Welcome to Sherpa, Daniel Reichelt on ip3-cpu5.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Apr 10 10:17:23 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1411 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 40d 23h 19m 56s left ) -> ETA: Tue May 21 09:37 XS = 1.45731e+07 pb +- ( 1.45731e+07 pb = 100 % ) Event 2 ( 3s elapsed / 21d 2h 56m 36s left ) -> ETA: Wed May 01 13:14 XS = 4.8577e+06 pb +- ( 4.8577e+06 pb = 99 % ) Event 3 ( 3s elapsed / 14d 2h 53m 16s left ) -> ETA: Wed Apr 24 13:10 XS = 5.87676e+09 pb +- ( 5.87514e+09 pb = 99 % ) Event 4 ( 3s elapsed / 10d 17h 38m 16s left ) -> ETA: Sun Apr 21 03:55 XS = 3.26487e+09 pb +- ( 3.26401e+09 pb = 99 % ) Event 5 ( 3s elapsed / 8d 16h 53m 16s left ) -> ETA: Fri Apr 19 03:10 XS = 3.05391e+09 pb +- ( 2.9338e+09 pb = 96 % ) Event 6 ( 3s elapsed / 7d 12h 5m 29s left ) -> ETA: Wed Apr 17 22:22 XS = 2.90849e+09 pb +- ( 2.79439e+09 pb = 96 % ) Event 7 ( 3s elapsed / 6d 11h 9m 27s left ) -> ETA: Tue Apr 16 21:26 XS = 2.45809e+09 pb +- ( 2.34746e+09 pb = 95 % ) Event 8 ( 3s elapsed / 5d 17h 50m 46s left ) -> ETA: Tue Apr 16 04:08 XS = 1.98233e+09 pb +- ( 1.89384e+09 pb = 95 % ) Event 9 ( 4s elapsed / 5d 3h 27m 20s left ) -> ETA: Mon Apr 15 13:44 XS = 1.8665e+09 pb +- ( 1.7791e+09 pb = 95 % ) Event 10 ( 4s elapsed / 4d 15h 23m 15s left ) -> ETA: Mon Apr 15 01:40 XS = 1.77542e+09 pb +- ( 1.67718e+09 pb = 94 % ) Event 20 ( 4s elapsed / 2d 20h 36m 35s left ) -> ETA: Sat Apr 13 06:54 XS = 1.05131e+09 pb +- ( 9.33297e+08 pb = 88 % ) Event 30 ( 5s elapsed / 2d 5h 58m 47s left ) -> ETA: Fri Apr 12 16:16 XS = 1.14952e+09 pb +- ( 7.4127e+08 pb = 64 % ) Event 40 ( 6s elapsed / 1d 21h 33m 13s left ) -> ETA: Fri Apr 12 07:50 XS = 2.1981e+09 pb +- ( 1.30891e+09 pb = 59 % ) Event 50 ( 7s elapsed / 1d 18h 6m 32s left ) -> ETA: Fri Apr 12 04:24 XS = 4.39925e+09 pb +- ( 2.76014e+09 pb = 62 % ) Event 60 ( 8s elapsed / 1d 16h 10m 57s left ) -> ETA: Fri Apr 12 02:28 XS = 3.62443e+09 pb +- ( 2.26768e+09 pb = 62 % ) Event 70 ( 9s elapsed / 1d 14h 22m 13s left ) -> ETA: Fri Apr 12 00:39 XS = 3.26043e+09 pb +- ( 1.99338e+09 pb = 61 % ) Event 80 ( 10s elapsed / 1d 12h 56m 29s left ) -> ETA: Thu Apr 11 23:14 XS = 3.43866e+09 pb +- ( 1.84027e+09 pb = 53 % ) Event 90 ( 11s elapsed / 1d 10h 48m 42s left ) -> ETA: Thu Apr 11 21:06 XS = 4.10476e+09 pb +- ( 1.82386e+09 pb = 44 % ) Event 100 ( 12s elapsed / 1d 9h 43m 7s left ) -> ETA: Thu Apr 11 20:00 XS = 4.67884e+09 pb +- ( 1.84245e+09 pb = 39 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 2.3355e+03,-0.0000e+00,-0.0000e+00, 2.3355e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 G 53 ( -> 4) [( 1.7277e+02,-0.0000e+00,-0.0000e+00, 1.7277e+02), p^2= 0.0000e+00, m= 0.0000e+00] (642,601) 0 [I] 1 d 67 ( -> 6) [( 9.8613e+02,-0.0000e+00,-0.0000e+00, 9.8613e+02), p^2= 0.0000e+00, m= 3.0000e-01] (661, 0) 0 and Particle List with 3 elements [I] 1 G 6 ( -> 2) [( 3.4843e+03,-0.0000e+00,-0.0000e+00,-3.4843e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 1 [I] 1 G 54 ( -> 4) [( 1.3331e+01,-0.0000e+00,-0.0000e+00,-1.3331e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,647) 