Welcome to Sherpa, Daniel Reichelt on ip3-cpu1.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Apr 10 14:30:50 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1472 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 5s elapsed / 58d 21h 53m 14s left ) -> ETA: Sat Jun 08 12:24 XS = 0.00221162 pb +- ( 0.00221162 pb = 100 % ) Event 2 ( 5s elapsed / 30d 3h 36m 34s left ) -> ETA: Fri May 10 18:07 XS = 0.000737206 pb +- ( 0.000737206 pb = 99 % ) Event 3 ( 5s elapsed / 20d 10h 44m 21s left ) -> ETA: Wed May 01 01:15 XS = 2.1691e+09 pb +- ( 2.1691e+09 pb = 99 % ) Event 4 ( 5s elapsed / 15d 14h 18m 14s left ) -> ETA: Fri Apr 26 04:49 XS = 1.54095e+09 pb +- ( 1.20987e+09 pb = 78 % ) Event 5 ( 5s elapsed / 12d 19h 46m 34s left ) -> ETA: Tue Apr 23 10:17 XS = 1.06681e+09 pb +- ( 8.47199e+08 pb = 79 % ) Event 6 ( 5s elapsed / 10d 22h 29m 54s left ) -> ETA: Sun Apr 21 13:00 XS = 9.24569e+08 pb +- ( 7.36598e+08 pb = 79 % ) Event 7 ( 5s elapsed / 9d 9h 47m 31s left ) -> ETA: Sat Apr 20 00:18 XS = 2.91142e+10 pb +- ( 2.81981e+10 pb = 96 % ) Event 8 ( 5s elapsed / 8d 6h 36m 34s left ) -> ETA: Thu Apr 18 21:07 XS = 2.02552e+10 pb +- ( 1.96288e+10 pb = 96 % ) Event 9 ( 5s elapsed / 7d 12h 51m 45s left ) -> ETA: Thu Apr 18 03:22 XS = 1.94112e+10 pb +- ( 1.88121e+10 pb = 96 % ) Event 10 ( 5s elapsed / 6d 22h 23m 14s left ) -> ETA: Wed Apr 17 12:54 XS = 1.7918e+10 pb +- ( 1.73669e+10 pb = 96 % ) Event 20 ( 6s elapsed / 3d 23h 58m 13s left ) -> ETA: Sun Apr 14 14:29 XS = 9.5852e+09 pb +- ( 8.6931e+09 pb = 90 % ) Event 30 ( 8s elapsed / 3d 2h 4m 18s left ) -> ETA: Sat Apr 13 16:35 XS = 7.03027e+09 pb +- ( 6.37021e+09 pb = 90 % ) Event 40 ( 8s elapsed / 2d 13h 27m 21s left ) -> ETA: Sat Apr 13 03:58 XS = 5.23066e+09 pb +- ( 4.26048e+09 pb = 81 % ) Event 50 ( 10s elapsed / 2d 8h 43m 9s left ) -> ETA: Fri Apr 12 23:14 XS = 5.68848e+09 pb +- ( 3.81607e+09 pb = 67 % ) Event 60 ( 11s elapsed / 2d 4h 4m 48s left ) -> ETA: Fri Apr 12 18:35 XS = 5.14258e+09 pb +- ( 3.23994e+09 pb = 63 % ) Event 70 ( 12s elapsed / 2d 34m 4s left ) -> ETA: Fri Apr 12 15:05 XS = 5.78229e+09 pb +- ( 3.00697e+09 pb = 52 % ) Event 80 ( 13s elapsed / 1d 22h 8m 31s left ) -> ETA: Fri Apr 12 12:39 XS = 4.9549e+09 pb +- ( 2.46075e+09 pb = 49 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 3.4087e+03,-0.0000e+00,-0.0000e+00, 3.4087e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 G 45 ( -> 4) [( 6.4482e+01,-0.0000e+00,-0.0000e+00, 6.4482e+01), p^2= 0.0000e+00, m= 0.0000e+00] (603,639) 0 [I] 1 ub 65 ( -> 6) [( 2.0204e+01,-0.0000e+00,-0.0000e+00, 2.0204e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 [I] 1 u 82 ( -> 8) [( 9.5910e-01,-0.0000e+00,-0.0000e+00, 9.5910e-01), p^2= 0.0000e+00, m= 3.0000e-01] (639, 0) 0 [I] 1 G 101 ( -> 10) [( 4.6064e+00,-0.0000e+00,-0.0000e+00, 4.6064e+00), p^2= 