 31d 4h 36m 34s left ) -> ETA: Sat May 11 20:07 XS = 5.31399e+07 pb +- ( 5.31399e+07 pb = 99 % ) Event 3 ( 5s elapsed / 21d 1h 33m 14s left ) -> ETA: Wed May 01 17:04 XS = 3.03657e+07 pb +- ( 3.03656e+07 pb = 99 % ) Event 4 ( 5s elapsed / 15d 21h 56m 34s left ) -> ETA: Fri Apr 26 13:27 XS = 4.27523e+08 pb +- ( 4.01638e+08 pb = 93 % ) Event 5 ( 5s elapsed / 12d 20h 19m 54s left ) -> ETA: Tue Apr 23 11:50 XS = 3.67013e+09 pb +- ( 3.46163e+09 pb = 94 % ) Event 6 ( 5s elapsed / 10d 21h 34m 21s left ) -> ETA: Sun Apr 21 13:05 XS = 3.16966e+09 pb +- ( 2.99098e+09 pb = 94 % ) Event 7 ( 5s elapsed / 9d 9h 23m 42s left ) -> ETA: Sat Apr 20 00:54 XS = 3.03185e+09 pb +- ( 2.8613e+09 pb = 94 % ) Event 8 ( 6s elapsed / 8d 20h 9m 3s left ) -> ETA: Fri Apr 19 11:40 XS = 2.49045e+09 pb +- ( 2.35152e+09 pb = 94 % ) Event 9 ( 6s elapsed / 7d 22h 25m 49s left ) -> ETA: Thu Apr 18 13:56 XS = 2.40479e+09 pb +- ( 2.2706e+09 pb = 94 % ) Event 10 ( 6s elapsed / 7d 4h 46m 33s left ) -> ETA: Wed Apr 17 20:17 XS = 2.40609e+09 pb +- ( 2.19361e+09 pb = 91 % ) Event 20 ( 7s elapsed / 4d 3h 59m 52s left ) -> ETA: Sun Apr 14 19:30 XS = 4.96846e+09 pb +- ( 3.03907e+09 pb = 61 % ) Event 30 ( 7s elapsed / 3d 1h 19m 52s left ) -> ETA: Sat Apr 13 16:50 XS = 6.69346e+09 pb +- ( 2.8177e+09 pb = 42 % ) Event 40 ( 9s elapsed / 2d 18h 27m 20s left ) -> ETA: Sat Apr 13 09:58 XS = 4.85467e+09 pb +- ( 2.04629e+09 pb = 42 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4959e+03,-0.0000e+00,-0.0000e+00, 3.4959e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 0 [I] 1 sb 79 ( -> 4) [( 2.8142e+00,-0.0000e+00,-0.0000e+00, 2.8142e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,605) 0 and Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 2.6730e+03,-0.0000e+00,-0.0000e+00,-2.6730e+03), p^2= 0.0000e+00, m= 0.0000e+00] (608,626) 1 [I] 1 d 80 ( -> 4) [( 1.4271e+02,-0.0000e+00,-0.0000e+00,-1.4271e+02), p^2= 0.0000e+00, m= 3.0000e-01] (626, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 96 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,680) 0 [B] 1 s 92 ( -> ) [( 5.9043e-01, 0.0000e+00, 0.0000e+00, 5.9037e-01), p^2= 6.9818e-05, m= 0.0000e+00] (680, 0) 0 [B] 1 d 95 ( -> ) [( 6.6540e-01, 0.0000e+00, 0.0000e+00, 6.6534e-01), p^2= 8.8676e-05, m= 0.0000e+00] (607, 0) 0 and Particle List with 1 elements [B] 1 uu_1 97 ( -> ) [( 6.8424e+02, 0.0000e+00, 0.0000e+00,-6.8424e+02), p^2= 1.7211e-01, m= 7.7133e-01] ( 0,608) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 50 ( 10s elapsed / 2d 11h 43m 9s left ) -> ETA: Sat Apr 13 03:14 XS = 3.61659e+09 pb +- ( 1.52768e+09 pb = 42 % ) Event 60 ( 12s elapsed / 2d 8h 34m 14s left ) -> ETA: Sat Apr 13 00:05 XS = 3.11372e+09 pb +- ( 1.26894e+09 pb = 40 % ) Event 70 ( 13s elapsed / 2d 5h 10m 15s left ) -> ETA: Fri Apr 12 20:41 XS = 2.74249e+09 pb +- ( 1.11741e+09 pb = 40 % ) Event 80 ( 14s elapsed / 2d 1h 7m 40s left ) -> ETA: Fri Apr 12 16:38 XS = 2.55358e+09 pb +- ( 1.01026e+09 pb = 39 % ) Event 90 ( 15s elapsed / 1d 22h 24m 56s left ) -> ETA: Fri Apr 12 13:56 XS = 2.48656e+09 pb +- ( 9.07492e+08 pb = 36 % ) Event 100 ( 16s elapsed / 1d 20h 34m 43s left ) -> ETA: Fri Apr 12 12:05 XS = 2.42877e+09 pb +- ( 8.38092e+08 pb = 34 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 200 ( 27s elapsed / 1d 14h 27m 2s left ) -> ETA: Fri Apr 12 05:58 XS = 3.07183e+09 pb +- ( 7.98024e+08 pb = 25 % ) Event 300 ( 39s elapsed / 1d 12h 6m 34s left ) -> ETA: Fri Apr 12 03:38 XS = 2.94766e+09 pb +- ( 6.19615e+08 pb = 21 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.4950e+03,-0.0000e+00,-0.0000e+00, 3.4950e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 0 [I] 1 sb 48 ( -> 4) [( 1.0731e+00,-0.0000e+00,-0.0000e+00, 1.0731e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,603) 0 [I] 1 G 59 ( -> 6) [( 1.4002e+00,-0.0000e+00,-0.0000e+00, 1.4002e+00), p^2= 0.0000e+00, m= 0.0000e+00] (643,640) 0 [I] 1 ub 71 ( -> 8) [( 7.9272e-01,-0.0000e+00,-0.0000e+00, 7.9272e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,654) 0 and Particle List with 4 elements [I] 1 u 6 ( -> 2) [( 3.0590e+03,-0.0000e+00,-0.0000e+00,-3.0590e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 49 ( -> 4) [( 1.2119e+02,-0.0000e+00,-0.0000e+00,-1.2119e+02), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1 [I] 1 db 60 ( -> 6) [( 8.1622e+00,-0.0000e+00,-0.0000e+00,-8.1622e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,603) 1 [I] 1 d 72 ( -> 8) [( 2.8530e+02,-0.0000e+00,-0.0000e+00,-2.8530e+02), p^2= 0.0000e+00, m= 3.0000e-01] (651, 0) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 82 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,643) 0 [B] 1 u 77 ( -> ) [( 5.6303e-01, 0.0000e+00, 0.0000e+00, 5.6299e-01), p^2= 4.5720e-05, m= 0.0000e+00] (601, 0) 0 [B] 1 s 54 ( -> ) [( 4.8930e-01, 0.0000e+00, 0.0000e+00, 4.8927e-01), p^2= 3.4530e-05, m= 0.0000e+00] (640, 0) 0 [B] 1 d 81 ( -> ) [( 6.9161e-01, 0.0000e+00, 0.0000e+00, 6.9156e-01), p^2= 6.8987e-05, m= 0.0000e+00] (654, 0) 0 and Particle List with 1 elements [B] 1 ud_0 83 ( -> ) [( 2.6391e+01, 0.0000e+00, 0.0000e+00,-2.6391e+01), p^2= 6.6381e-03, m= 5.7933e-01] ( 0,651) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 5 ( -> 2) [( 1.6766e+02,-0.0000e+00,-0.0000e+00, 1.6766e+02), p^2= 0.0000e+00, m= 0.0000e+00] (619,615) 0 [I] 1 G 44 ( -> 4) [( 2.0098e+03,-0.0000e+00,-0.0000e+00, 2.0098e+03), p^2= 0.0000e+00, m= 0.0000e+00] (615,649) 0 [I] 1 u 72 ( -> 6) [( 1.1384e+03,-0.0000e+00,-0.0000e+00, 1.1384e+03), p^2= 