1 [I] 1 ub 68 ( -> 6) [( 8.6379e-01,-0.0000e+00,-0.0000e+00,-8.6379e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,604) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 82 ( -> ) [( 3.6068e+00, 0.0000e+00, 0.0000e+00, 3.6068e+00), p^2= 5.9002e-04, m= 5.7933e-01] ( 0,661) 0 [B] 1 db 77 ( -> ) [( 7.5611e-01, 0.0000e+00, 0.0000e+00, 7.5609e-01), p^2= 2.5928e-05, m= 0.0000e+00] ( 0,642) 0 [B] 1 u 81 ( -> ) [( 1.1830e+00, 0.0000e+00, 0.0000e+00, 1.1830e+00), p^2= 6.3469e-05, m= 0.0000e+00] (603, 0) 0 and Particle List with 3 elements [B] 1 ud_0 84 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,665) 1 [B] 1 u 78 ( -> ) [( 6.4426e-01, 0.0000e+00, 0.0000e+00,-6.4421e-01), p^2= 7.0275e-05, m= 0.0000e+00] (665, 0) 1 [B] 1 u 83 ( -> ) [( 8.4132e-01, 0.0000e+00, 0.0000e+00,-8.4125e-01), p^2= 1.1984e-04, m= 0.0000e+00] (647, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 200 ( 21s elapsed / 1d 6h 7m 8s left ) -> ETA: Thu Apr 11 16:24 XS = 3.89793e+09 pb +- ( 1.05798e+09 pb = 27 % ) Event 300 ( 31s elapsed / 1d 5h 15m 35s left ) -> ETA: Thu Apr 11 15:33 XS = 4.83139e+09 pb +- ( 9.86859e+08 pb = 20 % ) Event 400 ( 40s elapsed / 1d 4h 6m 49s left ) -> ETA: Thu Apr 11 14:24  Memory usage increased by 16 MB, now 146 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 5.15134e+09 pb +- ( 1.10347e+09 pb = 21 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 2.9859e+03,-0.0000e+00,-0.0000e+00, 2.9859e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 G 68 ( -> 4) [( 1.1512e+02,-0.0000e+00,-0.0000e+00, 1.1512e+02), p^2= 0.0000e+00, m= 0.0000e+00] (655,601) 0 [I] 1 G 81 ( -> 6) [( 8.0956e+01,-0.0000e+00,-0.0000e+00, 8.0956e+01), p^2= 0.0000e+00, m= 0.0000e+00] (660,655) 0 [I] 1 s 97 ( -> 8) [( 7.5667e+01,-0.0000e+00,-0.0000e+00, 7.5667e+01), p^2= 0.0000e+00, m= 4.0000e-01] (603, 0) 0 [I] 1 G 118 ( -> 10) [( 7.6056e+01,-0.0000e+00,-0.0000e+00, 7.6056e+01), p^2= 0.0000e+00, m= 0.0000e+00] (685,692) 0 and Particle List with 5 elements [I] 1 cb 6 ( -> 2) [( 3.4162e+03,-0.0000e+00,-0.0000e+00,-3.4162e+03), p^2= 0.0000e+00, m= 1.8000e+00] ( 0,601) 1 [I] 1 G 69 ( -> 4) [( 6.2486e+00,-0.0000e+00,-0.0000e+00,-6.2486e+00), p^2= 0.0000e+00, m= 0.0000e+00] (658,650) 1 [I] 1 d 82 ( -> 6) [( 4.7939e+01,-0.0000e+00,-0.0000e+00,-4.7939e+01), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 98 ( -> 8) [( 2.1535e+01,-0.0000e+00,-0.0000e+00,-2.1535e+01), p^2= 0.0000e+00, m= 0.0000e+00] (680,658) 1 [I] 1 sb 119 ( -> 10) [( 4.9633e+00,-0.0000e+00,-0.0000e+00,-4.9633e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,680) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 129 ( -> ) [( 1.0826e+02, 0.0000e+00, 0.0000e+00, 1.0826e+02), p^2= 1.7721e-02, m= 7.7133e-01] ( 0,660) 0 [B] 1 sb 113 ( -> ) [( 4.2549e-01, 0.0000e+00, 0.0000e+00, 4.2549e-01), p^2= 2.7374e-07, m= 0.0000e+00] ( 0,685) 0 [B] 1 d 128 ( -> ) [( 5.7665e+01, 0.0000e+00, 0.0000e+00, 5.7665e+01), p^2= 5.0280e-03, m= 0.0000e+00] (692, 0) 0 and Particle List with 3 elements [B] 1 uu_1 130 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,694) 