0.0000e+00, m= 0.0000e+00] (681,664) 0 and Particle List with 5 elements [I] 1 db 6 ( -> 2) [( 1.1430e+03,-0.0000e+00,-0.0000e+00,-1.1430e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,625) 1 [I] 1 G 46 ( -> 4) [( 1.1078e+02,-0.0000e+00,-0.0000e+00,-1.1078e+02), p^2= 0.0000e+00, m= 0.0000e+00] (644,668) 1 [I] 1 d 66 ( -> 6) [( 7.6988e+02,-0.0000e+00,-0.0000e+00,-7.6988e+02), p^2= 0.0000e+00, m= 3.0000e-01] (625, 0) 1 [I] 1 G 83 ( -> 8) [( 9.5532e+02,-0.0000e+00,-0.0000e+00,-9.5532e+02), p^2= 0.0000e+00, m= 0.0000e+00] (668,644) 1 [I] 1 d 102 ( -> 10) [( 4.7092e+02,-0.0000e+00,-0.0000e+00,-4.7092e+02), p^2= 0.0000e+00, m= 3.0000e-01] (688, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 115 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,681) 0 [B] 1 u 77 ( -> ) [( 1.0349e+00, 0.0000e+00, 0.0000e+00, 1.0348e+00), p^2= 2.6030e-04, m= 0.0000e+00] (664, 0) 0 and Particle List with 1 elements [B] 1 uu_1 116 ( -> ) [( 5.0123e+01, 0.0000e+00, 0.0000e+00,-5.0123e+01), p^2= 1.2607e-02, m= 7.7133e-01] ( 0,688) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 90 ( 15s elapsed / 2d 41m 57s left ) -> ETA: Fri Apr 12 15:13 XS = 5.07791e+09 pb +- ( 2.25586e+09 pb = 44 % ) Event 100 ( 17s elapsed / 2d 1h 49m 42s left ) -> ETA: Fri Apr 12 16:20 XS = 4.79127e+09 pb +- ( 2.12914e+09 pb = 44 % ) Event 200 ( 28s elapsed / 1d 15h 2m 1s left ) -> ETA: Fri Apr 12 05:33 XS = 5.67885e+09 pb +- ( 1.41924e+09 pb = 24 % ) Event 300 ( 40s elapsed / 1d 13h 1m 33s left ) -> ETA: Fri Apr 12 03:33 XS = 5.21471e+09 pb +- ( 1.05057e+09 pb = 20 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 ub 6 ( -> 2) [( 3.4927e+03,-0.0000e+00,-0.0000e+00, 3.4927e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 [I] 1 ub 86 ( -> 4) [( 5.4135e+00,-0.0000e+00,-0.0000e+00, 5.4135e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,665) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 5.6319e+02,-0.0000e+00,-0.0000e+00,-5.6319e+02), p^2= 0.0000e+00, m= 0.0000e+00] (658,664) 1 [I] 1 u 87 ( -> 4) [( 1.6274e+03,-0.0000e+00,-0.0000e+00,-1.6274e+03), p^2= 0.0000e+00, m= 3.0000e-01] (664, 0) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 102 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,678) 0 [B] 1 u 98 ( -> ) [( 6.3925e-01, 0.0000e+00, 0.0000e+00, 6.3920e-01), p^2= 5.5194e-05, m= 0.0000e+00] (678, 0) 0 [B] 1 u 81 ( -> ) [( 6.9563e-01, 0.0000e+00, 0.0000e+00, 6.9559e-01), p^2= 6.5361e-05, m= 0.0000e+00] (665, 0) 0 [B] 1 u 101 ( -> ) [( 5.2728e-01, 0.0000e+00, 0.0000e+00, 5.2724e-01), p^2= 3.7553e-05, m= 0.0000e+00] (601, 0) 0 and Particle List with 1 elements [B] 1 ud_0 103 ( -> ) [( 1.3094e+03, 0.0000e+00, 0.0000e+00,-1.3094e+03), p^2= 3.2936e-01, m= 5.7933e-01] ( 0,658) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 400 ( 49s elapsed / 1d 10h 37m 55s