0.0000e+00, m= 3.0000e-01] (649, 0) 0 [I] 1 u 103 ( -> 8) [( 4.6177e+00,-0.0000e+00,-0.0000e+00, 4.6177e+00), p^2= 0.0000e+00, m= 3.0000e-01] (683, 0) 0 [I] 1 G 115 ( -> 10) [( 1.4055e+02,-0.0000e+00,-0.0000e+00, 1.4055e+02), p^2= 0.0000e+00, m= 0.0000e+00] (689,683) 0 [I] 1 G 134 ( -> 12) [( 3.4904e+01,-0.0000e+00,-0.0000e+00, 3.4904e+01), p^2= 0.0000e+00, m= 0.0000e+00] (709,689) 0 [I] 1 G 156 ( -> 14) [( 3.2378e+00,-0.0000e+00,-0.0000e+00, 3.2378e+00), p^2= 0.0000e+00, m= 0.0000e+00] (718,709) 0 and Particle List with 7 elements [I] 1 G 6 ( -> 2) [( 6.7531e+02,-0.0000e+00,-0.0000e+00,-6.7531e+02), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 1 [I] 1 G 45 ( -> 4) [( 2.2164e+02,-0.0000e+00,-0.0000e+00,-2.2164e+02), p^2= 0.0000e+00, m= 0.0000e+00] (655,603) 1 [I] 1 G 73 ( -> 6) [( 7.8320e+02,-0.0000e+00,-0.0000e+00,-7.8320e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,678) 1 [I] 1 d 104 ( -> 8) [( 8.8256e+01,-0.0000e+00,-0.0000e+00,-8.8256e+01), p^2= 0.0000e+00, m= 3.0000e-01] (682, 0) 1 [I] 1 sb 116 ( -> 10) [( 2.9819e+01,-0.0000e+00,-0.0000e+00,-2.9819e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,682) 1 [I] 1 G 135 ( -> 12) [( 7.9214e+01,-0.0000e+00,-0.0000e+00,-7.9214e+01), p^2= 0.0000e+00, m= 0.0000e+00] (699,697) 1 [I] 1 d 157 ( -> 14) [( 1.5585e+03,-0.0000e+00,-0.0000e+00,-1.5585e+03), p^2= 0.0000e+00, m= 3.0000e-01] (717, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 169 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,718) 0 [B] 1 ub 109 ( -> ) [( 8.4299e-01, 0.0000e+00, 0.0000e+00, 8.4286e-01), p^2= 2.1202e-04, m= 0.0000e+00] ( 0,619) 0 and Particle List with 5 elements [B] 1 ud_0 171 ( -> ) [( 3.9907e+01, 0.0000e+00, 0.0000e+00,-3.9907e+01), p^2= 6.2568e-03, m= 5.7933e-01] ( 0,717) 1 [B] 1 db 166 ( -> ) [( 4.9092e-01, 0.0000e+00, 0.0000e+00,-4.9092e-01), p^2= 9.4684e-07, m= 0.0000e+00] ( 0,699) 1 [B] 1 s 129 ( -> ) [( 1.9557e+00, 0.0000e+00, 0.0000e+00,-1.9557e+00), p^2= 1.5027e-05, m= 0.0000e+00] (697, 0) 1 [B] 1 db 110 ( -> ) [( 1.3424e+01, 0.0000e+00, 0.0000e+00,-1.3424e+01), p^2= 7.0800e-04, m= 0.0000e+00] ( 0,655) 1 [B] 1 u 170 ( -> ) [( 8.2445e+00, 0.0000e+00, 0.0000e+00,-8.2445e+00), p^2= 2.6705e-04, m= 0.0000e+00] (678, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 1.9703e+03,-0.0000e+00,-0.0000e+00, 1.9703e+03), p^2= 0.0000e+00, m= 0.0000e+00] (627,619) 0 [I] 1 G 37 ( -> 4) [( 5.7819e+01,-0.0000e+00,-0.0000e+00, 5.7819e+01), p^2= 0.0000e+00, m= 0.0000e+00] (619,611) 0 [I] 1 G 51 ( -> 6) [( 7.0645e+02,-0.0000e+00,-0.0000e+00, 7.0645e+02), p^2= 0.0000e+00, m= 0.0000e+00] (611,650) 0 and Particle List with 3 elements [I] 1 G 6 ( -> 2) [( 3.4965e+03,-0.0000e+00,-0.0000e+00,-3.4965e+03), p^2= 0.0000e+00, m= 0.0000e+00] (610,611) 1 [I] 