1 [B] 1 s 125 ( -> ) [( 5.2299e-01, 0.0000e+00, 0.0000e+00,-5.2297e-01), p^2= 2.2348e-05, m= 0.0000e+00] (694, 0) 1 [B] 1 c 63 ( -> ) [( 2.5554e+00, 0.0000e+00, 0.0000e+00,-2.5553e+00), p^2= 5.3355e-04, m= 0.0000e+00] (650, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 50s elapsed / 1d 3h 46m 29s left ) -> ETA: Thu Apr 11 14:04 XS = 4.92573e+09 pb +- ( 9.24626e+08 pb = 18 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 3.1851e+01,-0.0000e+00,-0.0000e+00, 3.1851e+01), p^2= 0.0000e+00, m= 0.0000e+00] (608,629) 0 [I] 1 G 46 ( -> 4) [( 3.6048e+02,-0.0000e+00,-0.0000e+00, 3.6048e+02), p^2= 0.0000e+00, m= 0.0000e+00] (629,603) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4979e+03,-0.0000e+00,-0.0000e+00,-3.4979e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 s 47 ( -> 4) [( 5.3621e-01,-0.0000e+00,-0.0000e+00,-5.3621e-01), p^2= 0.0000e+00, m= 4.0000e-01] (603, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 56 ( -> ) [( 2.0508e+03, 0.0000e+00, 0.0000e+00, 2.0508e+03), p^2= 3.4040e-01, m= 5.7933e-01] ( 0,608) 0 [B] 1 u 55 ( -> ) [( 1.0569e+03, 0.0000e+00, 0.0000e+00, 1.0569e+03), p^2= 9.0409e-02, m= 0.0000e+00] (603, 0) 0 and Particle List with 3 elements [B] 1 ud_0 58 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,601) 1 [B] 1 sb 52 ( -> ) [( 6.1821e-01, 0.0000e+00, 0.0000e+00,-6.1816e-01), p^2= 6.1886e-05, m= 0.0000e+00] ( 0,642) 1 [B] 1 u 57 ( -> ) [( 9.3509e-01, 0.0000e+00, 0.0000e+00,-9.3502e-01), p^2= 1.4159e-04, m= 0.0000e+00] (642, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4927e+03,-0.0000e+00,-0.0000e+00, 3.4927e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 0 [I] 1 G 74 ( -> 4) [( 3.0084e+00,-0.0000e+00,-0.0000e+00, 3.0084e+00), p^2= 0.0000e+00, m= 0.0000e+00] (661,605) 0 [I] 1 db 90 ( -> 6) [( 2.9307e+00,-0.0000e+00,-0.0000e+00, 2.9307e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,661) 0 and Particle List with 3 elements [I] 1 u 6 ( -> 2) [( 1.4935e+03,-0.0000e+00,-0.0000e+00,-1.4935e+03), p^2= 0.0000e+00, m= 3.0000e-01] (616, 0) 1 [I] 1 db 75 ( -> 4) [( 4.3855e+02,-0.0000e+00,-0.0000e+00,-4.3855e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,616) 1 [I] 1 G 91 ( -> 6) [( 9.6004e+02,-0.0000e+00,-0.0000e+00,-9.6004e+02), p^2= 0.0000e+00, m= 0.0000e+00] (688,670) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 100 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,689) 0 [B] 1 d 96 ( -> ) [( 4.6232e-01, 0.0000e+00, 0.0000e+00, 4.6227e-01), p^2= 3.9862e-05, m= 0.0000e+00] (689, 0) 0 [B] 1 d 99 ( -> ) [( 8.8632e-01, 0.0000e+00, 0.0000e+00, 8.8624e-01), p^2= 1.4651e-04, m= 0.0000e+00] (607, 0) 0 and Particle List with 2 elements [B] 1 ud_0 101 ( -> ) [( 4.6276e+02, 0.0000e+00, 0.0000e+00,-4.6276e+02), p^2= 8.8601e-02, m= 5.7933e-01] ( 0,688) 1 [B] 1 d 85 ( -> ) [( 1.4518e+02, 0.0000e+00, 0.0000e+00,-1.4518e+02), p^2= 8.7204e-03, m= 0.0000e+00] (670, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 600 ( 58s elapsed / 1d 2h 51m 15s left ) -> ETA: Thu Apr 11 13:09 XS = 5.83964e+09 pb +- ( 1.05671e+09 pb = 18 