Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway.
The local time is Thu Mar  7 21:23:48 2024.
Run_Parameter::Init(): Setting memory limit to 503.276 GB.
Random::SetSeed(): Seed set to 1380
Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded.
-----------------------------------------------------------------------------
-----------    Event generation run with SHERPA started .......   -----------
-----------------------------------------------------------------------------
................................................ |       +                   
................................................ ||  |       +  +            
...................................        ....  | |         /   +           
................. ................   _,_ |  ....  ||         +|  +  +        
...............................  __.'  ,\|  ...  ||    /    +|          +    
.............................. (  \    \   ...  | |  |   + + \         +   
.............................  (    \   -/  .... ||       +    |          +  
........ ...................  <S   /()))))~~~~~~~~##     +     /\    +       
............................ (!H   (~~)))))~~~~~~#/     +  +    |  +         
................ ........... (!E   (~~~)))))     /|/    +         +          
............................ (!R   (~~~)))))   |||   + +            +        
..... ...................... (!P    (~~~~)))   /|  + +          +            
............................ (!A>    (~~~~~~~~~##        + +        +        
............................. ~~(!    '~~~~~~~ \       +     + +      +      
...............................  `~~~QQQQQDb //   |         + + +        +   
........................ ..........   IDDDDP||     \  + + + + +             +
....................................  IDDDI||       \                      + 
.................................... IHD HD||         \ + +  + + + + +      +
...................................  IHD ##|            :-) + +\          +  
......... ............... ......... IHI ## /      /   +  + + + +\       +    
................................... IHI/ /       /      + + + +        +     
................................... ## | | /    / + +      + + /      +      
....................... /TT\ .....  ##/ ///  / + + + + + + +/       +        
......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/   \         +   
....................../TTT/TTTT\...|TT/T\\\/   +    ++  + /              
-----------------------------------------------------------------------------

     SHERPA version 3.0.0beta1 (Dhaulagiri)
                                                                             
     Authors:        Enrico Bothmann, Stefan Hoeche, Frank Krauss,           
                     Silvan Kuttimalai, Marek Schoenherr, Holger Schulz,     
                     Steffen Schumann, Frank Siegert, Korinna Zapp           
     Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth,           
                     Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke,         
                     Jan Winter                                              
                                                                             
     This program uses a lot of genuine and original research work           
     by other people. Users are encouraged to refer to                       
     the various original publications.                                      
                                                                             
     Users are kindly asked to refer to the documentation                    
     published under JHEP 02(2009)007                                        
                                                                             
     Please visit also our homepage                                          
                                                                             
       http://sherpa.hepforge.org                                            
                                                                             
     for news, bugreports, updates and new releases.                         
                                                                             
-----------------------------------------------------------------------------
WARNING: You are using an unsupported development branch.
Git branch unknownurl, revision unknownrevision.
Hadron_Init::Init(): Initializing kf table for hadrons.
Beam_Spectra_Handler: type = Collider Setup
    for P+ (on = 0, p = (3500,0,0,3500))
    and P+ (on = 0, p = (3500,0,0,-3500)).
ISR handling:
    PDFs for hard scattering:              PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
    PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
Remnant_Handlers:
    hard process: P+: Hadron + P+: Hadron
Standard_Model::FixEWParameters() {
  Input scheme: Gmu
                Gmu scheme, input: GF, m_W, m_Z, m_h, widths
  Ren. scheme:  Gmu
                
  Parameters:   sin^2(\theta_W) = 0.223043 - 0.00110541 i
                vev             = 246.218
}
Running_AlphaQED::PrintSummary() {
  Setting \alpha according to EW scheme
  1/\alpha(0)   = 137.036
  1/\alpha(def) = 132.119
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
List of Particle Data 
     IDName     kfc            Mass           Width   Stable  Massive   Active          Yukawa
          d       1            0.01               0        1        0        1               0
          u       2           0.005               0        1        0        1               0
          s       3             0.2               0        1        0        1               0
          c       4            1.42               0        1        0        1               0
          b       5            4.92               0        1        0        1               0
          t       6           172.5            1.32        0        1        1           172.5
         e-      11        0.000511               0        1        0        1               0
         ve      12               0               0        1        0        1               0
        mu-      13           0.105               0        1        0        1               0
        vmu      14               0               0        1        0        1               0
       tau-      15           1.777     2.26735e-12        0        0        1               0
       vtau      16               0               0        1        0        1               0
          G      21               0               0        1        0        1               0
          P      22               0               0        1        0        1               0
          Z      23         91.1876          2.4952        0        1        1         91.1876
         W+      24          80.379           2.085        0        1        1          80.379
         h0      25          125.09          0.0041        0        1        1          125.09
  Instanton     999               0               0        0        0        1               0
List of Particle Containers 
     IDName     kfc     Constituents
          l      90     {e-,e+,mu-,mu+,tau-,tau+}
          v      91     {ve,veb,vmu,vmub,vtau,vtaub}
          f      92     {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub}
          j      93     {d,db,u,ub,s,sb,c,cb,b,bb,G}
          Q      94     {d,db,u,ub,s,sb,c,cb,b,bb}
        ewj      98     {d,db,u,ub,s,sb,c,cb,b,bb,G,P}
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Shower_Handler initialised.

+-----------------------------------------+
|   X   X   X XXXX  XXX  XXX  XXX         |
|  X X  XX XX X    X      X  X     X   X  |
| X   X X X X XXX  X XXX  X  X    XXX XXX |
| XXXXX X   X X    X   X  X  X     X   X  |
| X   X X   X XXXX  XXX  XXX  XXX         |
+-----------------------------------------+
| please cite: JHEP 0202:044,2002         |
+-----------------------------------------+
Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none)
+----------------------------------+
|                                  |
|      CCC  OOO  M   M I X   X     |
|     C    O   O MM MM I  X X      |
|     C    O   O M M M I   X       |
|     C    O   O M   M I  X X      |
|      CCC  OOO  M   M I X   X     |
|                                  |
+==================================+
|  Color dressed  Matrix Elements  |
|     http://comix.freacafe.de     |
|   please cite  JHEP12(2008)039   |
+----------------------------------+
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none)
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none)
Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks.
Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ).
Initialized the Matrix_Element_Handler for the hard processes.
Initialized the Beam_Remnant_Handler.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none)
MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1)
Underlying event/multiple interactions handler:
    MI[2]: on = 1 (type = 1, Amisic)
Soft-collision handlers:
    Type[2]: None
Hadron_Init::Init(): Initializing kf table for hadrons.
Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface")
Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings")
Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!")
Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values")
Initialized the Fragmentation_Handler.
Initialized the Hadron_Decay_Handler, Decay model = HADRONS++
Initialized the Soft_Photon_Handler.
Initialized the Reweighting.
ISR_Channels::CheckForStructuresFromME for 0: (none)
Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j
Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix)
2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 %
  reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) 
----------------------------------------------------------
-- SHERPA generates events with the following structure --
----------------------------------------------------------
Event generation   : Weighted
Perturbative       : Signal_Processes
Perturbative       : Minimum_Bias: None
Perturbative       : Hard_Decays
Perturbative       : Jet_Evolution:CFP
Perturbative       : Lepton_FS_QED_Corrections:None
Perturbative       : Multiple_Interactions: Amisic
Hadronization      : Beam_Remnants:Parametrised
Hadronization      : Hadronization:Pythia8
Hadronization      : Hadron_Decays
Userhook           : 
Analysis           : Rivet
---------------------------------------------------------
#--------------------------------------------------------------------------
#                     FastJet release 3.3.2 [fjcore]
#                 M. Cacciari, G.P. Salam and G. Soyez                  
#     A software package for jet finding and analysis at colliders      
#                           http://fastjet.fr                           
#	                                                                      
# Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package
# for scientific work and optionally PLB641(2006)57 [hep-ph/0512210].   
#                                                                       
# FastJet is provided without warranty under the terms of the GNU GPLv2.
# It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code
# and 3rd party plugin jet algorithms. See COPYING file for details.
#--------------------------------------------------------------------------
  Event 1 ( 5s elapsed / 16d 23h 38m 14s left ) -> ETA: Sun Mar 24 21:02  XS = 7.28493e+07 pb +- ( 7.28493e+07 pb = 100 % )  
  Event 2 ( 5s elapsed / 8d 13h 54m 4s left ) -> ETA: Sat Mar 16 11:18  XS = 5.46215e+07 pb +- ( 1.82278e+07 pb = 33 % )  
  Event 3 ( 5s elapsed / 5d 17h 43m 47s left ) -> ETA: Wed Mar 13 15:07  XS = 1.56061e+07 pb +- ( 1.08306e+07 pb = 69 % )  
  Event 4 ( 6s elapsed / 4d 8h 20m 18s left ) -> ETA: Tue Mar 12 05:44  XS = 1.2339e+07 pb +- ( 8.55093e+06 pb = 69 % )  
  Event 5 ( 6s elapsed / 3d 11h 44m 53s left ) -> ETA: Mon Mar 11 09:08  XS = 8.39894e+08 pb +- ( 8.28818e+08 pb = 98 % )  
  Event 6 ( 6s elapsed / 2d 22h 29m 3s left ) -> ETA: Sun Mar 10 19:53  XS = 7.78497e+08 pb +- ( 7.59091e+08 pb = 97 % )  
  Event 7 ( 6s elapsed / 2d 13h 36s left ) -> ETA: Sun Mar 10 10:24  XS = 7.18698e+08 pb +- ( 7.00818e+08 pb = 97 % )  
  Event 8 ( 6s elapsed / 2d 5h 43m 51s left ) -> ETA: Sun Mar 10 03:07  XS = 6.22894e+08 pb +- ( 6.07547e+08 pb = 97 % )  
  Event 9 ( 6s elapsed / 2d 4m 9s left ) -> ETA: Sat Mar 09 21:28  XS = 5.83963e+08 pb +- ( 5.6964e+08 pb = 97 % )  
  Event 10 ( 6s elapsed / 1d 19h 36m 33s left ) -> ETA: Sat Mar 09 17:00  XS = 8.72907e+08 pb +- ( 5.93837e+08 pb = 68 % )  
Pythia8 hadronisation failed.