1 s 38 ( -> 4) [( 1.8417e+00,-0.0000e+00,-0.0000e+00,-1.8417e+00), p^2= 0.0000e+00, m= 4.0000e-01] (611, 0) 1 [I] 1 G 52 ( -> 6) [( 1.2218e-01,-0.0000e+00,-0.0000e+00,-1.2218e-01), p^2= 0.0000e+00, m= 0.0000e+00] (650,659) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 59 ( -> ) [( 7.5091e+02, 0.0000e+00, 0.0000e+00, 7.5091e+02), p^2= 1.8530e-01, m= 7.7133e-01] ( 0,627) 0 [B] 1 d 58 ( -> ) [( 1.4480e+01, 0.0000e+00, 0.0000e+00, 1.4480e+01), p^2= 6.8902e-05, m= 0.0000e+00] (650, 0) 0 and Particle List with 3 elements [B] 1 ud_0 61 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,610) 1 [B] 1 sb 46 ( -> ) [( 6.1022e-01, 0.0000e+00, 0.0000e+00,-6.1017e-01), p^2= 6.1465e-05, m= 0.0000e+00] ( 0,650) 1 [B] 1 u 60 ( -> ) [( 9.1354e-01, 0.0000e+00, 0.0000e+00,-9.1347e-01), p^2= 1.3776e-04, m= 0.0000e+00] (659, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 400 ( 49s elapsed / 1d 10h 20m 25s left ) -> ETA: Fri Apr 12 01:52 XS = 2.85566e+09 pb +- ( 5.17608e+08 pb = 18 % ) Event 500 ( 1m 2s elapsed / 1d 10h 25m 38s left ) -> ETA: Fri Apr 12 01:57 XS = 2.87967e+09 pb +- ( 4.92818e+08 pb = 17 % ) Event 600 ( 1m 13s elapsed / 1d 9h 57m 6s left ) -> ETA: Fri Apr 12 01:29 XS = 3.25884e+09 pb +- ( 6.10179e+08 pb = 18 % ) Event 700 ( 1m 26s elapsed / 1d 10h 15m 42s left ) -> ETA: Fri Apr 12 01:48 XS = 3.74713e+09 pb +- ( 6.37282e+08 pb = 17 % ) Event 800 ( 1m 39s elapsed / 1d 10h 23m 33s left ) -> ETA: Fri Apr 12 01:56 XS = 3.80959e+09 pb +- ( 5.79205e+08 pb = 15 % ) Event 900 ( 1m 51s elapsed / 1d 10h 16m 17s left ) -> ETA: Fri Apr 12 01:49 XS = 3.99946e+09 pb +- ( 5.67887e+08 pb = 14 % ) Event 1000 ( 2m 3s elapsed / 1d 10h 14m 36s left ) -> ETA: Fri Apr 12 01:47 XS = 4.28061e+09 pb +- ( 6.07076e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4845e+03,-0.0000e+00,-0.0000e+00, 3.4845e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,605) 0 [I] 1 G 55 ( -> 4) [( 1.0820e+01,-0.0000e+00,-0.0000e+00, 1.0820e+01), p^2= 0.0000e+00, m= 0.0000e+00] (659,603) 0 [I] 1 db 85 ( -> 6) [( 3.3284e+00,-0.0000e+00,-0.0000e+00, 3.3284e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,681) 0 and Particle List with 3 elements [I] 1 G 6 ( -> 2) [( 1.2607e+03,-0.0000e+00,-0.0000e+00,-1.2607e+03), p^2= 0.0000e+00, m= 0.0000e+00] (625,633) 1 [I] 1 d 56 ( -> 4) [( 9.8567e+02,-0.0000e+00,-0.0000e+00,-9.8567e+02), p^2= 0.0000e+00, m= 3.0000e-01] (633, 0) 1 [I] 1 u 86 ( -> 6) [( 8.3129e+02,-0.0000e+00,-0.0000e+00,-8.3129e+02), p^2= 0.0000e+00, m= 3.0000e-01] (686, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 111 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,659) 0 [B] 1 d 106 ( -> ) [( 4.7527e-01, 0.0000e+00, 0.0000e+00, 4.7523e-01), p^2= 4.1477e-05, m= 0.0000e+00] (605, 0) 0 [B] 1 u 