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 s 6 ( -> 2) [( 2.9256e+03,-0.0000e+00,-0.0000e+00, 2.9256e+03), p^2= 0.0000e+00, m= 4.0000e-01] (601, 0) 0 [I] 1 ub 61 ( -> 4) [( 7.6965e+00,-0.0000e+00,-0.0000e+00, 7.6965e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,647) 0 [I] 1 G 84 ( -> 6) [( 5.6364e+02,-0.0000e+00,-0.0000e+00, 5.6364e+02), p^2= 0.0000e+00, m= 0.0000e+00] (647,676) 0 [I] 1 db 109 ( -> 8) [( 4.5679e-01,-0.0000e+00,-0.0000e+00, 4.5679e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 1.8709e+03,-0.0000e+00,-0.0000e+00,-1.8709e+03), p^2= 0.0000e+00, m= 0.0000e+00] (621,606) 1 [I] 1 u 62 ( -> 4) [( 9.6896e+02,-0.0000e+00,-0.0000e+00,-9.6896e+02), p^2= 0.0000e+00, m= 3.0000e-01] (606, 0) 1 [I] 1 u 85 ( -> 6) [( 5.7973e+01,-0.0000e+00,-0.0000e+00,-5.7973e+01), p^2= 0.0000e+00, m= 3.0000e-01] (672, 0) 1 [I] 1 G 110 ( -> 8) [( 8.1259e+01,-0.0000e+00,-0.0000e+00,-8.1259e+01), p^2= 0.0000e+00, m= 0.0000e+00] (684,672) 1 and the corresponding remnants are Particle List with 5 elements [B] 1 uu_1 120 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,686) 0 [B] 1 d 116 ( -> ) [( 4.7533e-01, 0.0000e+00, 0.0000e+00, 4.7531e-01), p^2= 2.1532e-05, m= 0.0000e+00] (686, 0) 0 [B] 1 u 79 ( -> ) [( 1.1044e+00, 0.0000e+00, 0.0000e+00, 1.1043e+00), p^2= 1.1623e-04, m= 0.0000e+00] (646, 0) 0 [B] 1 sb 56 ( -> ) [( 5.7702e-01, 0.0000e+00, 0.0000e+00, 5.7699e-01), p^2= 3.1730e-05, m= 0.0000e+00] ( 0,646) 0 [B] 1 d 119 ( -> ) [( 4.8259e-01, 0.0000e+00, 0.0000e+00, 4.8256e-01), p^2= 2.2194e-05, m= 0.0000e+00] (676, 0) 0 and Particle List with 2 elements [B] 1 ud_0 121 ( -> ) [( 4.7343e+02, 0.0000e+00, 0.0000e+00,-4.7343e+02), p^2= 1.0823e-01, m= 5.7933e-01] ( 0,684) 1 [B] 1 ub 104 ( -> ) [( 4.7475e+01, 0.0000e+00, 0.0000e+00,-4.7475e+01), p^2= 1.0883e-03, m= 0.0000e+00] ( 0,621) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 700 ( 1m 7s elapsed / 1d 2h 54m 34s left ) -> ETA: Thu Apr 11 13:13 XS = 5.58548e+09 pb +- ( 9.36672e+08 pb = 16 % ) Event 800 ( 1m 16s elapsed / 1d 2h 42m 15s left ) -> ETA: Thu Apr 11 13:00 XS = 5.44805e+09 pb +- ( 8.44786e+08 pb = 15 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 900 ( 1m 27s elapsed / 1d 3h 3m 43s left ) -> ETA: Thu Apr 11 13:22 XS = 5.77373e+09 pb +- ( 8.35943e+08 pb = 14 % ) Event 1000 ( 1m 35s elapsed / 1d 2h 32m 34s left ) -> ETA: Thu Apr 11 12:51 XS = 5.66595e+09 pb +- ( 7.61633e+08 pb = 13 % ) Event 2000 ( 3m 13s elapsed / 1d 2h 49m 26s left ) -> ETA: Thu Apr 11 13:10 XS = 6.40561e+09 pb +- ( 6.70435e+08 pb = 10 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 4m 48s elapsed / 1d 2h 39m 41s left ) -> ETA: Thu Apr 11 13:01 XS = 6.14866e+09 pb +- ( 5.0147e+08 pb = 8 % ) Event 4000 ( 6m 23s elapsed / 1d 2h 33m 28s left ) -> ETA: Thu Apr 11 12:57 XS = 5.82533e+09 pb +- ( 3.96137e+08 pb = 6 % ) Event 5000 ( 7m 57s elapsed / 1d 2h 24m 14s left ) -> ETA: Thu Apr 11 12:49 XS = 5.47693e+09 pb +- ( 3.27337e+08 pb = 5 % ) Event 6000 ( 9m 41s elapsed / 1d 2h 45m left ) -> ETA: Thu Apr 11 13:12  Memory usage increased by 22 MB, now 168 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 