left ) -> ETA: Fri Apr 12 01:09 XS = 5.41704e+09 pb +- ( 9.19267e+08 pb = 16 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 3.4727e+03,-0.0000e+00,-0.0000e+00, 3.4727e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,603) 0 [I] 1 sb 23 ( -> 4) [( 9.4509e+00,-0.0000e+00,-0.0000e+00, 9.4509e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,602) 0 [I] 1 G 52 ( -> 6) [( 1.2226e+01,-0.0000e+00,-0.0000e+00, 1.2226e+01), p^2= 0.0000e+00, m= 0.0000e+00] (648,638) 0 [I] 1 ub 73 ( -> 8) [( 3.4909e+00,-0.0000e+00,-0.0000e+00, 3.4909e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,660) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 4.4604e+01,-0.0000e+00,-0.0000e+00,-4.4604e+01), p^2= 0.0000e+00, m= 0.0000e+00] (609,605) 1 [I] 1 d 24 ( -> 4) [( 1.2207e+03,-0.0000e+00,-0.0000e+00,-1.2207e+03), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 1 [I] 1 G 53 ( -> 6) [( 5.3940e+02,-0.0000e+00,-0.0000e+00,-5.3940e+02), p^2= 0.0000e+00, m= 0.0000e+00] (644,609) 1 [I] 1 G 74 ( -> 8) [( 3.7276e+02,-0.0000e+00,-0.0000e+00,-3.7276e+02), p^2= 0.0000e+00, m= 0.0000e+00] (664,644) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 88 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,648) 0 [B] 1 u 84 ( -> ) [( 1.3773e+00, 0.0000e+00, 0.0000e+00, 1.3773e+00), p^2= 2.2719e-04, m= 0.0000e+00] (603, 0) 0 [B] 1 s 47 ( -> ) [( 4.0372e-01, 0.0000e+00, 0.0000e+00, 4.0370e-01), p^2= 1.9520e-05, m= 0.0000e+00] (638, 0) 0 [B] 1 d 87 ( -> ) [( 3.1915e-01, 0.0000e+00, 0.0000e+00, 3.1913e-01), p^2= 1.2198e-05, m= 0.0000e+00] (660, 0) 0 and Particle List with 1 elements [B] 1 uu_1 89 ( -> ) [( 1.3225e+03, 0.0000e+00, 0.0000e+00,-1.3225e+03), p^2= 3.3265e-01, m= 7.7133e-01] ( 0,664) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 1m 3s elapsed / 1d 11h 11m 36s left ) -> ETA: Fri Apr 12 01:43  Memory usage increased by 16 MB, now 145 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 5.30777e+09 pb +- ( 8.63352e+08 pb = 16 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 600 ( 1m 15s elapsed / 1d 10h 45m 58s left ) -> ETA: Fri Apr 12 01:18 XS = 5.48586e+09 pb +- ( 8.11158e+08 pb = 14 % ) Event 700 ( 1m 26s elapsed / 1d 10h 23m 4s left ) -> ETA: Fri Apr 12 00:55 XS = 5.2782e+09 pb +- ( 7.26405e+08 pb = 13 % ) Event 800 ( 1m 37s elapsed / 1d 9h 53m 59s left ) -> ETA: Fri Apr 12 00:26 XS = 5.66625e+09 pb +- ( 7.16816e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 6 ( -> 2) [( 2.5833e+03,-0.0000e+00,-0.0000e+00, 2.5833e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 0 [I] 1 d 69 ( -> 4) [( 1.2043e+02,-0.0000e+00,-0.0000e+00, 1.2043e+02), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 G 85 ( -> 6) [( 6.4925e+02,-0.0000e+00,-0.0000e+00, 6.4925e+02), p^2= 0.0000e+00, m= 0.0000e+00] (675,604) 0 [I] 1 db 106 ( -> 8) [( 