110 ( -> ) [( 8.9451e-01, 0.0000e+00, 0.0000e+00, 8.9443e-01), p^2= 1.4692e-04, m= 0.0000e+00] (681, 0) 0 and Particle List with 2 elements [B] 1 uu_1 112 ( -> ) [( 2.9306e+02, 0.0000e+00, 0.0000e+00,-2.9306e+02), p^2= 5.1154e-02, m= 7.7133e-01] ( 0,686) 1 [B] 1 ub 107 ( -> ) [( 1.2924e+02, 0.0000e+00, 0.0000e+00,-1.2924e+02), p^2= 9.9490e-03, m= 0.0000e+00] ( 0,625) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 4m elapsed / 1d 9h 23m 14s left ) -> ETA: Fri Apr 12 00:58  Memory usage increased by 17 MB, now 145 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.7517e+09 pb +- ( 4.32833e+08 pb = 9 % ) Event 3000 ( 6m 1s elapsed / 1d 9h 19m 52s left ) -> ETA: Fri Apr 12 00:56 XS = 5.11806e+09 pb +- ( 3.85251e+08 pb = 7 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 4000 ( 8m 3s elapsed / 1d 9h 24m 46s left ) -> ETA: Fri Apr 12 01:03 XS = 4.83743e+09 pb +- ( 3.19576e+08 pb = 6 % ) Event 5000 ( 10m 8s elapsed / 1d 9h 36m 57s left ) -> ETA: Fri Apr 12 01:18 XS = 4.81799e+09 pb +- ( 2.90059e+08 pb = 6 % ) Pythia8 hadronisation failed. Event 6000 ( 12m 15s elapsed / 1d 9h 49m 58s left ) -> ETA: Fri Apr 12 01:33 XS = 4.65959e+09 pb +- ( 2.52291e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 7000 ( 14m 11s elapsed / 1d 9h 33m 31s left ) -> ETA: Fri Apr 12 01:18 XS = 4.53153e+09 pb +- ( 2.28377e+08 pb = 5 % ) Event 8000 ( 16m 15s elapsed / 1d 9h 36m 34s left ) -> ETA: Fri Apr 12 01:23 XS = 4.61252e+09 pb +- ( 2.17555e+08 pb = 4 % ) Event 9000 ( 18m 20s elapsed / 1d 9h 38m 58s left ) -> ETA: Fri Apr 12 01:28 XS = 4.52141e+09 pb +- ( 1.99753e+08 pb = 4 % ) Event 10000 ( 20m 24s elapsed / 1d 9h 41m 10s left ) -> ETA: Fri Apr 12 01:32 XS = 4.46917e+09 pb +- ( 1.85662e+08 pb = 4 % ) Event 20000 ( 40m 42s elapsed / 1d 9h 14m 22s left ) -> ETA: Fri Apr 12 01:26 XS = 4.59445e+09 pb +- ( 1.3432e+08 pb = 2 % ) Event 30000 ( 1h 1m 14s elapsed / 1d 9h 19s left ) -> ETA: Fri Apr 12 01:32 XS = 4.67139e+09 pb +- ( 1.14775e+08 pb = 2 % ) Event 40000 ( 1h 21m 46s elapsed / 1d 8h 42m 46s left ) -> ETA: Fri Apr 12 01:35 XS = 4.81257e+09 pb +- ( 1.02544e+08 pb = 2 % ) Event 50000 ( 1h 42m 23s elapsed / 1d 8h 25m 29s left ) -> ETA: Fri Apr 12 01:38  Memory usage increased by 37 MB, now 183 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.83406e+09 pb +- ( 9.23959e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 60000 ( 2h 2m 51s elapsed / 1d 8h 4m 49s left ) -> ETA: Fri Apr 12 01:38 XS = 4.81726e+09 pb +- ( 8.34772e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 70000 ( 2h 22m 50s elapsed / 1d 7h 37m 50s left ) -> ETA: Fri Apr 12 01:31  Memory usage increased by 21 MB, now 205 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.82987e+09 pb +- ( 