  Event 20 ( 7s elapsed / 1d 24m 27s left ) -> ETA: Fri Mar 08 21:48  XS = 1.6595e+09 pb +- ( 1.15895e+09 pb = 69 % )  
  Event 30 ( 7s elapsed / 17h 27m 5s left ) -> ETA: Fri Mar 08 14:51  XS = 1.24081e+09 pb +- ( 6.99107e+08 pb = 56 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 u                     5 (     ->    2) [( 1.8242e+03,-0.0000e+00,-0.0000e+00, 1.8242e+03), p^2= 0.0000e+00, m= 3.0000e-01] (620,  0) 0
[I] 1 G                    52 (     ->    4) [( 1.3167e+03,-0.0000e+00,-0.0000e+00, 1.3167e+03), p^2= 0.0000e+00, m= 0.0000e+00] (648,620) 0
 and Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 3.4974e+03,-0.0000e+00,-0.0000e+00,-3.4974e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 1
[I] 1 s                    53 (     ->    4) [( 1.2261e+00,-0.0000e+00,-0.0000e+00,-1.2261e+00), p^2= 0.0000e+00, m= 4.0000e-01] (602,  0) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 ud_0                 62 (     ->     ) [( 3.5906e+02, 0.0000e+00, 0.0000e+00, 3.5906e+02), p^2= 9.0316e-02, m= 5.7933e-01] (  0,648) 0
 and Particle List with 3 elements
[B] 1 ud_0                 64 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,604) 1
[B] 1 sb                   59 (     ->     ) [( 1.0777e+00, 0.0000e+00, 0.0000e+00,-1.0776e+00), p^2= 2.1137e-04, m= 0.0000e+00] (  0,650) 1
[B] 1 u                    63 (     ->     ) [( 3.0429e-01, 0.0000e+00, 0.0000e+00,-3.0426e-01), p^2= 1.6852e-05, m= 0.0000e+00] (650,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 40 ( 8s elapsed / 14h 8m 49s left ) -> ETA: Fri Mar 08 11:32  XS = 9.18927e+08 pb +- ( 4.62013e+08 pb = 50 % )  
  Event 50 ( 8s elapsed / 12h 7m 21s left ) -> ETA: Fri Mar 08 09:31  XS = 1.87081e+09 pb +- ( 1.06205e+09 pb = 56 % )  
  Event 60 ( 9s elapsed / 10h 41m 30s left ) -> ETA: Fri Mar 08 08:05  XS = 1.8674e+09 pb +- ( 9.33322e+08 pb = 49 % )  
  Event 70 ( 10s elapsed / 9h 57m 27s left ) -> ETA: Fri Mar 08 07:21  XS = 2.65748e+09 pb +- ( 1.11371e+09 pb = 41 % )  
  Event 80 ( 10s elapsed / 9h 3m 3s left ) -> ETA: Fri Mar 08 06:27  XS = 3.24621e+09 pb +- ( 1.18778e+09 pb = 36 % )  
  Event 90 ( 11s elapsed / 8h 33m 42s left ) -> ETA: Fri Mar 08 05:57  XS = 5.02674e+09 pb +- ( 1.82248e+09 pb = 36 % )  
  Event 100 ( 11s elapsed / 8h 16m 28s left ) -> ETA: Fri Mar 08 05:40  XS = 4.93786e+09 pb +- ( 1.66637e+09 pb = 33 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements
[I] 1 d                     6 (     ->    2) [( 4.2093e+02,-0.0000e+00,-0.0000e+00, 4.2093e+02), p^2= 0.0000e+00, m= 3.0000e-01] (619,  0) 0
[I] 1 G                    43 (     ->    4) [( 5.0227e+02,-0.0000e+00,-0.0000e+00, 5.0227e+02), p^2= 0.0000e+00, m= 0.0000e+00] (640,619) 0
[I] 1 u                    55 (     ->    6) [( 3.7110e+02,-0.0000e+00,-0.0000e+00, 3.7110e+02), p^2= 0.0000e+00, m= 3.0000e-01] (659,  0) 0
[I] 1 db                   66 (     ->    8) [( 4.0904e+01,-0.0000e+00,-0.0000e+00, 4.0904e+01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,640) 0
[I] 1 G                    78 (     ->   10) [( 2.0907e+02,-0.0000e+00,-0.0000e+00, 2.0907e+02), p^2= 0.0000e+00, m= 0.0000e+00] (660,659) 0
 and Particle List with 5 elements
[I] 1 G                     5 (     ->    2) [( 3.4908e+03,-0.0000e+00,-0.0000e+00,-3.4908e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1
[I] 1 db                   44 (     ->    4) [( 5.5954e+00,-0.0000e+00,-0.0000e+00,-5.5954e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,637) 1
[I] 1 G                    56 (     ->    6) [( 7.0260e-01,-0.0000e+00,-0.0000e+00,-7.0260e-01), p^2= 0.0000e+00, m= 0.0000e+00] (637,650) 1
[I] 1 G                    67 (     ->    8) [( 1.0484e+00,-0.0000e+00,-0.0000e+00,-1.0484e+00), p^2= 0.0000e+00, m= 0.0000e+00] (658,603) 1
[I] 1 G                    79 (     ->   10) [( 3.5175e-01,-0.0000e+00,-0.0000e+00,-3.5175e-01), p^2= 0.0000e+00, m= 0.0000e+00] (650,664) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 ud_0                 86 (     ->     ) [( 1.9557e+03, 0.0000e+00, 0.0000e+00, 1.9557e+03), p^2= 4.9192e-01, m= 5.7933e-01] (  0,660) 0
 and Particle List with 3 elements
[B] 1 ud_0                 89 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,658) 1
[B] 1 d                    50 (     ->     ) [( 6.6342e-01, 0.0000e+00, 0.0000e+00,-6.6337e-01), p^2= 7.3508e-05, m= 0.0000e+00] (601,  0) 1
[B] 1 u                    88 (     ->     ) [( 8.4253e-01, 0.0000e+00, 0.0000e+00,-8.4246e-01), p^2= 1.1856e-04, m= 0.0000e+00] (664,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 200 ( 17s elapsed / 6h 14m 4s left ) -> ETA: Fri Mar 08 03:38  XS = 6.86797e+09 pb +- ( 2.70797e+09 pb = 39 % )  
  Event 300 ( 24s elapsed / 5h 40m 58s left ) -> ETA: Fri Mar 08 03:05  XS = 5.37464e+09 pb +- ( 1.84207e+09 pb = 34 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 G                     6 (     ->    2) [( 1.1805e+03,-0.0000e+00,-0.0000e+00, 1.1805e+03), p^2= 0.0000e+00, m= 0.0000e+00] (616,621) 0
[I] 1 u                    41 (     ->    4) [( 6.0533e+02,-0.0000e+00,-0.0000e+00, 6.0533e+02), p^2= 0.0000e+00, m= 3.0000e-01] (621,  0) 0
[I] 1 G                    56 (     ->    6) [( 4.3957e+01,-0.0000e+00,-0.0000e+00, 4.3957e+01), p^2= 0.0000e+00, m= 0.0000e+00] (646,616) 0
 and Particle List with 3 elements
[I] 1 G                     5 (     ->    2) [( 3.4961e+03,-0.0000e+00,-0.0000e+00,-3.4961e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 G                    42 (     ->    4) [( 1.0119e+00,-0.0000e+00,-0.0000e+00,-1.0119e+00), p^2= 0.0000e+00, m= 0.0000e+00] (603,640) 1
[I] 1 ub                   57 (     ->    6) [( 1.2827e+00,-0.0000e+00,-0.0000e+00,-1.2827e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,601) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 ud_0                 66 (     ->     ) [( 1.6702e+03, 0.0000e+00, 0.0000e+00, 1.6702e+03), p^2= 4.2010e-01, m= 5.7933e-01] (  0,646) 0
 and Particle List with 3 elements
[B] 1 ud_0                 68 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,650) 1
[B] 1 u                    63 (     ->     ) [( 1.0723e+00, 0.0000e+00, 0.0000e+00,-1.0722e+00), p^2= 1.8489e-04, m= 0.0000e+00] (650,  0) 1
[B] 1 u                    67 (     ->     ) [( 4.9194e-01, 0.0000e+00, 0.0000e+00,-4.9190e-01), p^2= 3.8912e-05, m= 0.0000e+00] (640,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 400 ( 30s elapsed / 5h 14m 36s left ) -> ETA: Fri Mar 08 02:38  XS = 4.87534e+09 pb +- ( 1.48747e+09 pb = 30 % )  
  Event 500 ( 36s elapsed / 5h 4m 53s left ) -> ETA: Fri Mar 08 02:29  XS = 4.32972e+09 pb +- ( 1.17382e+09 pb = 27 % )  
  Event 600 ( 42s elapsed / 4h 55m 32s left ) -> ETA: Fri Mar 08 02:20  XS = 4.28571e+09 pb +- ( 9.98987e+08 pb = 23 % )  
  Event 700 ( 48s elapsed / 4h 47m 45s left ) -> ETA: Fri Mar 08 02:12  XS = 4.66187e+09 pb +- ( 9.08588e+08 pb = 19 % )  
  Event 800 ( 54s elapsed / 4h 42m 34s left ) -> ETA: Fri Mar 08 02:07  XS = 4.6295e+09 pb +- ( 8.04127e+08 pb = 17 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 u                     6 (     ->    2) [( 1.3672e+03,-0.0000e+00,-0.0000e+00, 1.3672e+03), p^2= 0.0000e+00, m= 3.0000e-01] (618,  0) 0
[I] 1 u                    41 (     ->    4) [( 7.0697e+01, 0.0000e+00, 0.0000e+00, 7.0697e+01), p^2= 0.0000e+00, m= 3.0000e-01] (639,  0) 0
[I] 1 G                    50 (     ->    6) [( 1.5893e+02,-0.0000e+00,-0.0000e+00, 1.5893e+02), p^2= 0.0000e+00, m= 0.0000e+00] (645,639) 0
 and Particle List with 3 elements
[I] 1 G                     5 (     ->    2) [( 3.4925e+03,-0.0000e+00,-0.0000e+00,-3.4925e+03), p^2= 0.0000e+00, m= 0.0000e+00] (608,610) 1
[I] 1 d                    42 (     ->    4) [( 8.6989e-01, 0.0000e+00, 0.0000e+00,-8.6989e-01), p^2= 0.0000e+00, m= 3.0000e-01] (610,  0) 1
[I] 1 u                    51 (     ->    6) [( 5.5603e+00,-0.0000e+00,-0.0000e+00,-5.5603e+00), p^2= 0.0000e+00, m= 3.0000e-01] (643,  0) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 62 (     ->     ) [( 1.6945e+03, 0.0000e+00, 0.0000e+00, 1.6945e+03), p^2= 3.7948e-01, m= 5.7933e-01] (  0,645) 0
[B] 1 ub                   45 (     ->     ) [( 2.0865e+02, 0.0000e+00, 0.0000e+00, 2.0865e+02), p^2= 5.7539e-03, m= 0.0000e+00] (  0,618) 0
 and Particle List with 2 elements
[B] 1 uu_1                 63 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,643) 1
[B] 1 ub                   59 (     ->     ) [( 1.1139e+00, 0.0000e+00, 0.0000e+00,-1.1138e+00), p^2= 2.8016e-04, m= 0.0000e+00] (  0,608) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 900 ( 59s elapsed / 4h 36m 38s left ) -> ETA: Fri Mar 08 02:01  
    Memory usage increased by 18 MB, now 146 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.41014e+09 pb +- ( 7.23716e+08 pb = 16 % )  
  Event 1000 ( 1m 5s elapsed / 4h 32m 24s left ) -> ETA: Fri Mar 08 01:57  XS = 4.59673e+09 pb +- ( 7.706e+08 pb = 16 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements
[I] 1 u                     5 (     ->    2) [( 2.3645e+03,-0.0000e+00,-0.0000e+00, 2.3645e+03), p^2= 0.0000e+00, m= 3.0000e-01] (619,  0) 0
[I] 1 G                    31 (     ->    4) [( 6.2234e+01,-0.0000e+00,-0.0000e+00, 6.2234e+01), p^2= 0.0000e+00, m= 0.0000e+00] (633,619) 0
[I] 1 G                    46 (     ->    6) [( 3.8939e+01,-0.0000e+00,-0.0000e+00, 3.8939e+01), p^2= 0.0000e+00, m= 0.0000e+00] (650,633) 0
[I] 1 u                    68 (     ->    8) [( 9.0195e-01,-0.0000e+00,-0.0000e+00, 9.0195e-01), p^2= 0.0000e+00, m= 3.0000e-01] (653,  0) 0
[I] 1 G                    82 (     ->   10) [( 8.1254e+02,-0.0000e+00,-0.0000e+00, 8.1254e+02), p^2= 0.0000e+00, m= 0.0000e+00] (670,653) 0
[I] 1 u                   103 (     ->   12) [( 2.8469e+00,-0.0000e+00,-0.0000e+00, 2.8469e+00), p^2= 0.0000e+00, m= 3.0000e-01] (683,  0) 0
[I] 1 s                   121 (     ->   14) [( 2.1627e+02,-0.0000e+00,-0.0000e+00, 2.1627e+02), p^2= 0.0000e+00, m= 4.0000e-01] (692,  0) 0
 and Particle List with 7 elements
[I] 1 db                    6 (     ->    2) [( 5.9012e+02,-0.0000e+00,-0.0000e+00,-5.9012e+02), p^2= 0.0000e+00, m= 3.0000e-01] (  0,622) 1
[I] 1 u                    32 (     ->    4) [( 5.7525e+02,-0.0000e+00,-0.0000e+00,-5.7525e+02), p^2= 0.0000e+00, m= 3.0000e-01] (622,  0) 1
[I] 1 G                    47 (     ->    6) [( 1.2557e+03,-0.0000e+00,-0.0000e+00,-1.2557e+03), p^2= 0.0000e+00, m= 0.0000e+00] (641,628) 1
[I] 1 G                    69 (     ->    8) [( 1.1633e+02,-0.0000e+00,-0.0000e+00,-1.1633e+02), p^2= 0.0000e+00, m= 0.0000e+00] (655,641) 1
[I] 1 G                    83 (     ->   10) [( 1.8948e+02,-0.0000e+00,-0.0000e+00,-1.8948e+02), p^2= 0.0000e+00, m= 0.0000e+00] (677,655) 1
[I] 1 G                   104 (     ->   12) [( 7.0447e+01,-0.0000e+00,-0.0000e+00,-7.0447e+01), p^2= 0.0000e+00, m= 0.0000e+00] (679,677) 1
[I] 1 u                   122 (     ->   14) [( 3.5599e+02,-0.0000e+00,-0.0000e+00,-3.5599e+02), p^2= 0.0000e+00, m= 3.0000e-01] (694,  0) 1
 and the corresponding remnants are Particle List with 4 elements
[B] 1 ud_0                135 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,692) 0
[B] 1 sb                  131 (     ->     ) [( 4.1717e-01, 0.0000e+00, 0.0000e+00, 4.1714e-01), p^2= 2.5397e-05, m= 0.0000e+00] (  0,683) 0
[B] 1 ub                  116 (     ->     ) [( 3.0328e-01, 0.0000e+00, 0.0000e+00, 3.0325e-01), p^2= 1.3422e-05, m= 0.0000e+00] (  0,670) 0
[B] 1 ub                   77 (     ->     ) [( 1.0031e+00, 0.0000e+00, 0.0000e+00, 1.0030e+00), p^2= 1.4684e-04, m= 0.0000e+00] (  0,650) 0
 and Particle List with 3 elements
[B] 1 ud_0                136 (     ->     ) [( 2.1118e+02, 0.0000e+00, 0.0000e+00,-2.1118e+02), p^2= 3.2353e-02, m= 5.7933e-01] (  0,694) 1
[B] 1 ub                  132 (     ->     ) [( 3.2245e-01, 0.0000e+00, 0.0000e+00,-3.2245e-01), p^2= 7.5427e-08, m= 0.0000e+00] (  0,679) 1
[B] 1 d                    26 (     ->     ) [( 1.3522e+02, 0.0000e+00, 0.0000e+00,-1.3522e+02), p^2= 1.3264e-02, m= 0.0000e+00] (628,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 2000 ( 2m 5s elapsed / 4h 18m 42s left ) -> ETA: Fri Mar 08 01:44  XS = 4.94633e+09 pb +- ( 4.97339e+08 pb = 10 % )  
  Event 3000 ( 3m 9s elapsed / 4h 20m 25s left ) -> ETA: Fri Mar 08 01:47  XS = 4.99981e+09 pb +- ( 4.29591e+08 pb = 8 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 4000 ( 4m 13s elapsed / 4h 19m 26s left ) -> ETA: Fri Mar 08 01:47  XS = 4.81364e+09 pb +- ( 3.47769e+08 pb = 7 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 5000 ( 5m 14s elapsed / 4h 16m 40s left ) -> ETA: Fri Mar 08 01:45  XS = 4.92669e+09 pb +- ( 3.33918e+08 pb = 6 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 6000 ( 6m 15s elapsed / 4h 14m 17s left ) -> ETA: Fri Mar 08 01:44  XS = 4.88285e+09 pb +- ( 2.95274e+08 pb = 6 % )  
  Event 7000 ( 7m 17s elapsed / 4h 13m 5s left ) -> ETA: Fri Mar 08 01:44  XS = 4.92237e+09 pb +- ( 2.68617e+08 pb = 5 % )  
  Event 8000 ( 8m 17s elapsed / 4h 11m 3s left ) -> ETA: Fri Mar 08 01:43  XS = 4.89283e+09 pb +- ( 2.4507e+08 pb = 5 % )  
  Event 9000 ( 9m 21s elapsed / 4h 10m 25s left ) -> ETA: Fri Mar 08 01:43  XS = 4.88963e+09 pb +- ( 2.34762e+08 pb = 4 % )  
  Event 10000 ( 10m 25s elapsed / 4h 10m 9s left ) -> ETA: Fri Mar 08 01:44  XS = 4.90175e+09 pb +- ( 2.19944e+08 pb = 4 % )  
Pythia8 hadronisation failed.

Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 20000 ( 19m 24s elapsed / 3h 43m 17s left ) -> ETA: Fri Mar 08 01:26  XS = 4.93513e+09 pb +- ( 1.55707e+08 pb = 3 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 30000 ( 28m 31s elapsed / 3h 29m 14s left ) -> ETA: Fri Mar 08 01:21  
    Memory usage increased by 53 MB, now 199 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 5.0232e+09 pb +- ( 1.2708e+08 pb = 2 % )  
  Event 40000 ( 38m 2s elapsed / 3h 19m 42s left ) -> ETA: Fri Mar 08 01:21  XS = 4.98858e+09 pb +- ( 1.12068e+08 pb = 2 % )  
  Event 50000 ( 47m 33s elapsed / 3h 10m 13s left ) -> ETA: Fri Mar 08 01:21  XS = 4.96805e+09 pb +- ( 1.00743e+08 pb = 2 % )  
  Event 60000 ( 57m 7s elapsed / 3h 54s left ) -> ETA: Fri Mar 08 01:21  XS = 4.93364e+09 pb +- ( 9.03104e+07 pb = 1 % )  
  Event 70000 ( 1h 6m 41s elapsed / 2h 51m 30s left ) -> ETA: Fri Mar 08 01:22  XS = 4.88401e+09 pb +- ( 8.38543e+07 pb = 1 % )  
  Event 80000 ( 1h 15m 52s elapsed / 2h 41m 13s left ) -> ETA: Fri Mar 08 01:20  XS = 4.88462e+09 pb +- ( 7.75695e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 90000 ( 1h 24m 56s elapsed / 2h 31m left ) -> ETA: Fri Mar 08 01:19  XS = 4.86708e+09 pb +- ( 7.28504e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 100000 ( 1h 34m 3s elapsed / 2h 21m 5s left ) -> ETA: Fri Mar 08 01:19  XS = 4.85746e+09 pb +- ( 6.8394e+07 pb = 1 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 200000 ( 3h 6m elapsed / 46m 30s left ) -> ETA: Fri Mar 08 01:16  XS = 4.79613e+09 pb +- ( 4.64631e+07 pb = 0 % )  
  Event 250000 ( 13932 s total ) = 1.55035e+06 evts/day                    
In Event_Handler::Finish : Summarizing the run may take some time.
Rivet_Interface::Finish(Analysis_Alaric_Final_noWeight/1380){
}
--------------------------------------------------------------------------
Nominal or variation name     XS [pb]      RelDev  AbsErr [pb]      RelErr
--------------------------------------------------------------------------
Nominal                   4.79151e+09         0 %  4.14404e+07      0.86 %
--------------------------------------------------------------------------
Return_Value::PrintStatistics(): Statistics {
  Generated events: 250000
  Errors {
    From "Hadronization:Pythia8": 11 (250011) -> 0 %
  }
  New events {
    From "Beam_Remnants:Parametrised": 846 (250857) -> 0.3 %
  }
}
Blob_List: Momentum Fail Statistics {
}
Decay_Channel: Kinematics max fail statistics {
}
WARNING: You are using an unsupported development branch.
Remnant handling yields 846 fails in creating good beam breakups.
Remnant Kinematics: 846 errors (no kinematics found) and
                    135 warnings (scale kt down by factor of 10).
WARNING: Some settings that have been defined in the input
files and/or the command line have not been used. For more
details, see the Settings Report.
Time: 3h 52m 16s on Fri Mar  8 01:16:05 2024
 (User: 3h 51m 54s, System: 11s, Children User: 0s, Children System: 0s)
Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway.
The local time is Mon Apr  8 13:58:02 2024.
Run_Parameter::Init(): Setting memory limit to 503.276 GB.
Random::SetSeed(): Seed set to 1380
Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded.
-----------------------------------------------------------------------------
-----------    Event generation run with SHERPA started .......   -----------
-----------------------------------------------------------------------------
................................................ |       +                   
................................................ ||  |       +  +            
...................................        ....  | |         /   +           
................. ................   _,_ |  ....  ||         +|  +  +        
...............................  __.'  ,\|  ...  ||    /    +|          +    
.............................. (  \    \   ...  | |  |   + + \         +   
.............................  (    \   -/  .... ||       +    |          +  
........ ...................  <S   /()))))~~~~~~~~##     +     /\    +       
............................ (!H   (~~)))))~~~~~~#/     +  +    |  +         
................ ........... (!E   (~~~)))))     /|/    +         +          
............................ (!R   (~~~)))))   |||   + +            +        
..... ...................... (!P    (~~~~)))   /|  + +          +            
............................ (!A>    (~~~~~~~~~##        + +        +        
............................. ~~(!    '~~~~~~~ \       +     + +      +      
...............................  `~~~QQQQQDb //   |         + + +        +   
........................ ..........   IDDDDP||     \  + + + + +             +
....................................  IDDDI||       \                      + 
.................................... IHD HD||         \ + +  + + + + +      +
...................................  IHD ##|            :-) + +\          +  
......... ............... ......... IHI ## /      /   +  + + + +\       +    
................................... IHI/ /       /      + + + +        +     
................................... ## | | /    / + +      + + /      +      
....................... /TT\ .....  ##/ ///  / + + + + + + +/       +        
......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/   \         +   
....................../TTT/TTTT\...|TT/T\\\/   +    ++  + /              
-----------------------------------------------------------------------------

     SHERPA version 3.0.0beta1 (Dhaulagiri)
                                                                             
     Authors:        Enrico Bothmann, Stefan Hoeche, Frank Krauss,           
                     Silvan Kuttimalai, Marek Schoenherr, Holger Schulz,     
                     Steffen Schumann, Frank Siegert, Korinna Zapp           
     Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth,           
                     Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke,         
                     Jan Winter                                              
                                                                             
     This program uses a lot of genuine and original research work           
     by other people. Users are encouraged to refer to                       
     the various original publications.                                      
                                                                             
     Users are kindly asked to refer to the documentation                    
     published under JHEP 02(2009)007                                        
                                                                             
     Please visit also our homepage                                          
                                                                             
       http://sherpa.hepforge.org                                            
                                                                             
     for news, bugreports, updates and new releases.                         
                                                                             
-----------------------------------------------------------------------------
WARNING: You are using an unsupported development branch.
Git branch unknownurl, revision unknownrevision.
Hadron_Init::Init(): Initializing kf table for hadrons.
Beam_Spectra_Handler: type = Collider Setup
    for P+ (on = 0, p = (3500,0,0,3500))
    and P+ (on = 0, p = (3500,0,0,-3500)).
ISR handling:
    PDFs for hard scattering:              PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
    PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
Remnant_Handlers:
    hard process: P+: Hadron + P+: Hadron
Standard_Model::FixEWParameters() {
  Input scheme: Gmu
                Gmu scheme, input: GF, m_W, m_Z, m_h, widths
  Ren. scheme:  Gmu
                
  Parameters:   sin^2(\theta_W) = 0.223043 - 0.00110541 i
                vev             = 246.218
}
Running_AlphaQED::PrintSummary() {
  Setting \alpha according to EW scheme
  1/\alpha(0)   = 137.036
  1/\alpha(def) = 132.119
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
List of Particle Data 
     IDName     kfc            Mass           Width   Stable  Massive   Active          Yukawa
          d       1            0.01               0        1        0        1               0
          u       2           0.005               0        1        0        1               0
          s       3             0.2               0        1        0        1               0
          c       4            1.42               0        1        0        1               0
          b       5            4.92               0        1        0        1               0
          t       6           172.5            1.32        0        1        1           172.5
         e-      11        0.000511               0        1        0        1               0
         ve      12               0               0        1        0        1               0
        mu-      13           0.105               0        1        0        1               0
        vmu      14               0               0        1        0        1               0
       tau-      15           1.777     2.26735e-12        0        0        1               0
       vtau      16               0               0        1        0        1               0
          G      21               0               0        1        0        1               0
          P      22               0               0        1        0        1               0
          Z      23         91.1876          2.4952        0        1        1         91.1876
         W+      24          80.379           2.085        0        1        1          80.379
         h0      25          125.09          0.0041        0        1        1          125.09
  Instanton     999               0               0        0        0        1               0
List of Particle Containers 
     IDName     kfc     Constituents
          l      90     {e-,e+,mu-,mu+,tau-,tau+}
          v      91     {ve,veb,vmu,vmub,vtau,vtaub}
          f      92     {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub}
          j      93     {d,db,u,ub,s,sb,c,cb,b,bb,G}
          Q      94     {d,db,u,ub,s,sb,c,cb,b,bb}
        ewj      98     {d,db,u,ub,s,sb,c,cb,b,bb,G,P}
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Shower_Handler initialised.