6.2737e-01,-0.0000e+00,-0.0000e+00, 6.2737e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,675) 0 [I] 1 G 119 ( -> 10) [( 1.0521e+02,-0.0000e+00,-0.0000e+00, 1.0521e+02), p^2= 0.0000e+00, m= 0.0000e+00] (691,684) 0 [I] 1 G 140 ( -> 12) [( 3.7945e+01,-0.0000e+00,-0.0000e+00, 3.7945e+01), p^2= 0.0000e+00, m= 0.0000e+00] (704,691) 0 [I] 1 G 153 ( -> 14) [( 2.4324e+00,-0.0000e+00,-0.0000e+00, 2.4324e+00), p^2= 0.0000e+00, m= 0.0000e+00] (706,704) 0 and Particle List with 7 elements [I] 1 G 5 ( -> 2) [( 1.8207e+03,-0.0000e+00,-0.0000e+00,-1.8207e+03), p^2= 0.0000e+00, m= 0.0000e+00] (640,634) 1 [I] 1 G 70 ( -> 4) [( 3.3568e+01,-0.0000e+00,-0.0000e+00,-3.3568e+01), p^2= 0.0000e+00, m= 0.0000e+00] (634,656) 1 [I] 1 db 86 ( -> 6) [( 9.3563e+00,-0.0000e+00,-0.0000e+00,-9.3563e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,640) 1 [I] 1 G 107 ( -> 8) [( 1.5991e+02,-0.0000e+00,-0.0000e+00,-1.5991e+02), p^2= 0.0000e+00, m= 0.0000e+00] (656,678) 1 [I] 1 G 120 ( -> 10) [( 1.3075e+03,-0.0000e+00,-0.0000e+00,-1.3075e+03), p^2= 0.0000e+00, m= 0.0000e+00] (678,688) 1 [I] 1 G 141 ( -> 12) [( 4.2518e+01,-0.0000e+00,-0.0000e+00,-4.2518e+01), p^2= 0.0000e+00, m= 0.0000e+00] (702,676) 1 [I] 1 G 154 ( -> 14) [( 1.2202e+02,-0.0000e+00,-0.0000e+00,-1.2202e+02), p^2= 0.0000e+00, m= 0.0000e+00] (704,702) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 160 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,706) 0 [B] 1 d 114 ( -> ) [( 8.0668e-01, 0.0000e+00, 0.0000e+00, 8.0656e-01), p^2= 2.0289e-04, m= 0.0000e+00] (684, 0) 0 and Particle List with 3 elements [B] 1 uu_1 162 ( -> ) [( 1.9563e+00, 0.0000e+00, 0.0000e+00,-1.9562e+00), p^2= 2.2053e-04, m= 7.7133e-01] ( 0,704) 1 [B] 1 d 101 ( -> ) [( 1.4260e+00, 0.0000e+00, 0.0000e+00,-1.4259e+00), p^2= 1.1717e-04, m= 0.0000e+00] (676, 0) 1 [B] 1 d 161 ( -> ) [( 9.8269e-01, 0.0000e+00, 0.0000e+00,-9.8266e-01), p^2= 5.5647e-05, m= 0.0000e+00] (688, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 db 6 ( -> 2) [( 3.2032e+03,-0.0000e+00,-0.0000e+00, 3.2032e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 [I] 1 u 60 ( -> 4) [( 2.9415e+02,-0.0000e+00,-0.0000e+00, 2.9415e+02), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 77 ( -> 6) [( 5.2219e-01,-0.0000e+00,-0.0000e+00, 5.2219e-01), p^2= 0.0000e+00, m= 0.0000e+00] (658,643) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.3821e+03,-0.0000e+00,-0.0000e+00,-3.3821e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 u 61 ( -> 4) [( 5.1176e+01,-0.0000e+00,-0.0000e+00,-5.1176e+01), p^2= 0.0000e+00, m= 3.0000e-01] (603, 0) 1 [I] 1 s 78 ( -> 6) [( 6.5922e+01,-0.0000e+00,-0.0000e+00,-6.5922e+01), p^2= 0.0000e+00, m= 4.0000e-01] (657, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 86 ( -> ) [( 1.7511e+00, 0.0000e+00, 0.0000e+00, 1.7510e+00), p^2= 3.5800e-04, m= 5.7933e-01] ( 