5.33045e+09 pb +- ( 2.91076e+08 pb = 5 % ) Event 7000 ( 11m 18s elapsed / 1d 2h 44m 27s left ) -> ETA: Thu Apr 11 13:13 XS = 5.33836e+09 pb +- ( 2.69544e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 8000 ( 12m 58s elapsed / 1d 2h 48m 32s left ) -> ETA: Thu Apr 11 13:18 XS = 5.41969e+09 pb +- ( 2.57337e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 9000 ( 14m 38s elapsed / 1d 2h 51m 41s left ) -> ETA: Thu Apr 11 13:23 XS = 5.38213e+09 pb +- ( 2.39786e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Event 10000 ( 16m 20s elapsed / 1d 2h 57m 46s left ) -> ETA: Thu Apr 11 13:31 XS = 5.29804e+09 pb +- ( 2.22867e+08 pb = 4 % ) Event 20000 ( 32m 52s elapsed / 1d 2h 50m 58s left ) -> ETA: Thu Apr 11 13:41 XS = 5.13659e+09 pb +- ( 1.68341e+08 pb = 3 % ) Pythia8 hadronisation failed. Event 30000 ( 49m 51s elapsed / 1d 2h 51m 49s left ) -> ETA: Thu Apr 11 13:59  Memory usage increased by 45 MB, now 214 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.96386e+09 pb +- ( 1.28859e+08 pb = 2 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 40000 ( 1h 6m 28s elapsed / 1d 2h 35m 16s left ) -> ETA: Thu Apr 11 13:59 XS = 4.90927e+09 pb +- ( 1.09922e+08 pb = 2 % ) Event 50000 ( 1h 23m 14s elapsed / 1d 2h 21m 29s left ) -> ETA: Thu Apr 11 14:02 XS = 4.89195e+09 pb +- ( 9.62431e+07 pb = 1 % ) Event 60000 ( 1h 40m 1s elapsed / 1d 2h 7m left ) -> ETA: Thu Apr 11 14:04 XS = 4.86439e+09 pb +- ( 8.64381e+07 pb = 1 % ) Event 70000 ( 1h 56m 35s elapsed / 1d 1h 49m 3s left ) -> ETA: Thu Apr 11 14:03 XS = 4.88464e+09 pb +- ( 8.11406e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 80000 ( 2h 13m 30s elapsed / 1d 1h 35m 16s left ) -> ETA: Thu Apr 11 14:06 XS = 4.87376e+09 pb +- ( 7.62916e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 90000 ( 2h 30m 12s elapsed / 1d 1h 18m 48s left ) -> ETA: Thu Apr 11 14:06 XS = 4.85156e+09 pb +- ( 7.15689e+07 pb = 1 % ) Event 100000 ( 2h 46m 46s elapsed / 1d 1h 58s left ) -> ETA: Thu Apr 11 14:05 XS = 4.8447e+09 pb +- ( 6.72701e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 5h 29m 14s elapsed / 21h 56m 59s left ) -> ETA: Thu Apr 11 13:43 XS = 4.8185e+09 pb +- ( 4.61167e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 300000 ( 8h 1m 25s elapsed / 18h 43m 18s left ) -> ETA: Thu Apr 11 13:02  Memory usage increased by 23 MB, now 237 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.77664e+09 pb +- ( 3.73523e+07 pb = 0 % ) WARNING: last allowed error message from 'Hadronize' Pythia8 hadronisation failed. Event 400000 ( 10h 22m 30s elapsed / 15h 33m 45s left ) -> ETA: Thu Apr 11 12:13 XS = 4.77935e+09 pb +- ( 3.23392e+07 pb = 0 % ) Particle gamma with id 22 was supposed to be stable but is only intermediary. Fatal error thrown: Particle is supposed to be stable. Event 406911 ( 37933 s total ) = 926816 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1411){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.78088e+09 0 % 3.20675e+07 0.67 % -------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Terminator_Object_Handler::Exit: Exiting Sherpa with code (1)[?25h