+-----------------------------------------+
|   X   X   X XXXX  XXX  XXX  XXX         |
|  X X  XX XX X    X      X  X     X   X  |
| X   X X X X XXX  X XXX  X  X    XXX XXX |
| XXXXX X   X X    X   X  X  X     X   X  |
| X   X X   X XXXX  XXX  XXX  XXX         |
+-----------------------------------------+
| please cite: JHEP 0202:044,2002         |
+-----------------------------------------+
Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none)
+----------------------------------+
|                                  |
|      CCC  OOO  M   M I X   X     |
|     C    O   O MM MM I  X X      |
|     C    O   O M M M I   X       |
|     C    O   O M   M I  X X      |
|      CCC  OOO  M   M I X   X     |
|                                  |
+==================================+
|  Color dressed  Matrix Elements  |
|     http://comix.freacafe.de     |
|   please cite  JHEP12(2008)039   |
+----------------------------------+
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none)
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none)
Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks.
Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ).
Initialized the Matrix_Element_Handler for the hard processes.
Initialized the Beam_Remnant_Handler.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none)
MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1)
Underlying event/multiple interactions handler:
    MI[2]: on = 1 (type = 1, Amisic)
Soft-collision handlers:
    Type[2]: None
Hadron_Init::Init(): Initializing kf table for hadrons.
Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface")
Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings")
Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!")
Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values")
Initialized the Fragmentation_Handler.
Initialized the Hadron_Decay_Handler, Decay model = HADRONS++
Initialized the Soft_Photon_Handler.
Initialized the Reweighting.
ISR_Channels::CheckForStructuresFromME for 0: (none)
Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j
Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix)
2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 %
  reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) 
----------------------------------------------------------
-- SHERPA generates events with the following structure --
----------------------------------------------------------
Event generation   : Weighted
Perturbative       : Signal_Processes
Perturbative       : Minimum_Bias: None
Perturbative       : Hard_Decays
Perturbative       : Jet_Evolution:CFP
Perturbative       : Lepton_FS_QED_Corrections:None
Perturbative       : Multiple_Interactions: Amisic
Hadronization      : Beam_Remnants:Parametrised
Hadronization      : Hadronization:Pythia8
Hadronization      : Hadron_Decays
Userhook           : 
Analysis           : Rivet
---------------------------------------------------------
#--------------------------------------------------------------------------
#                     FastJet release 3.3.2 [fjcore]
#                 M. Cacciari, G.P. Salam and G. Soyez                  
#     A software package for jet finding and analysis at colliders      
#                           http://fastjet.fr                           
#	                                                                      
# Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package
# for scientific work and optionally PLB641(2006)57 [hep-ph/0512210].   
#                                                                       
# FastJet is provided without warranty under the terms of the GNU GPLv2.
# It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code
# and 3rd party plugin jet algorithms. See COPYING file for details.
#--------------------------------------------------------------------------
  Event 1 ( 3s elapsed / 1d 59m 56s left ) -> ETA: Tue Apr 09 14:58  XS = 7.28493e+07 pb +- ( 7.28493e+07 pb = 100 % )  
  Event 2 ( 3s elapsed / 12h 42m 26s left ) -> ETA: Tue Apr 09 02:40  XS = 5.46215e+07 pb +- ( 1.82278e+07 pb = 33 % )  
  Event 3 ( 3s elapsed / 8h 32m 26s left ) -> ETA: Mon Apr 08 22:30  XS = 1.56061e+07 pb +- ( 1.08306e+07 pb = 69 % )  
  Event 4 ( 3s elapsed / 6h 30m 33s left ) -> ETA: Mon Apr 08 20:28  XS = 1.2339e+07 pb +- ( 8.55093e+06 pb = 69 % )  
  Event 5 ( 3s elapsed / 5h 15m 46s left ) -> ETA: Mon Apr 08 19:13  XS = 1.39723e+07 pb +- ( 7.82063e+06 pb = 55 % )  
  Event 6 ( 3s elapsed / 4h 26m 36s left ) -> ETA: Mon Apr 08 18:24  XS = 3.03199e+07 pb +- ( 1.78125e+07 pb = 58 % )  
  Event 7 ( 3s elapsed / 3h 50m 17s left ) -> ETA: Mon Apr 08 17:48  XS = 2.77932e+07 pb +- ( 1.64556e+07 pb = 59 % )  
  Event 8 ( 3s elapsed / 3h 25m 8s left ) -> ETA: Mon Apr 08 17:23  XS = 7.14299e+08 pb +- ( 6.92177e+08 pb = 96 % )  
  Event 9 ( 4s elapsed / 3h 6m 30s left ) -> ETA: Mon Apr 08 17:04  XS = 6.72281e+08 pb +- ( 6.51544e+08 pb = 96 % )  
  Event 10 ( 4s elapsed / 2h 48m 40s left ) -> ETA: Mon Apr 08 16:46  XS = 1.43752e+10 pb +- ( 1.37526e+10 pb = 95 % )  
  Event 20 ( 4s elapsed / 1h 39m 30s left ) -> ETA: Mon Apr 08 15:37  XS = 1.07392e+10 pb +- ( 7.52436e+09 pb = 70 % )  
  Event 30 ( 5s elapsed / 1h 14m 29s left ) -> ETA: Mon Apr 08 15:12  XS = 6.05774e+09 pb +- ( 3.94106e+09 pb = 65 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements
[I] 1 u                     6 (     ->    2) [( 1.4432e+03,-0.0000e+00,-0.0000e+00, 1.4432e+03), p^2= 0.0000e+00, m= 3.0000e-01] (637,  0) 0
[I] 1 G                    51 (     ->    4) [( 2.0452e+02,-0.0000e+00,-0.0000e+00, 2.0452e+02), p^2= 0.0000e+00, m= 0.0000e+00] (643,637) 0
[I] 1 u                    71 (     ->    6) [( 6.1817e+02,-0.0000e+00,-0.0000e+00, 6.1817e+02), p^2= 0.0000e+00, m= 3.0000e-01] (657,  0) 0
[I] 1 u                    92 (     ->    8) [( 4.1071e+02,-0.0000e+00,-0.0000e+00, 4.1071e+02), p^2= 0.0000e+00, m= 3.0000e-01] (667,  0) 0
[I] 1 G                   108 (     ->   10) [( 1.0735e+02,-0.0000e+00,-0.0000e+00, 1.0735e+02), p^2= 0.0000e+00, m= 0.0000e+00] (677,667) 0
[I] 1 G                   125 (     ->   12) [( 4.9223e+01,-0.0000e+00,-0.0000e+00, 4.9223e+01), p^2= 0.0000e+00, m= 0.0000e+00] (689,677) 0
[I] 1 G                   136 (     ->   14) [( 2.4716e+02,-0.0000e+00,-0.0000e+00, 2.4716e+02), p^2= 0.0000e+00, m= 0.0000e+00] (701,689) 0
 and Particle List with 7 elements
[I] 1 G                     5 (     ->    2) [( 2.9456e+03,-0.0000e+00,-0.0000e+00,-2.9456e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 d                    52 (     ->    4) [( 1.1464e+02,-0.0000e+00,-0.0000e+00,-1.1464e+02), p^2= 0.0000e+00, m= 3.0000e-01] (603,  0) 1
[I] 1 G                    72 (     ->    6) [( 7.0646e+01,-0.0000e+00,-0.0000e+00,-7.0646e+01), p^2= 0.0000e+00, m= 0.0000e+00] (661,601) 1
[I] 1 G                    93 (     ->    8) [( 3.2950e+02,-0.0000e+00,-0.0000e+00,-3.2950e+02), p^2= 0.0000e+00, m= 0.0000e+00] (671,661) 1
[I] 1 G                   109 (     ->   10) [( 2.2259e+01,-0.0000e+00,-0.0000e+00,-2.2259e+01), p^2= 0.0000e+00, m= 0.0000e+00] (683,671) 1
[I] 1 sb                  126 (     ->   12) [( 1.0007e+01,-0.0000e+00,-0.0000e+00,-1.0007e+01), p^2= 0.0000e+00, m= 4.0000e-01] (  0,683) 1
[I] 1 G                   137 (     ->   14) [( 5.9374e+00,-0.0000e+00,-0.0000e+00,-5.9374e+00), p^2= 0.0000e+00, m= 0.0000e+00] (704,693) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 ud_0                151 (     ->     ) [( 3.3339e+02, 0.0000e+00, 0.0000e+00, 3.3339e+02), p^2= 6.6610e-02, m= 5.7933e-01] (  0,701) 0
[B] 1 ub                  103 (     ->     ) [( 6.9119e+00, 0.0000e+00, 0.0000e+00, 6.9119e+00), p^2= 2.8630e-05, m= 0.0000e+00] (  0,657) 0
[B] 1 ub                   87 (     ->     ) [( 7.9415e+01, 0.0000e+00, 0.0000e+00, 7.9415e+01), p^2= 3.7796e-03, m= 0.0000e+00] (  0,643) 0
 and Particle List with 2 elements
[B] 1 uu_1                152 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,704) 1
[B] 1 s                   131 (     ->     ) [( 1.3826e+00, 0.0000e+00, 0.0000e+00,-1.3824e+00), p^2= 3.4774e-04, m= 0.0000e+00] (693,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 40 ( 5s elapsed / 1h 2m 11s left ) -> ETA: Mon Apr 08 15:00  XS = 4.33062e+09 pb +- ( 2.81687e+09 pb = 65 % )  
  Event 50 ( 6s elapsed / 55m 23s left ) -> ETA: Mon Apr 08 14:53  XS = 4.1344e+09 pb +- ( 2.35224e+09 pb = 56 % )  
  Event 60 ( 7s elapsed / 49m 7s left ) -> ETA: Mon Apr 08 14:47  XS = 5.67065e+09 pb +- ( 2.93133e+09 pb = 51 % )  
  Event 70 ( 7s elapsed / 44m 59s left ) -> ETA: Mon Apr 08 14:43  XS = 5.41803e+09 pb +- ( 2.60465e+09 pb = 48 % )  
  Event 80 ( 8s elapsed / 41m 41s left ) -> ETA: Mon Apr 08 14:39  XS = 5.33058e+09 pb +- ( 2.28798e+09 pb = 42 % )  
  Event 90 ( 8s elapsed / 40m 5s left ) -> ETA: Mon Apr 08 14:38  XS = 5.20077e+09 pb +- ( 2.10987e+09 pb = 40 % )  
  Event 100 ( 9s elapsed / 38m 23s left ) -> ETA: Mon Apr 08 14:36  XS = 7.94488e+09 pb +- ( 2.6515e+09 pb = 33 % )  
  Event 200 ( 16s elapsed / 33m 32s left ) -> ETA: Mon Apr 08 14:31  XS = 5.66175e+09 pb +- ( 1.41607e+09 pb = 25 % )  
  Event 300 ( 22s elapsed / 30m 50s left ) -> ETA: Mon Apr 08 14:29  XS = 5.21745e+09 pb +- ( 1.07957e+09 pb = 20 % )  
  Event 400 ( 28s elapsed / 29m 29s left ) -> ETA: Mon Apr 08 14:28  XS = 5.18628e+09 pb +- ( 9.58438e+08 pb = 18 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 u                     6 (     ->    2) [( 1.3341e+03,-0.0000e+00,-0.0000e+00, 1.3341e+03), p^2= 0.0000e+00, m= 3.0000e-01] (628,  0) 0
[I] 1 G                    56 (     ->    4) [( 2.9076e+02,-0.0000e+00,-0.0000e+00, 2.9076e+02), p^2= 0.0000e+00, m= 0.0000e+00] (671,618) 0
[I] 1 G                    67 (     ->    6) [( 1.6205e+02,-0.0000e+00,-0.0000e+00, 1.6205e+02), p^2= 0.0000e+00, m= 0.0000e+00] (618,671) 0
 and Particle List with 3 elements
[I] 1 G                     5 (     ->    2) [( 3.4934e+03,-0.0000e+00,-0.0000e+00,-3.4934e+03), p^2= 0.0000e+00, m= 0.0000e+00] (616,618) 1
[I] 1 d                    57 (     ->    4) [( 1.9687e+00,-0.0000e+00,-0.0000e+00,-1.9687e+00), p^2= 0.0000e+00, m= 3.0000e-01] (618,  0) 1
[I] 1 sb                   68 (     ->    6) [( 3.4231e+00,-0.0000e+00,-0.0000e+00,-3.4231e+00), p^2= 0.0000e+00, m= 4.0000e-01] (  0,616) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 ud_0                 79 (     ->     ) [( 1.7131e+03, 0.0000e+00, 0.0000e+00, 1.7131e+03), p^2= 4.3090e-01, m= 5.7933e-01] (  0,628) 0
 and Particle List with 2 elements
[B] 1 uu_1                 81 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,674) 1
[B] 1 s                    76 (     ->     ) [( 1.1626e+00, 0.0000e+00, 0.0000e+00,-1.1624e+00), p^2= 2.9240e-04, m= 0.0000e+00] (674,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 500 ( 35s elapsed / 29m 14s left ) -> ETA: Mon Apr 08 14:27  XS = 4.97945e+09 pb +- ( 8.57243e+08 pb = 17 % )  
  Event 600 ( 42s elapsed / 28m 46s left ) -> ETA: Mon Apr 08 14:27  XS = 4.42702e+09 pb +- ( 7.17861e+08 pb = 16 % )  
  Event 700 ( 49s elapsed / 28m 49s left ) -> ETA: Mon Apr 08 14:27  XS = 4.28269e+09 pb +- ( 6.42416e+08 pb = 15 % )  
  Event 800 ( 57s elapsed / 28m 52s left ) -> ETA: Mon Apr 08 14:27  XS = 4.08683e+09 pb +- ( 5.80752e+08 pb = 14 % )  
  Event 900 ( 1m 3s elapsed / 28m 25s left ) -> ETA: Mon Apr 08 14:27  XS = 4.00458e+09 pb +- ( 5.37804e+08 pb = 13 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 u                     5 (     ->    2) [( 2.5750e+03,-0.0000e+00,-0.0000e+00, 2.5750e+03), p^2= 0.0000e+00, m= 3.0000e-01] (646,  0) 0
[I] 1 G                    62 (     ->    4) [( 1.6080e+02,-0.0000e+00,-0.0000e+00, 1.6080e+02), p^2= 0.0000e+00, m= 0.0000e+00] (653,646) 0
 and Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 3.4903e+03,-0.0000e+00,-0.0000e+00,-3.4903e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 1
[I] 1 s                    63 (     ->    4) [( 7.9413e+00,-0.0000e+00,-0.0000e+00,-7.9413e+00), p^2= 0.0000e+00, m= 4.0000e-01] (652,  0) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 ud_0                 71 (     ->     ) [( 7.6420e+02, 0.0000e+00, 0.0000e+00, 7.6420e+02), p^2= 1.9222e-01, m= 5.7933e-01] (  0,653) 0
 and Particle List with 3 elements
[B] 1 uu_1                 73 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,652) 1
[B] 1 sb                   68 (     ->     ) [( 9.2308e-01, 0.0000e+00, 0.0000e+00,-9.2302e-01), p^2= 1.2448e-04, m= 0.0000e+00] (  0,603) 1
[B] 1 d                    72 (     ->     ) [( 7.9863e-01, 0.0000e+00, 0.0000e+00,-7.9857e-01), p^2= 9.3176e-05, m= 0.0000e+00] (602,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 1000 ( 1m 10s elapsed / 28m 8s left ) -> ETA: Mon Apr 08 14:27  XS = 4.00507e+09 pb +- ( 5.1011e+08 pb = 12 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 G                     6 (     ->    2) [( 3.1476e+03,-0.0000e+00,-0.0000e+00, 3.1476e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 0
[I] 1 G                    47 (     ->    4) [( 1.5032e+02,-0.0000e+00,-0.0000e+00, 1.5032e+02), p^2= 0.0000e+00, m= 0.0000e+00] (645,603) 0
[I] 1 G                    58 (     ->    6) [( 8.2411e+01,-0.0000e+00,-0.0000e+00, 8.2411e+01), p^2= 0.0000e+00, m= 0.0000e+00] (661,645) 0
 and Particle List with 3 elements
[I] 1 G                     5 (     ->    2) [( 3.4953e+03,-0.0000e+00,-0.0000e+00,-3.4953e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 G                    48 (     ->    4) [( 2.8172e+00,-0.0000e+00,-0.0000e+00,-2.8172e+00), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1
[I] 1 ub                   59 (     ->    6) [( 4.9369e-01,-0.0000e+00,-0.0000e+00,-4.9369e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,603) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 72 (     ->     ) [( 9.8568e+01, 0.0000e+00, 0.0000e+00, 9.8568e+01), p^2= 2.0428e-02, m= 5.7933e-01] (  0,661) 0
[B] 1 u                    71 (     ->     ) [( 2.1059e+01, 0.0000e+00, 0.0000e+00, 2.1059e+01), p^2= 9.3248e-04, m= 0.0000e+00] (602,  0) 0
 and Particle List with 3 elements
[B] 1 ud_0                 74 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,665) 1
[B] 1 u                    68 (     ->     ) [( 3.4654e-01, 0.0000e+00, 0.0000e+00,-3.4651e-01), p^2= 2.1310e-05, m= 0.0000e+00] (665,  0) 1
[B] 1 u                    73 (     ->     ) [( 1.0708e+00, 0.0000e+00, 0.0000e+00,-1.0707e+00), p^2= 2.0348e-04, m= 0.0000e+00] (603,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 u                     5 (     ->    2) [( 9.9055e+02,-0.0000e+00,-0.0000e+00, 9.9055e+02), p^2= 0.0000e+00, m= 3.0000e-01] (610,  0) 0
[I] 1 u                    45 (     ->    4) [( 1.1009e+03,-0.0000e+00,-0.0000e+00, 1.1009e+03), p^2= 0.0000e+00, m= 3.0000e-01] (634,  0) 0
 and Particle List with 2 elements
[I] 1 d                     6 (     ->    2) [( 3.4794e+03,-0.0000e+00,-0.0000e+00,-3.4794e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601,  0) 1
[I] 1 sb                   46 (     ->    4) [( 1.8887e+01,-0.0000e+00,-0.0000e+00,-1.8887e+01), p^2= 0.0000e+00, m= 4.0000e-01] (  0,640) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 66 (     ->     ) [( 1.0872e+03, 0.0000e+00, 0.0000e+00, 1.0872e+03), p^2= 2.1108e-01, m= 5.7933e-01] (  0,634) 0
[B] 1 ub                   62 (     ->     ) [( 3.2135e+02, 0.0000e+00, 0.0000e+00, 3.2135e+02), p^2= 1.8441e-02, m= 0.0000e+00] (  0,610) 0
 and Particle List with 2 elements
[B] 1 uu_1                 68 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,601) 1
[B] 1 s                    63 (     ->     ) [( 1.7403e+00, 0.0000e+00, 0.0000e+00,-1.7401e+00), p^2= 4.3771e-04, m= 0.0000e+00] (640,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 2000 ( 2m 15s elapsed / 26m left ) -> ETA: Mon Apr 08 14:26  XS = 4.28141e+09 pb +- ( 3.60798e+08 pb = 8 % )  
  Event 3000 ( 3m 21s elapsed / 24m 40s left ) -> ETA: Mon Apr 08 14:26  XS = 4.35205e+09 pb +- ( 3.0185e+08 pb = 6 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 4000 ( 4m 27s elapsed / 23m 25s left ) -> ETA: Mon Apr 08 14:25  XS = 4.58939e+09 pb +- ( 2.70411e+08 pb = 5 % )  
  Event 5000 ( 5m 34s elapsed / 22m 18s left ) -> ETA: Mon Apr 08 14:25  
    Memory usage increased by 17 MB, now 146 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.56501e+09 pb +- ( 2.57827e+08 pb = 5 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 6000 ( 6m 38s elapsed / 21m 1s left ) -> ETA: Mon Apr 08 14:25  XS = 4.65031e+09 pb +- ( 2.38373e+08 pb = 5 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 7000 ( 7m 48s elapsed / 20m 3s left ) -> ETA: Mon Apr 08 14:25  XS = 4.55937e+09 pb +- ( 2.2421e+08 pb = 4 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 8000 ( 8m 55s elapsed / 18m 58s left ) -> ETA: Mon Apr 08 14:25  XS = 4.55277e+09 pb +- ( 2.10613e+08 pb = 4 % )  
  Event 9000 ( 10m 2s elapsed / 17m 51s left ) -> ETA: Mon Apr 08 14:25  
    Memory usage increased by 16 MB, now 163 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.52254e+09 pb +- ( 1.94259e+08 pb = 4 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 10000 ( 11m 9s elapsed / 16m 43s left ) -> ETA: Mon Apr 08 14:25  XS = 4.56676e+09 pb +- ( 1.87473e+08 pb = 4 % )  
  Event 20000 ( 22m 20s elapsed / 5m 35s left ) -> ETA: Mon Apr 08 14:26  XS = 4.74594e+09 pb +- ( 1.36819e+08 pb = 2 % )  
  Event 25000 ( 1686 s total ) = 1.28099e+06 evts/day                    
In Event_Handler::Finish : Summarizing the run may take some time.
Rivet_Interface::Finish(Analysis_Alaric_FinalFSmod_noWeight/1380){
}
--------------------------------------------------------------------------
Nominal or variation name     XS [pb]      RelDev  AbsErr [pb]      RelErr
--------------------------------------------------------------------------
Nominal                   4.85684e+09         0 %  1.27686e+08      2.62 %
--------------------------------------------------------------------------
Return_Value::PrintStatistics(): Statistics {
  Generated events: 25000
  New events {
    From "Beam_Remnants:Parametrised": 77 (25077) -> 0.3 %
  }
}
Blob_List: Momentum Fail Statistics {
}
Decay_Channel: Kinematics max fail statistics {
}
WARNING: You are using an unsupported development branch.
Remnant handling yields 77 fails in creating good beam breakups.
Remnant Kinematics: 77 errors (no kinematics found) and
                    15 warnings (scale kt down by factor of 10).
WARNING: Some settings that have been defined in the input
files and/or the command line have not been used. For more
details, see the Settings Report.
Time: 28m 11s on Mon Apr  8 14:26:13 2024
 (User: 28m 5s, System: 0s, Children User: 0s, Children System: 0s)
Welcome to Sherpa, Daniel Reichelt on ip3-cpu5.phyip3.dur.ac.uk. Initialization of framework underway.
The local time is Tue Apr  9 21:40:12 2024.
Run_Parameter::Init(): Setting memory limit to 503.276 GB.
Random::SetSeed(): Seed set to 1380
Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded.
-----------------------------------------------------------------------------
-----------    Event generation run with SHERPA started .......   -----------
-----------------------------------------------------------------------------
................................................ |       +                   
................................................ ||  |       +  +            
...................................        ....  | |         /   +           
................. ................   _,_ |  ....  ||         +|  +  +        
...............................  __.'  ,\|  ...  ||    /    +|          +    
.............................. (  \    \   ...  | |  |   + + \         +   
.............................  (    \   -/  .... ||       +    |          +  
........ ...................  <S   /()))))~~~~~~~~##     +     /\    +       
............................ (!H   (~~)))))~~~~~~#/     +  +    |  +         
................ ........... (!E   (~~~)))))     /|/    +         +          
............................ (!R   (~~~)))))   |||   + +            +        
..... ...................... (!P    (~~~~)))   /|  + +          +            
............................ (!A>    (~~~~~~~~~##        + +        +        
............................. ~~(!    '~~~~~~~ \       +     + +      +      
...............................  `~~~QQQQQDb //   |         + + +        +   
........................ ..........   IDDDDP||     \  + + + + +             +
....................................  IDDDI||       \                      + 
.................................... IHD HD||         \ + +  + + + + +      +
...................................  IHD ##|            :-) + +\          +  
......... ............... ......... IHI ## /      /   +  + + + +\       +    
................................... IHI/ /       /      + + + +        +     
................................... ## | | /    / + +      + + /      +      
....................... /TT\ .....  ##/ ///  / + + + + + + +/       +        
......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/   \         +   
....................../TTT/TTTT\...|TT/T\\\/   +    ++  + /              
-----------------------------------------------------------------------------