7.73579e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 80000 ( 2h 43m 9s elapsed / 1d 7h 16m 17s left ) -> ETA: Fri Apr 12 01:30 XS = 4.83873e+09 pb +- ( 7.21874e+07 pb = 1 % ) Event 90000 ( 3h 3m 15s elapsed / 1d 6h 52m 58s left ) -> ETA: Fri Apr 12 01:27 XS = 4.83665e+09 pb +- ( 6.83863e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 100000 ( 3h 22m 55s elapsed / 1d 6h 26m 21s left ) -> ETA: Fri Apr 12 01:20 XS = 4.86315e+09 pb +- ( 6.46664e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 6h 31m 33s elapsed / 1d 2h 6m 12s left ) -> ETA: Fri Apr 12 00:08  Memory usage increased by 20 MB, now 226 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.82389e+09 pb +- ( 4.54778e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 300000 ( 9h 31m 40s elapsed / 22h 13m 55s left ) -> ETA: Thu Apr 11 23:16 XS = 4.81071e+09 pb +- ( 3.76171e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. WARNING: last allowed error message from 'Hadronize' Pythia8 hadronisation failed. Event 400000 ( 12h 27m 52s elapsed / 18h 41m 48s left ) -> ETA: Thu Apr 11 22:40 XS = 4.7937e+09 pb +- ( 3.24333e+07 pb = 0 % ) Event 500000 ( 15h 22m 25s elapsed / 15h 22m 25s left ) -> ETA: Thu Apr 11 22:15  Memory usage increased by 27 MB, now 253 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.81814e+09 pb +- ( 2.91616e+07 pb = 0 % ) Event 600000 ( 17h 52m 5s elapsed / 11h 54m 43s left ) -> ETA: Thu Apr 11 21:17 XS = 4.83567e+09 pb +- ( 2.6821e+07 pb = 0 % ) Event 700000 ( 20h 15m 27s elapsed / 8h 40m 54s left ) -> ETA: Thu Apr 11 20:27  Memory usage increased by 20 MB, now 274 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.82158e+09 pb +- ( 2.46735e+07 pb = 0 % ) Event 800000 ( 22h 42m 32s elapsed / 5h 40m 38s left ) -> ETA: Thu Apr 11 19:54 XS = 4.79971e+09 pb +- ( 2.28691e+07 pb = 0 % ) Event 900000 ( 1d 1h 6m 44s elapsed / 2h 47m 24s left ) -> ETA: Thu Apr 11 19:25 XS = 4.80188e+09 pb +- ( 2.15605e+07 pb = 0 % ) Event 1000000 ( 98840 s total ) = 874135 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1492){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.80444e+09 0 % 2.05193e+07 0.42 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 1000000 Errors { From "Hadronization:Pythia8": 53 (1000053) -> 0 % } New events { From "Beam_Remnants:Parametrised": 3436 (1003489) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Error messages from 'Hadronize' exceeded frequency limit: 53/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 3436 fails in creating good beam breakups. Remnant Kinematics: 3436 errors (no kinematics found) and 638 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1d 3h 27m 25s on Thu Apr 11 18:58:17 2024 (User: 1d 3h 20m 11s, System: 3m 26s, Children User: 0s, Children System: 0s)