0,658) 0 [B] 1 d 55 ( -> ) [( 4.0325e-01, 0.0000e+00, 0.0000e+00, 4.0323e-01), p^2= 1.8985e-05, m= 0.0000e+00] (643, 0) 0 and Particle List with 2 elements [B] 1 ud_0 87 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,657) 1 [B] 1 sb 82 ( -> ) [( 7.8581e-01, 0.0000e+00, 0.0000e+00,-7.8569e-01), p^2= 1.9764e-04, m= 0.0000e+00] ( 0,601) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 48s elapsed / 1d 9h 30m 35s left ) -> ETA: Fri Apr 12 00:03 XS = 5.6809e+09 pb +- ( 6.82518e+08 pb = 12 % ) Event 1000 ( 2m elapsed / 1d 9h 32m 49s left ) -> ETA: Fri Apr 12 00:05  Memory usage increased by 54 MB, now 199 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 5.71188e+09 pb +- ( 6.62437e+08 pb = 11 % ) Event 2000 ( 3m 58s elapsed / 1d 9h 6m 31s left ) -> ETA: Thu Apr 11 23:41 XS = 5.62184e+09 pb +- ( 4.53322e+08 pb = 8 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 5m 58s elapsed / 1d 9h 6m 34s left ) -> ETA: Thu Apr 11 23:43 XS = 5.42317e+09 pb +- ( 3.56477e+08 pb = 6 % ) Pythia8 hadronisation failed. Event 4000 ( 7m 56s elapsed / 1d 8h 56m 8s left ) -> ETA: Thu Apr 11 23:34 XS = 5.2844e+09 pb +- ( 3.02999e+08 pb = 5 % ) Event 5000 ( 9m 53s elapsed / 1d 8h 48m 10s left ) -> ETA: Thu Apr 11 23:28 XS = 5.26325e+09 pb +- ( 2.78168e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 6000 ( 11m 51s elapsed / 1d 8h 43m 57s left ) -> ETA: Thu Apr 11 23:26 XS = 5.24874e+09 pb +- ( 2.53271e+08 pb = 4 % ) Event 7000 ( 13m 51s elapsed / 1d 8h 46m 53s left ) -> ETA: Thu Apr 11 23:31 XS = 5.05841e+09 pb +- ( 2.3041e+08 pb = 4 % ) Event 8000 ( 15m 53s elapsed / 1d 8h 50m 9s left ) -> ETA: Thu Apr 11 23:36 XS = 5.05002e+09 pb +- ( 2.14591e+08 pb = 4 % ) Event 9000 ( 17m 59s elapsed / 1d 9h 33s left ) -> ETA: Thu Apr 11 23:49 XS = 5.01427e+09 pb +- ( 2.03807e+08 pb = 4 % ) Event 10000 ( 20m 2s elapsed / 1d 9h 3m 59s left ) -> ETA: Thu Apr 11 23:54 XS = 5.10906e+09 pb +- ( 1.99929e+08 pb = 3 % ) Event 20000 ( 40m 38s elapsed / 1d 9h 11m 24s left ) -> ETA: Fri Apr 12 00:22 XS = 4.811e+09 pb +- ( 1.37712e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 30000 ( 1h 1m 2s elapsed / 1d 8h 53m 44s left ) -> ETA: Fri Apr 12 00:25 XS = 4.77254e+09 pb +- ( 1.13331e+08 pb = 2 % ) Event 40000 ( 1h 21m 38s elapsed / 1d 8h 39m 26s left ) -> ETA: Fri Apr 12 00:31 XS = 4.75698e+09 pb +- ( 1.02499e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 50000 ( 1h 41m 50s elapsed / 1d 8h 14m 51s left ) -> ETA: Fri Apr 12 00:27 XS = 4.79779e+09 pb +- ( 9.22381e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 60000 ( 2h 1m 58s elapsed / 1d 7h 50m 54s left ) -> ETA: Fri Apr 12 00:23 XS = 4.7662e+09 pb +- ( 8.36582e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 70000 ( 2h 22m 13s elapsed / 1d 7h 29m 27s left ) -> ETA: Fri Apr 12 00:22 XS = 4.77861e+09 pb +- ( 7.80928e+07 pb = 1 % ) Event 80000 ( 2h 41m 58s elapsed / 1d 7h 2m 46s left ) -> ETA: Fri Apr 12 00:15 XS = 4.80183e+09 pb +- ( 7.27804e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 90000 ( 3h 1m 27s elapsed / 1d 6h 34m 42s left ) -> ETA: Fri Apr 12 00:07 XS = 4.78873e+09 pb +- ( 6.83398e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 100000 ( 3h 20m 26s elapsed / 1d 6h 3m 56s left ) -> ETA: Thu Apr 11 23:55 XS = 4.78752e+09 pb +- ( 6.4748e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 6h 22m elapsed / 1d 1h 28m 3s left ) -> ETA: Thu Apr 11 22:20  Memory usage increased by 21 MB, now 221 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.82327e+09 pb +- ( 4.64417e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 300000 ( 9h 9m 41s elapsed / 21h 22m 37s left ) -> ETA: Thu Apr 11 21:03 XS = 4.81406e+09 pb +- ( 3.8006e+07 pb = 0 % ) WARNING: last allowed error message from 'Hadronize' Pythia8 hadronisation failed. Event 400000 ( 11h 56m 37s elapsed / 17h 54m 56s left ) -> ETA: Thu Apr 11 20:22  Memory usage increased by 22 MB, now 243 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.821e+09 pb +- ( 3.29702e+07 pb = 0 % ) Event 500000 ( 14h 45m 51s elapsed / 14h 45m 51s left ) -> ETA: Thu Apr 11 20:02 XS = 4.80624e+09 pb +- ( 2.92533e+07 pb = 0 % ) Event 600000 ( 17h 34m 58s elapsed / 11h 43m 18s left ) -> ETA: Thu Apr 11 19:49  Memory usage increased by 24 MB, now 267 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.81358e+09 pb +- ( 2.66372e+07 pb = 0 % ) Event 700000 ( 20h 14m 56s elapsed / 8h 40m 41s left ) -> ETA: Thu Apr 11 19:26 XS = 4.82107e+09 pb +- ( 2.48496e+07 pb = 0 % ) Event 800000 ( 23h 12s elapsed / 5h 45m 3s left ) -> ETA: Thu Apr 11 19:16 XS = 4.81568e+09 pb +- ( 2.31746e+07 pb = 0 % ) Event 900000 ( 1d 1h 45m 47s elapsed / 2h 51m 45s left ) -> ETA: Thu Apr 11 19:08  Memory usage increased by 19 MB, now 286 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.82151e+09 pb +- ( 2.18882e+07 pb = 0 % ) Event 1000000 ( 102009 s total ) = 846986 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1472){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.81823e+09 0 % 2.07948e+07 0.43 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 1000000 Errors { From "Hadronization:Pythia8": 56 (1000056) -> 0 % } New events { From "Beam_Remnants:Parametrised": 3372 (1003428) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Error messages from 'Hadronize' exceeded frequency limit: 56/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 3372 fails in creating good beam breakups. Remnant Kinematics: 3372 errors (no kinematics found) and 646 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1d 4h 20m 14s on Thu Apr 11 18:51:05 2024 (User: 1d 4h 9m 47s, System: 5m 8s, Children User: 0s, Children System: 0s)