     SHERPA version 3.0.0beta1 (Dhaulagiri)
                                                                             
     Authors:        Enrico Bothmann, Stefan Hoeche, Frank Krauss,           
                     Silvan Kuttimalai, Marek Schoenherr, Holger Schulz,     
                     Steffen Schumann, Frank Siegert, Korinna Zapp           
     Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth,           
                     Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke,         
                     Jan Winter                                              
                                                                             
     This program uses a lot of genuine and original research work           
     by other people. Users are encouraged to refer to                       
     the various original publications.                                      
                                                                             
     Users are kindly asked to refer to the documentation                    
     published under JHEP 02(2009)007                                        
                                                                             
     Please visit also our homepage                                          
                                                                             
       http://sherpa.hepforge.org                                            
                                                                             
     for news, bugreports, updates and new releases.                         
                                                                             
-----------------------------------------------------------------------------
WARNING: You are using an unsupported development branch.
Git branch unknownurl, revision unknownrevision.
Hadron_Init::Init(): Initializing kf table for hadrons.
Beam_Spectra_Handler: type = Collider Setup
    for P+ (on = 0, p = (3500,0,0,3500))
    and P+ (on = 0, p = (3500,0,0,-3500)).
ISR handling:
    PDFs for hard scattering:              PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
    PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
Remnant_Handlers:
    hard process: P+: Hadron + P+: Hadron
Standard_Model::FixEWParameters() {
  Input scheme: Gmu
                Gmu scheme, input: GF, m_W, m_Z, m_h, widths
  Ren. scheme:  Gmu
                
  Parameters:   sin^2(\theta_W) = 0.223043 - 0.00110541 i
                vev             = 246.218
}
Running_AlphaQED::PrintSummary() {
  Setting \alpha according to EW scheme
  1/\alpha(0)   = 137.036
  1/\alpha(def) = 132.119
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
List of Particle Data 
     IDName     kfc            Mass           Width   Stable  Massive   Active          Yukawa
          d       1            0.01               0        1        0        1               0
          u       2           0.005               0        1        0        1               0
          s       3             0.2               0        1        0        1               0
          c       4            1.42               0        1        0        1               0
          b       5            4.92               0        1        0        1               0
          t       6           172.5            1.32        0        1        1           172.5
         e-      11        0.000511               0        1        0        1               0
         ve      12               0               0        1        0        1               0
        mu-      13           0.105               0        1        0        1               0
        vmu      14               0               0        1        0        1               0
       tau-      15           1.777     2.26735e-12        0        0        1               0
       vtau      16               0               0        1        0        1               0
          G      21               0               0        1        0        1               0
          P      22               0               0        1        0        1               0
          Z      23         91.1876          2.4952        0        1        1         91.1876
         W+      24          80.379           2.085        0        1        1          80.379
         h0      25          125.09          0.0041        0        1        1          125.09
  Instanton     999               0               0        0        0        1               0
List of Particle Containers 
     IDName     kfc     Constituents
          l      90     {e-,e+,mu-,mu+,tau-,tau+}
          v      91     {ve,veb,vmu,vmub,vtau,vtaub}
          f      92     {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub}
          j      93     {d,db,u,ub,s,sb,c,cb,b,bb,G}
          Q      94     {d,db,u,ub,s,sb,c,cb,b,bb}
        ewj      98     {d,db,u,ub,s,sb,c,cb,b,bb,G,P}
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Shower_Handler initialised.

+-----------------------------------------+
|   X   X   X XXXX  XXX  XXX  XXX         |
|  X X  XX XX X    X      X  X     X   X  |
| X   X X X X XXX  X XXX  X  X    XXX XXX |
| XXXXX X   X X    X   X  X  X     X   X  |
| X   X X   X XXXX  XXX  XXX  XXX         |
+-----------------------------------------+
| please cite: JHEP 0202:044,2002         |
+-----------------------------------------+
Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none)
+----------------------------------+
|                                  |
|      CCC  OOO  M   M I X   X     |
|     C    O   O MM MM I  X X      |
|     C    O   O M M M I   X       |
|     C    O   O M   M I  X X      |
|      CCC  OOO  M   M I X   X     |
|                                  |
+==================================+
|  Color dressed  Matrix Elements  |
|     http://comix.freacafe.de     |
|   please cite  JHEP12(2008)039   |
+----------------------------------+
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none)
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none)
Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks.
Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ).
Initialized the Matrix_Element_Handler for the hard processes.
Initialized the Beam_Remnant_Handler.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none)
MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1)
Underlying event/multiple interactions handler:
    MI[2]: on = 1 (type = 1, Amisic)
Soft-collision handlers:
    Type[2]: None
Hadron_Init::Init(): Initializing kf table for hadrons.
Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface")
Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings")
Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!")
Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values")
Initialized the Fragmentation_Handler.
Initialized the Hadron_Decay_Handler, Decay model = HADRONS++
Initialized the Soft_Photon_Handler.
Initialized the Reweighting.
ISR_Channels::CheckForStructuresFromME for 0: (none)
Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j
Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix)
2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 %
  reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) 
----------------------------------------------------------
-- SHERPA generates events with the following structure --
----------------------------------------------------------
Event generation   : Weighted
Perturbative       : Signal_Processes
Perturbative       : Minimum_Bias: None
Perturbative       : Hard_Decays
Perturbative       : Jet_Evolution:CFP
Perturbative       : Lepton_FS_QED_Corrections:None
Perturbative       : Multiple_Interactions: Amisic
Hadronization      : Beam_Remnants:Parametrised
Hadronization      : Hadronization:Pythia8
Hadronization      : Hadron_Decays
Userhook           : 
Analysis           : Rivet
---------------------------------------------------------
#--------------------------------------------------------------------------
#                     FastJet release 3.3.2 [fjcore]
#                 M. Cacciari, G.P. Salam and G. Soyez                  
#     A software package for jet finding and analysis at colliders      
#                           http://fastjet.fr                           
#	                                                                      
# Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package
# for scientific work and optionally PLB641(2006)57 [hep-ph/0512210].   
#                                                                       
# FastJet is provided without warranty under the terms of the GNU GPLv2.
# It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code
# and 3rd party plugin jet algorithms. See COPYING file for details.
#--------------------------------------------------------------------------
  Event 1 ( 3s elapsed / 3d 22h 9m 56s left ) -> ETA: Sat Apr 13 19:50  XS = 7.28493e+07 pb +- ( 7.28493e+07 pb = 100 % )  
  Event 2 ( 3s elapsed / 1d 23h 38m 16s left ) -> ETA: Thu Apr 11 21:18  XS = 3.34949e+07 pb +- ( 1.94857e+07 pb = 58 % )  
  Event 3 ( 3s elapsed / 1d 8h 24m 23s left ) -> ETA: Thu Apr 11 06:04  XS = 2.67959e+07 pb +- ( 1.65134e+07 pb = 61 % )  
  Event 4 ( 3s elapsed / 1d 26m 36s left ) -> ETA: Wed Apr 10 22:06  XS = 6.25582e+07 pb +- ( 4.19811e+07 pb = 67 % )  
  Event 5 ( 3s elapsed / 20h 29m 56s left ) -> ETA: Wed Apr 10 18:10  XS = 1.90395e+07 pb +- ( 1.35628e+07 pb = 71 % )  
  Event 6 ( 3s elapsed / 17h 18m 49s left ) -> ETA: Wed Apr 10 14:59  XS = 1.75425e+07 pb +- ( 1.24982e+07 pb = 71 % )  
  Event 7 ( 3s elapsed / 14h 55m 10s left ) -> ETA: Wed Apr 10 12:35  XS = 6.43597e+08 pb +- ( 6.2617e+08 pb = 97 % )  
  Event 8 ( 3s elapsed / 13h 13m 41s left ) -> ETA: Wed Apr 10 10:54  XS = 6.63199e+08 pb +- ( 6.02851e+08 pb = 90 % )  
  Event 9 ( 3s elapsed / 11h 47m 20s left ) -> ETA: Wed Apr 10 09:27  XS = 6.24146e+08 pb +- ( 5.61208e+08 pb = 89 % )  
  Event 10 ( 3s elapsed / 10h 44m 56s left ) -> ETA: Wed Apr 10 08:25  XS = 6.03341e+08 pb +- ( 5.42578e+08 pb = 89 % )  
  Event 20 ( 4s elapsed / 6h 22m 25s left ) -> ETA: Wed Apr 10 04:02  XS = 2.15688e+09 pb +- ( 1.35014e+09 pb = 62 % )  
  Event 30 ( 5s elapsed / 4h 46m 1s left ) -> ETA: Wed Apr 10 02:26  XS = 2.09845e+09 pb +- ( 1.02902e+09 pb = 49 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements
[I] 1 db                    6 (     ->    2) [( 1.5742e+03,-0.0000e+00,-0.0000e+00, 1.5742e+03), p^2= 0.0000e+00, m= 3.0000e-01] (  0,601) 0
[I] 1 G                    53 (     ->    4) [( 6.1208e+02,-0.0000e+00,-0.0000e+00, 6.1208e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,642) 0
[I] 1 G                    81 (     ->    6) [( 4.5074e+01,-0.0000e+00,-0.0000e+00, 4.5074e+01), p^2= 0.0000e+00, m= 0.0000e+00] (663,680) 0
[I] 1 G                   102 (     ->    8) [( 4.7748e+02,-0.0000e+00,-0.0000e+00, 4.7748e+02), p^2= 0.0000e+00, m= 0.0000e+00] (680,663) 0
[I] 1 d                   118 (     ->   10) [( 5.8310e+02,-0.0000e+00,-0.0000e+00, 5.8310e+02), p^2= 0.0000e+00, m= 3.0000e-01] (688,  0) 0
[I] 1 d                   134 (     ->   12) [( 1.4481e+02,-0.0000e+00,-0.0000e+00, 1.4481e+02), p^2= 0.0000e+00, m= 3.0000e-01] (642,  0) 0
 and Particle List with 6 elements
[I] 1 G                     5 (     ->    2) [( 1.8926e+03,-0.0000e+00,-0.0000e+00,-1.8926e+03), p^2= 0.0000e+00, m= 0.0000e+00] (628,614) 1
[I] 1 d                    54 (     ->    4) [( 1.2568e+02,-0.0000e+00,-0.0000e+00,-1.2568e+02), p^2= 0.0000e+00, m= 3.0000e-01] (614,  0) 1
[I] 1 d                    82 (     ->    6) [( 8.1806e+02,-0.0000e+00,-0.0000e+00,-8.1806e+02), p^2= 0.0000e+00, m= 3.0000e-01] (660,  0) 1
[I] 1 u                   103 (     ->    8) [( 7.2989e-01,-0.0000e+00,-0.0000e+00,-7.2989e-01), p^2= 0.0000e+00, m= 3.0000e-01] (685,  0) 1
[I] 1 G                   119 (     ->   10) [( 6.5797e+02,-0.0000e+00,-0.0000e+00,-6.5797e+02), p^2= 0.0000e+00, m= 0.0000e+00] (689,685) 1
[I] 1 G                   135 (     ->   12) [( 3.0744e+00,-0.0000e+00,-0.0000e+00,-3.0744e+00), p^2= 0.0000e+00, m= 0.0000e+00] (702,689) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 uu_1                144 (     ->     ) [( 6.3256e+01, 0.0000e+00, 0.0000e+00, 6.3256e+01), p^2= 1.5911e-02, m= 7.7133e-01] (  0,688) 0
 and Particle List with 3 elements
[B] 1 uu_1                146 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,702) 1
[B] 1 ub                  113 (     ->     ) [( 5.3565e-01, 0.0000e+00, 0.0000e+00,-5.3561e-01), p^2= 3.8046e-05, m= 0.0000e+00] (  0,628) 1
[B] 1 db                   76 (     ->     ) [( 1.3612e+00, 0.0000e+00, 0.0000e+00,-1.3611e+00), p^2= 2.4568e-04, m= 0.0000e+00] (  0,660) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 40 ( 6s elapsed / 4h 11m 33s left ) -> ETA: Wed Apr 10 01:51  XS = 1.51679e+09 pb +- ( 7.38067e+08 pb = 48 % )  
  Event 50 ( 6s elapsed / 3h 39m 53s left ) -> ETA: Wed Apr 10 01:20  XS = 1.57066e+09 pb +- ( 6.67751e+08 pb = 42 % )  
  Event 60 ( 7s elapsed / 3h 20m 9s left ) -> ETA: Wed Apr 10 01:00  XS = 1.58117e+09 pb +- ( 6.00405e+08 pb = 37 % )  
  Event 70 ( 7s elapsed / 2h 59m 52s left ) -> ETA: Wed Apr 10 00:40  XS = 2.33269e+09 pb +- ( 9.62489e+08 pb = 41 % )  
  Event 80 ( 8s elapsed / 2h 46m 44s left ) -> ETA: Wed Apr 10 00:27  XS = 2.74665e+09 pb +- ( 1.0691e+09 pb = 38 % )  
  Event 90 ( 8s elapsed / 2h 39m 6s left ) -> ETA: Wed Apr 10 00:19  XS = 3.02405e+09 pb +- ( 1.03862e+09 pb = 34 % )  
  Event 100 ( 9s elapsed / 2h 38m left ) -> ETA: Wed Apr 10 00:18  XS = 3.37077e+09 pb +- ( 1.03731e+09 pb = 30 % )  
  Event 200 ( 16s elapsed / 2h 13m 48s left ) -> ETA: Tue Apr 09 23:54  XS = 3.84594e+09 pb +- ( 9.1362e+08 pb = 23 % )  
  Event 300 ( 21s elapsed / 2h 54s left ) -> ETA: Tue Apr 09 23:41  XS = 4.16142e+09 pb +- ( 7.77881e+08 pb = 18 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 400 ( 28s elapsed / 1h 57m 56s left ) -> ETA: Tue Apr 09 23:38  XS = 4.30302e+09 pb +- ( 7.56857e+08 pb = 17 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements
[I] 1 G                     5 (     ->    2) [( 3.4162e+03,-0.0000e+00,-0.0000e+00, 3.4162e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0
[I] 1 G                    33 (     ->    4) [( 3.5626e+01,-0.0000e+00,-0.0000e+00, 3.5626e+01), p^2= 0.0000e+00, m= 0.0000e+00] (624,601) 0
[I] 1 s                    49 (     ->    6) [( 7.1061e-01,-0.0000e+00,-0.0000e+00, 7.1061e-01), p^2= 0.0000e+00, m= 4.0000e-01] (634,  0) 0
[I] 1 G                    62 (     ->    8) [( 4.5710e+01,-0.0000e+00,-0.0000e+00, 4.5710e+01), p^2= 0.0000e+00, m= 0.0000e+00] (645,634) 0
 and Particle List with 4 elements
[I] 1 G                     6 (     ->    2) [( 3.1786e+02,-0.0000e+00,-0.0000e+00,-3.1786e+02), p^2= 0.0000e+00, m= 0.0000e+00] (608,621) 1
[I] 1 G                    34 (     ->    4) [( 2.5509e+02,-0.0000e+00,-0.0000e+00,-2.5509e+02), p^2= 0.0000e+00, m= 0.0000e+00] (628,608) 1
[I] 1 d                    50 (     ->    6) [( 9.0540e+02,-0.0000e+00,-0.0000e+00,-9.0540e+02), p^2= 0.0000e+00, m= 3.0000e-01] (621,  0) 1
[I] 1 d                    63 (     ->    8) [( 1.1651e+03,-0.0000e+00,-0.0000e+00,-1.1651e+03), p^2= 0.0000e+00, m= 3.0000e-01] (651,  0) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 uu_1                 81 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,645) 0
[B] 1 sb                   57 (     ->     ) [( 4.9368e-01, 0.0000e+00, 0.0000e+00, 4.9365e-01), p^2= 3.4257e-05, m= 0.0000e+00] (  0,624) 0
[B] 1 d                    80 (     ->     ) [( 1.2957e+00, 0.0000e+00, 0.0000e+00, 1.2957e+00), p^2= 2.3599e-04, m= 0.0000e+00] (603,  0) 0
 and Particle List with 2 elements
[B] 1 uu_1                 82 (     ->     ) [( 4.3930e+02, 0.0000e+00, 0.0000e+00,-4.3930e+02), p^2= 5.6674e-02, m= 7.7133e-01] (  0,651) 1
[B] 1 db                   77 (     ->     ) [( 4.1721e+02, 0.0000e+00, 0.0000e+00,-4.1721e+02), p^2= 5.1117e-02, m= 0.0000e+00] (  0,628) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements
[I] 1 db                    6 (     ->    2) [( 3.2649e+03,-0.0000e+00,-0.0000e+00, 3.2649e+03), p^2= 0.0000e+00, m= 3.0000e-01] (  0,605) 0
[I] 1 G                    42 (     ->    4) [( 2.2174e+02,-0.0000e+00,-0.0000e+00, 2.2174e+02), p^2= 0.0000e+00, m= 0.0000e+00] (605,648) 0
[I] 1 s                    66 (     ->    6) [( 3.4990e+00,-0.0000e+00,-0.0000e+00, 3.4990e+00), p^2= 0.0000e+00, m= 4.0000e-01] (656,  0) 0
[I] 1 G                    87 (     ->    8) [( 6.6705e+00,-0.0000e+00,-0.0000e+00, 6.6705e+00), p^2= 0.0000e+00, m= 0.0000e+00] (648,678) 0
[I] 1 G                   103 (     ->   10) [( 1.0496e+00,-0.0000e+00,-0.0000e+00, 1.0496e+00), p^2= 0.0000e+00, m= 0.0000e+00] (684,656) 0
 and Particle List with 5 elements
[I] 1 d                     5 (     ->    2) [( 4.4992e+02,-0.0000e+00,-0.0000e+00,-4.4992e+02), p^2= 0.0000e+00, m= 3.0000e-01] (604,  0) 1
[I] 1 d                    43 (     ->    4) [( 1.4371e+03,-0.0000e+00,-0.0000e+00,-1.4371e+03), p^2= 0.0000e+00, m= 3.0000e-01] (633,  0) 1
[I] 1 G                    67 (     ->    6) [( 8.7142e+02,-0.0000e+00,-0.0000e+00,-8.7142e+02), p^2= 0.0000e+00, m= 0.0000e+00] (658,604) 1
[I] 1 u                    88 (     ->    8) [( 4.2878e+02,-0.0000e+00,-0.0000e+00,-4.2878e+02), p^2= 0.0000e+00, m= 3.0000e-01] (673,  0) 1
[I] 1 d                   104 (     ->   10) [( 2.4882e+02,-0.0000e+00,-0.0000e+00,-2.4882e+02), p^2= 0.0000e+00, m= 3.0000e-01] (656,  0) 1
 and the corresponding remnants are Particle List with 4 elements
[B] 1 uu_1                116 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,684) 0
[B] 1 sb                   82 (     ->     ) [( 1.1461e+00, 0.0000e+00, 0.0000e+00, 1.1461e+00), p^2= 1.5580e-04, m= 0.0000e+00] (  0,634) 0
[B] 1 d                    37 (     ->     ) [( 6.7374e-01, 0.0000e+00, 0.0000e+00, 6.7370e-01), p^2= 5.3838e-05, m= 0.0000e+00] (634,  0) 0
[B] 1 d                   115 (     ->     ) [( 3.0079e-01, 0.0000e+00, 0.0000e+00, 3.0077e-01), p^2= 1.0731e-05, m= 0.0000e+00] (678,  0) 0
 and Particle List with 4 elements
[B] 1 uu_1                117 (     ->     ) [( 5.8437e+01, 0.0000e+00, 0.0000e+00,-5.8437e+01), p^2= 1.3433e-02, m= 7.7133e-01] (  0,656) 1
[B] 1 db                  112 (     ->     ) [( 1.0448e+00, 0.0000e+00, 0.0000e+00,-1.0448e+00), p^2= 4.2937e-06, m= 0.0000e+00] (  0,673) 1
[B] 1 ub                   98 (     ->     ) [( 5.8482e-01, 0.0000e+00, 0.0000e+00,-5.8482e-01), p^2= 1.3453e-06, m= 0.0000e+00] (  0,658) 1
[B] 1 db                   36 (     ->     ) [( 3.8789e+00, 0.0000e+00, 0.0000e+00,-3.8789e+00), p^2= 5.9183e-05, m= 0.0000e+00] (  0,633) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements
[I] 1 G                     5 (     ->    2) [( 1.4398e+02,-0.0000e+00,-0.0000e+00, 1.4398e+02), p^2= 0.0000e+00, m= 0.0000e+00] (619,624) 0
[I] 1 c                    37 (     ->    4) [( 3.9930e+02,-0.0000e+00,-0.0000e+00, 3.9930e+02), p^2= 0.0000e+00, m= 1.8000e+00] (624,  0) 0
[I] 1 G                    63 (     ->    6) [( 5.7606e+02,-0.0000e+00,-0.0000e+00, 5.7606e+02), p^2= 0.0000e+00, m= 0.0000e+00] (646,656) 0
[I] 1 G                    88 (     ->    8) [( 1.1809e+02,-0.0000e+00,-0.0000e+00, 1.1809e+02), p^2= 0.0000e+00, m= 0.0000e+00] (656,674) 0
[I] 1 G                   101 (     ->   10) [( 2.9008e+02,-0.0000e+00,-0.0000e+00, 2.9008e+02), p^2= 0.0000e+00, m= 0.0000e+00] (680,619) 0
 and Particle List with 5 elements
[I] 1 G                     6 (     ->    2) [( 3.3762e+03,-0.0000e+00,-0.0000e+00,-3.3762e+03), p^2= 0.0000e+00, m= 0.0000e+00] (607,605) 1
[I] 1 G                    38 (     ->    4) [( 1.0841e+02,-0.0000e+00,-0.0000e+00,-1.0841e+02), p^2= 0.0000e+00, m= 0.0000e+00] (639,607) 1
[I] 1 G                    64 (     ->    6) [( 1.2270e+01,-0.0000e+00,-0.0000e+00,-1.2270e+01), p^2= 0.0000e+00, m= 0.0000e+00] (653,639) 1
[I] 1 db                   89 (     ->    8) [( 5.6819e-01,-0.0000e+00,-0.0000e+00,-5.6819e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,668) 1
[I] 1 ub                  102 (     ->   10) [( 1.0112e+00,-0.0000e+00,-0.0000e+00,-1.0112e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,676) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 uu_1                113 (     ->     ) [( 1.8722e+03, 0.0000e+00, 0.0000e+00, 1.8722e+03), p^2= 4.4697e-01, m= 7.7133e-01] (  0,680) 0
[B] 1 cb                   58 (     ->     ) [( 2.4245e+01, 0.0000e+00, 0.0000e+00, 2.4245e+01), p^2= 7.4958e-05, m= 0.0000e+00] (  0,646) 0
[B] 1 d                   112 (     ->     ) [( 7.6055e+01, 0.0000e+00, 0.0000e+00, 7.6054e+01), p^2= 7.3761e-04, m= 0.0000e+00] (674,  0) 0
 and Particle List with 4 elements
[B] 1 ud_0                115 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,653) 1
[B] 1 u                   109 (     ->     ) [( 9.0822e-01, 0.0000e+00, 0.0000e+00,-9.0814e-01), p^2= 1.3700e-04, m= 0.0000e+00] (668,  0) 1
[B] 1 d                    96 (     ->     ) [( 3.0243e-01, 0.0000e+00, 0.0000e+00,-3.0240e-01), p^2= 1.5191e-05, m= 0.0000e+00] (605,  0) 1
[B] 1 u                   114 (     ->     ) [( 3.0375e-01, 0.0000e+00, 0.0000e+00,-3.0373e-01), p^2= 1.5324e-05, m= 0.0000e+00] (676,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 500 ( 34s elapsed / 1h 55m 27s left ) -> ETA: Tue Apr 09 23:36  XS = 3.72446e+09 pb +- ( 6.13095e+08 pb = 16 % )  
  Event 600 ( 41s elapsed / 1h 54m 7s left ) -> ETA: Tue Apr 09 23:35  XS = 3.69337e+09 pb +- ( 5.6769e+08 pb = 15 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 700 ( 47s elapsed / 1h 51m 49s left ) -> ETA: Tue Apr 09 23:32  
    Memory usage increased by 18 MB, now 146 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 3.47118e+09 pb +- ( 4.90829e+08 pb = 14 % )  
  Event 800 ( 53s elapsed / 1h 50m 19s left ) -> ETA: Tue Apr 09 23:31  XS = 3.37004e+09 pb +- ( 4.49646e+08 pb = 13 % )  
  Event 900 ( 59s elapsed / 1h 49m 39s left ) -> ETA: Tue Apr 09 23:30  XS = 3.42568e+09 pb +- ( 4.26309e+08 pb = 12 % )  
  Event 1000 ( 1m 5s elapsed / 1h 48m 36s left ) -> ETA: Tue Apr 09 23:29  XS = 3.62878e+09 pb +- ( 4.66144e+08 pb = 12 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements
[I] 1 G                     5 (     ->    2) [( 2.1811e+03,-0.0000e+00,-0.0000e+00, 2.1811e+03), p^2= 0.0000e+00, m= 0.0000e+00] (634,629) 0
[I] 1 G                    45 (     ->    4) [( 2.1786e+02,-0.0000e+00,-0.0000e+00, 2.1786e+02), p^2= 0.0000e+00, m= 0.0000e+00] (650,634) 0
[I] 1 G                    67 (     ->    6) [( 2.9164e+02,-0.0000e+00,-0.0000e+00, 2.9164e+02), p^2= 0.0000e+00, m= 0.0000e+00] (683,650) 0
[I] 1 u                    87 (     ->    8) [( 1.4115e+02,-0.0000e+00,-0.0000e+00, 1.4115e+02), p^2= 0.0000e+00, m= 3.0000e-01] (671,  0) 0
[I] 1 G                   102 (     ->   10) [( 5.0488e+02,-0.0000e+00,-0.0000e+00, 5.0488e+02), p^2= 0.0000e+00, m= 0.0000e+00] (629,683) 0
 and Particle List with 5 elements
[I] 1 c                     6 (     ->    2) [( 3.1221e+03,-0.0000e+00,-0.0000e+00,-3.1221e+03), p^2= 0.0000e+00, m= 1.8000e+00] (609,  0) 1
[I] 1 G                    46 (     ->    4) [( 2.5688e+02,-0.0000e+00,-0.0000e+00,-2.5688e+02), p^2= 0.0000e+00, m= 0.0000e+00] (640,645) 1
[I] 1 G                    68 (     ->    6) [( 1.0501e+02,-0.0000e+00,-0.0000e+00,-1.0501e+02), p^2= 0.0000e+00, m= 0.0000e+00] (657,609) 1
[I] 1 ub                   88 (     ->    8) [( 1.1778e+01,-0.0000e+00,-0.0000e+00,-1.1778e+01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,657) 1
[I] 1 db                  103 (     ->   10) [( 6.7536e-01,-0.0000e+00,-0.0000e+00,-6.7536e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,676) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 ud_0                113 (     ->     ) [( 1.6334e+02, 0.0000e+00, 0.0000e+00, 1.6334e+02), p^2= 4.1086e-02, m= 5.7933e-01] (  0,671) 0
 and Particle List with 5 elements
[B] 1 uu_1                116 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,687) 1
[B] 1 d                   109 (     ->     ) [( 4.0379e-01, 0.0000e+00, 0.0000e+00,-4.0378e-01), p^2= 1.1653e-05, m= 0.0000e+00] (687,  0) 1
[B] 1 u                    97 (     ->     ) [( 5.5021e-01, 0.0000e+00, 0.0000e+00,-5.5019e-01), p^2= 2.1636e-05, m= 0.0000e+00] (676,  0) 1
[B] 1 cb                   40 (     ->     ) [( 2.0464e+00, 0.0000e+00, 0.0000e+00,-2.0463e+00), p^2= 2.9929e-04, m= 0.0000e+00] (  0,640) 1
[B] 1 d                   115 (     ->     ) [( 5.1898e-01, 0.0000e+00, 0.0000e+00,-5.1896e-01), p^2= 1.9249e-05, m= 0.0000e+00] (645,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 2000 ( 2m 11s elapsed / 1h 47m 6s left ) -> ETA: Tue Apr 09 23:29  XS = 4.41319e+09 pb +- ( 4.11649e+08 pb = 9 % )  
Pythia8 hadronisation failed.

Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 3000 ( 3m 20s elapsed / 1h 47m 50s left ) -> ETA: Tue Apr 09 23:31  XS = 4.65237e+09 pb +- ( 3.50623e+08 pb = 7 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 4000 ( 4m 31s elapsed / 1h 48m 32s left ) -> ETA: Tue Apr 09 23:33  XS = 4.74007e+09 pb +- ( 3.0542e+08 pb = 6 % )  
  Event 5000 ( 5m 41s elapsed / 1h 48m 3s left ) -> ETA: Tue Apr 09 23:33  XS = 4.65039e+09 pb +- ( 2.64975e+08 pb = 5 % )  
  Event 6000 ( 6m 52s elapsed / 1h 47m 47s left ) -> ETA: Tue Apr 09 23:34  XS = 4.66383e+09 pb +- ( 2.38235e+08 pb = 5 % )  
  Event 7000 ( 8m 2s elapsed / 1h 46m 50s left ) -> ETA: Tue Apr 09 23:35  XS = 4.73585e+09 pb +- ( 2.40831e+08 pb = 5 % )  
  Event 8000 ( 9m 14s elapsed / 1h 46m 11s left ) -> ETA: Tue Apr 09 23:35  XS = 4.65027e+09 pb +- ( 2.19085e+08 pb = 4 % )  
  Event 9000 ( 10m 26s elapsed / 1h 45m 36s left ) -> ETA: Tue Apr 09 23:36  XS = 4.52979e+09 pb +- ( 2.00028e+08 pb = 4 % )  
Pythia8 hadronisation failed.

  Event 10000 ( 11m 37s elapsed / 1h 44m 34s left ) -> ETA: Tue Apr 09 23:36  XS = 4.54849e+09 pb +- ( 1.9237e+08 pb = 4 % )  
Pythia8 hadronisation failed.

  Event 20000 ( 23m 34s elapsed / 1h 34m 18s left ) -> ETA: Tue Apr 09 23:38  XS = 4.66497e+09 pb +- ( 1.36394e+08 pb = 2 % )  
  Event 30000 ( 35m 36s elapsed / 1h 23m 5s left ) -> ETA: Tue Apr 09 23:38  XS = 4.64271e+09 pb +- ( 1.10521e+08 pb = 2 % )  
  Event 40000 ( 47m 31s elapsed / 1h 11m 16s left ) -> ETA: Tue Apr 09 23:39  
    Memory usage increased by 56 MB, now 203 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.66467e+09 pb +- ( 9.60415e+07 pb = 2 % )  
  Event 50000 ( 59m 35s elapsed / 59m 35s left ) -> ETA: Tue Apr 09 23:39  XS = 4.67625e+09 pb +- ( 8.86611e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 60000 ( 1h 11m 35s elapsed / 47m 43s left ) -> ETA: Tue Apr 09 23:39  XS = 4.75524e+09 pb +- ( 8.31058e+07 pb = 1 % )  
  Event 70000 ( 1h 23m 46s elapsed / 35m 54s left ) -> ETA: Tue Apr 09 23:39  XS = 4.71516e+09 pb +- ( 7.60124e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 80000 ( 1h 35m 47s elapsed / 23m 56s left ) -> ETA: Tue Apr 09 23:39  XS = 4.74075e+09 pb +- ( 7.08053e+07 pb = 1 % )  
  Event 90000 ( 1h 47m 53s elapsed / 11m 59s left ) -> ETA: Tue Apr 09 23:40  XS = 4.75431e+09 pb +- ( 6.73789e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 100000 ( 7195 s total ) = 1.20079e+06 evts/day                    
In Event_Handler::Finish : Summarizing the run may take some time.
Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1380){
}
--------------------------------------------------------------------------
Nominal or variation name     XS [pb]      RelDev  AbsErr [pb]      RelErr
--------------------------------------------------------------------------
Nominal                   4.74754e+09         0 %  6.42315e+07      1.35 %
--------------------------------------------------------------------------
Return_Value::PrintStatistics(): Statistics {
  Generated events: 100000
  Errors {
    From "Hadronization:Pythia8": 6 (100006) -> 0 %
  }
  New events {
    From "Beam_Remnants:Parametrised": 421 (100427) -> 0.4 %
  }
}
Blob_List: Momentum Fail Statistics {
}
Decay_Channel: Kinematics max fail statistics {
}
WARNING: You are using an unsupported development branch.
Remnant handling yields 421 fails in creating good beam breakups.
Remnant Kinematics: 421 errors (no kinematics found) and
                    111 warnings (scale kt down by factor of 10).
WARNING: Some settings that have been defined in the input
files and/or the command line have not been used. For more
details, see the Settings Report.
Time: 2h on Tue Apr  9 23:40:12 2024
 (User: 1h 59m 20s, System: 1s, Children User: 0s, Children System: 0s)
Welcome to Sherpa, Daniel Reichelt on ip3-cpu5.phyip3.dur.ac.uk. Initialization of framework underway.
The local time is Wed Apr 10 10:15:09 2024.
Run_Parameter::Init(): Setting memory limit to 503.276 GB.
Random::SetSeed(): Seed set to 1380
Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded.
-----------------------------------------------------------------------------
-----------    Event generation run with SHERPA started .......   -----------
-----------------------------------------------------------------------------
................................................ |       +                   
................................................ ||  |       +  +            
...................................        ....  | |         /   +           
................. ................   _,_ |  ....  ||         +|  +  +        
...............................  __.'  ,\|  ...  ||    /    +|          +    
.............................. (  \    \   ...  | |  |   + + \         +   
.............................  (    \   -/  .... ||       +    |          +  
........ ...................  <S   /()))))~~~~~~~~##     +     /\    +       
............................ (!H   (~~)))))~~~~~~#/     +  +    |  +         
................ ........... (!E   (~~~)))))     /|/    +         +          
............................ (!R   (~~~)))))   |||   + +            +        
..... ...................... (!P    (~~~~)))   /|  + +          +            
............................ (!A>    (~~~~~~~~~##        + +        +        
............................. ~~(!    '~~~~~~~ \       +     + +      +      
...............................  `~~~QQQQQDb //   |         + + +        +   
........................ ..........   IDDDDP||     \  + + + + +             +
....................................  IDDDI||       \                      + 
.................................... IHD HD||         \ + +  + + + + +      +
...................................  IHD ##|            :-) + +\          +  
......... ............... ......... IHI ## /      /   +  + + + +\       +    
................................... IHI/ /       /      + + + +        +     
................................... ## | | /    / + +      + + /      +      
....................... /TT\ .....  ##/ ///  / + + + + + + +/       +        
......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/   \         +   
....................../TTT/TTTT\...|TT/T\\\/   +    ++  + /              
-----------------------------------------------------------------------------

     SHERPA version 3.0.0beta1 (Dhaulagiri)
                                                                             
     Authors:        Enrico Bothmann, Stefan Hoeche, Frank Krauss,           
                     Silvan Kuttimalai, Marek Schoenherr, Holger Schulz,     
                     Steffen Schumann, Frank Siegert, Korinna Zapp           
     Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth,           
                     Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke,         
                     Jan Winter                                              
                                                                             
     This program uses a lot of genuine and original research work           
     by other people. Users are encouraged to refer to                       
     the various original publications.                                      
                                                                             
     Users are kindly asked to refer to the documentation                    
     published under JHEP 02(2009)007                                        
                                                                             
     Please visit also our homepage                                          
                                                                             
       http://sherpa.hepforge.org                                            
                                                                             
     for news, bugreports, updates and new releases.                         
                                                                             
-----------------------------------------------------------------------------
WARNING: You are using an unsupported development branch.
Git branch unknownurl, revision unknownrevision.
Hadron_Init::Init(): Initializing kf table for hadrons.
Beam_Spectra_Handler: type = Collider Setup
    for P+ (on = 0, p = (3500,0,0,3500))
    and P+ (on = 0, p = (3500,0,0,-3500)).
ISR handling:
    PDFs for hard scattering:              PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
    PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
Remnant_Handlers:
    hard process: P+: Hadron + P+: Hadron
Standard_Model::FixEWParameters() {
  Input scheme: Gmu
                Gmu scheme, input: GF, m_W, m_Z, m_h, widths
  Ren. scheme:  Gmu
                
  Parameters:   sin^2(\theta_W) = 0.223043 - 0.00110541 i
                vev             = 246.218
}
Running_AlphaQED::PrintSummary() {
  Setting \alpha according to EW scheme
  1/\alpha(0)   = 137.036
  1/\alpha(def) = 132.119
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
List of Particle Data 
     IDName     kfc            Mass           Width   Stable  Massive   Active          Yukawa
          d       1            0.01               0        1        0        1               0
          u       2           0.005               0        1        0        1               0
          s       3             0.2               0        1        0        1               0
          c       4            1.42               0        1        0        1               0
          b       5            4.92               0        1        0        1               0
          t       6           172.5            1.32        0        1        1           172.5
         e-      11        0.000511               0        1        0        1               0
         ve      12               0               0        1        0        1               0
        mu-      13           0.105               0        1        0        1               0
        vmu      14               0               0        1        0        1               0
       tau-      15           1.777     2.26735e-12        0        0        1               0
       vtau      16               0               0        1        0        1               0
          G      21               0               0        1        0        1               0
          P      22               0               0        1        0        1               0
          Z      23         91.1876          2.4952        0        1        1         91.1876
         W+      24          80.379           2.085        0        1        1          80.379
         h0      25          125.09          0.0041        0        1        1          125.09
  Instanton     999               0               0        0        0        1               0
List of Particle Containers 
     IDName     kfc     Constituents
          l      90     {e-,e+,mu-,mu+,tau-,tau+}
          v      91     {ve,veb,vmu,vmub,vtau,vtaub}
          f      92     {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub}
          j      93     {d,db,u,ub,s,sb,c,cb,b,bb,G}
          Q      94     {d,db,u,ub,s,sb,c,cb,b,bb}
        ewj      98     {d,db,u,ub,s,sb,c,cb,b,bb,G,P}
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Shower_Handler initialised.

+-----------------------------------------+
|   X   X   X XXXX  XXX  XXX  XXX         |
|  X X  XX XX X    X      X  X     X   X  |
| X   X X X X XXX  X XXX  X  X    XXX XXX |
| XXXXX X   X X    X   X  X  X     X   X  |
| X   X X   X XXXX  XXX  XXX  XXX         |
+-----------------------------------------+
| please cite: JHEP 0202:044,2002         |
+-----------------------------------------+
Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none)
+----------------------------------+
|                                  |
|      CCC  OOO  M   M I X   X     |
|     C    O   O MM MM I  X X      |
|     C    O   O M M M I   X       |
|     C    O   O M   M I  X X      |
|      CCC  OOO  M   M I X   X     |
|                                  |
+==================================+
|  Color dressed  Matrix Elements  |
|     http://comix.freacafe.de     |
|   please cite  JHEP12(2008)039   |
+----------------------------------+
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none)
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none)
Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks.
Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ).
Initialized the Matrix_Element_Handler for the hard processes.
Initialized the Beam_Remnant_Handler.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none)
MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1)
Underlying event/multiple interactions handler:
    MI[2]: on = 1 (type = 1, Amisic)
Soft-collision handlers:
    Type[2]: None
Hadron_Init::Init(): Initializing kf table for hadrons.
Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface")
Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings")
Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!")
Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values")
Initialized the Fragmentation_Handler.
Initialized the Hadron_Decay_Handler, Decay model = HADRONS++
Initialized the Soft_Photon_Handler.
Initialized the Reweighting.
ISR_Channels::CheckForStructuresFromME for 0: (none)
Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j
Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix)
2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 %
  reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) 
----------------------------------------------------------
-- SHERPA generates events with the following structure --
----------------------------------------------------------
Event generation   : Weighted
Perturbative       : Signal_Processes
Perturbative       : Minimum_Bias: None
Perturbative       : Hard_Decays
Perturbative       : Jet_Evolution:CFP
Perturbative       : Lepton_FS_QED_Corrections:None
Perturbative       : Multiple_Interactions: Amisic
Hadronization      : Beam_Remnants:Parametrised
Hadronization      : Hadronization:Pythia8
Hadronization      : Hadron_Decays
Userhook           : 
Analysis           : Rivet
---------------------------------------------------------
#--------------------------------------------------------------------------
#                     FastJet release 3.3.2 [fjcore]
#                 M. Cacciari, G.P. Salam and G. Soyez                  
#     A software package for jet finding and analysis at colliders      
#                           http://fastjet.fr                           
#	                                                                      
# Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package
# for scientific work and optionally PLB641(2006)57 [hep-ph/0512210].   
#                                                                       
# FastJet is provided without warranty under the terms of the GNU GPLv2.
# It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code
# and 3rd party plugin jet algorithms. See COPYING file for details.
#--------------------------------------------------------------------------
  Event 1 ( 3s elapsed / 37d 9h 13m 16s left ) -> ETA: Fri May 17 19:28  XS = 7.28493e+07 pb +- ( 7.28493e+07 pb = 100 % )  
  Event 2 ( 3s elapsed / 18d 23h 33m 16s left ) -> ETA: Mon Apr 29 09:48  XS = 5.46215e+07 pb +- ( 1.82278e+07 pb = 33 % )  
  Event 3 ( 3s elapsed / 12d 21h 15m 29s left ) -> ETA: Tue Apr 23 07:30  XS = 1.82072e+07 pb +- ( 1.24399e+07 pb = 68 % )  
  Event 4 ( 3s elapsed / 9d 20h 6m 36s left ) -> ETA: Sat Apr 20 06:21  XS = 9.44677e+06 pb +- ( 6.50034e+06 pb = 68 % )  
  Event 5 ( 3s elapsed / 7d 21h 26m 36s left ) -> ETA: Thu Apr 18 07:41  XS = 2.29172e+10 pb +- ( 2.29078e+10 pb = 99 % )  
  Event 6 ( 3s elapsed / 6d 14h 47m 43s left ) -> ETA: Wed Apr 17 01:02  XS = 2.19615e+10 pb +- ( 1.98145e+10 pb = 90 % )  
  Event 7 ( 3s elapsed / 5d 19h 17m 5s left ) -> ETA: Tue Apr 16 05:32  XS = 2.0595e+10 pb +- ( 1.8585e+10 pb = 90 % )  
  Event 8 ( 3s elapsed / 5d 3h 57m 26s left ) -> ETA: Mon Apr 15 14:12  XS = 1.93837e+10 pb +- ( 1.74996e+10 pb = 90 % )  
  Event 9 ( 3s elapsed / 4d 18h 11m 47s left ) -> ETA: Mon Apr 15 04:27  XS = 1.73433e+10 pb +- ( 1.56691e+10 pb = 90 % )  
  Event 10 ( 3s elapsed / 4d 9h 33m 16s left ) -> ETA: Sun Apr 14 19:48  XS = 1.64761e+10 pb +- ( 1.48903e+10 pb = 90 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements
[I] 1 G                     6 (     ->    2) [( 3.0632e+03,-0.0000e+00,-0.0000e+00, 3.0632e+03), p^2= 0.0000e+00, m= 0.0000e+00] (608,606) 0
[I] 1 s                    40 (     ->    4) [( 1.4582e+02,-0.0000e+00,-0.0000e+00, 1.4582e+02), p^2= 0.0000e+00, m= 4.0000e-01] (606,  0) 0
[I] 1 G                    66 (     ->    6) [( 4.1113e+01,-0.0000e+00,-0.0000e+00, 4.1113e+01), p^2= 0.0000e+00, m= 0.0000e+00] (653,608) 0
[I] 1 G                    81 (     ->    8) [( 7.6046e+01,-0.0000e+00,-0.0000e+00, 7.6046e+01), p^2= 0.0000e+00, m= 0.0000e+00] (664,653) 0
[I] 1 u                    91 (     ->   10) [( 6.7249e+01,-0.0000e+00,-0.0000e+00, 6.7249e+01), p^2= 0.0000e+00, m= 3.0000e-01] (648,  0) 0
[I] 1 G                   104 (     ->   12) [( 2.6718e+01, 0.0000e+00, 0.0000e+00, 2.6718e+01), p^2= 0.0000e+00, m= 0.0000e+00] (677,664) 0
[I] 1 G                   112 (     ->   14) [( 3.0792e+01,-0.0000e+00,-0.0000e+00, 3.0792e+01), p^2= 0.0000e+00, m= 0.0000e+00] (679,677) 0
 and Particle List with 7 elements
[I] 1 G                     5 (     ->    2) [( 1.7556e+03,-0.0000e+00,-0.0000e+00,-1.7556e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,625) 1
[I] 1 u                    41 (     ->    4) [( 1.6774e+03,-0.0000e+00,-0.0000e+00,-1.6774e+03), p^2= 0.0000e+00, m= 3.0000e-01] (625,  0) 1
[I] 1 db                   67 (     ->    6) [( 5.8881e+01,-0.0000e+00,-0.0000e+00,-5.8881e+01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,657) 1
[I] 1 G                    82 (     ->    8) [( 1.0176e+00,-0.0000e+00,-0.0000e+00,-1.0176e+00), p^2= 0.0000e+00, m= 0.0000e+00] (657,661) 1
[I] 1 G                    92 (     ->   10) [( 4.4827e+00,-0.0000e+00,-0.0000e+00,-4.4827e+00), p^2= 0.0000e+00, m= 0.0000e+00] (668,605) 1
[I] 1 d                   105 (     ->   12) [( 4.9378e-01, 0.0000e+00, 0.0000e+00,-4.9378e-01), p^2= 0.0000e+00, m= 3.0000e-01] (661,  0) 1
[I] 1 G                   113 (     ->   14) [( 8.4631e-01,-0.0000e+00,-0.0000e+00,-8.4631e-01), p^2= 0.0000e+00, m= 0.0000e+00] (680,668) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                122 (     ->     ) [( 3.4997e+01, 0.0000e+00, 0.0000e+00, 3.4996e+01), p^2= 6.2855e-03, m= 5.7933e-01] (  0,679) 0
[B] 1 sb                   60 (     ->     ) [( 1.4015e+01, 0.0000e+00, 0.0000e+00, 1.4015e+01), p^2= 1.0080e-03, m= 0.0000e+00] (  0,648) 0
 and Particle List with 3 elements
[B] 1 uu_1                123 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,680) 1
[B] 1 d                    76 (     ->     ) [( 5.3895e-01, 0.0000e+00, 0.0000e+00,-5.3890e-01), p^2= 5.7692e-05, m= 0.0000e+00] (649,  0) 1
[B] 1 ub                   61 (     ->     ) [( 7.2739e-01, 0.0000e+00, 0.0000e+00,-7.2732e-01), p^2= 1.0509e-04, m= 0.0000e+00] (  0,649) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 20 ( 4s elapsed / 2d 14h 38m 15s left ) -> ETA: Sat Apr 13 00:53  XS = 9.01367e+09 pb +- ( 7.11351e+09 pb = 78 % )  
  Event 30 ( 5s elapsed / 1d 23h 13m 14s left ) -> ETA: Fri Apr 12 09:28  XS = 5.91142e+09 pb +- ( 4.47251e+09 pb = 75 % )  
  Event 40 ( 5s elapsed / 1d 15h 59m 54s left ) -> ETA: Fri Apr 12 02:15  XS = 6.66194e+09 pb +- ( 3.73025e+09 pb = 55 % )  
  Event 50 ( 6s elapsed / 1d 11h 36m 33s left ) -> ETA: Thu Apr 11 21:51  XS = 6.66797e+09 pb +- ( 3.25848e+09 pb = 48 % )  
  Event 60 ( 7s elapsed / 1d 8h 32m 39s left ) -> ETA: Thu Apr 11 18:47  XS = 6.09881e+09 pb +- ( 2.69367e+09 pb = 44 % )  
  Event 70 ( 7s elapsed / 1d 6h 18m 55s left ) -> ETA: Thu Apr 11 16:34  XS = 7.35669e+09 pb +- ( 2.77637e+09 pb = 37 % )  
  Event 80 ( 8s elapsed / 1d 4h 1m 6s left ) -> ETA: Thu Apr 11 14:16  XS = 6.69061e+09 pb +- ( 2.33782e+09 pb = 34 % )  
  Event 90 ( 8s elapsed / 1d 3h 2m 4s left ) -> ETA: Thu Apr 11 13:17  XS = 6.14647e+09 pb +- ( 2.08937e+09 pb = 33 % )  
  Event 100 ( 9s elapsed / 1d 1h 54m 50s left ) -> ETA: Thu Apr 11 12:10  XS = 5.41184e+09 pb +- ( 1.8187e+09 pb = 33 % )  
  Event 200 ( 15s elapsed / 21h 34s left ) -> ETA: Thu Apr 11 07:16  XS = 5.83679e+09 pb +- ( 1.51231e+09 pb = 25 % )  
  Event 300 ( 21s elapsed / 19h 46m 51s left ) -> ETA: Thu Apr 11 06:02  XS = 4.86832e+09 pb +- ( 1.07054e+09 pb = 21 % )  
  Event 400 ( 27s elapsed / 18h 58m 17s left ) -> ETA: Thu Apr 11 05:13  XS = 4.77849e+09 pb +- ( 8.74927e+08 pb = 18 % )  
  Event 500 ( 32s elapsed / 18h 14m 47s left ) -> ETA: Thu Apr 11 04:30  XS = 4.10258e+09 pb +- ( 6.83492e+08 pb = 16 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements
[I] 1 u                     6 (     ->    2) [( 3.0260e+03,-0.0000e+00,-0.0000e+00, 3.0260e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601,  0) 0
[I] 1 G                    42 (     ->    4) [( 4.5558e+02,-0.0000e+00,-0.0000e+00, 4.5558e+02), p^2= 0.0000e+00, m= 0.0000e+00] (636,601) 0
[I] 1 G                    66 (     ->    6) [( 6.9378e+00,-0.0000e+00,-0.0000e+00, 6.9378e+00), p^2= 0.0000e+00, m= 0.0000e+00] (654,636) 0
[I] 1 G                    80 (     ->    8) [( 9.8124e+00,-0.0000e+00,-0.0000e+00, 9.8124e+00), p^2= 0.0000e+00, m= 0.0000e+00] (667,654) 0
[I] 1 db                   96 (     ->   10) [( 6.1400e-01,-0.0000e+00,-0.0000e+00, 6.1400e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,631) 0
 and Particle List with 5 elements
[I] 1 G                     5 (     ->    2) [( 9.8307e+02,-0.0000e+00,-0.0000e+00,-9.8307e+02), p^2= 0.0000e+00, m= 0.0000e+00] (624,607) 1
[I] 1 G                    43 (     ->    4) [( 1.2403e+02,-0.0000e+00,-0.0000e+00,-1.2403e+02), p^2= 0.0000e+00, m= 0.0000e+00] (607,631) 1
[I] 1 G                    67 (     ->    6) [( 1.1874e+03,-0.0000e+00,-0.0000e+00,-1.1874e+03), p^2= 0.0000e+00, m= 0.0000e+00] (657,624) 1
[I] 1 G                    81 (     ->    8) [( 5.7961e+02,-0.0000e+00,-0.0000e+00,-5.7961e+02), p^2= 0.0000e+00, m= 0.0000e+00] (660,657) 1
[I] 1 G                    97 (     ->   10) [( 6.9929e+01,-0.0000e+00,-0.0000e+00,-6.9929e+01), p^2= 0.0000e+00, m= 0.0000e+00] (631,678) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                104 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,667) 0
[B] 1 d                   101 (     ->     ) [( 1.0307e+00, 0.0000e+00, 0.0000e+00, 1.0305e+00), p^2= 2.5922e-04, m= 0.0000e+00] (631,  0) 0
 and Particle List with 2 elements
[B] 1 ud_0                106 (     ->     ) [( 2.6503e+02, 0.0000e+00, 0.0000e+00,-2.6503e+02), p^2= 3.1779e-02, m= 5.7933e-01] (  0,660) 1
[B] 1 u                   105 (     ->     ) [( 2.9092e+02, 0.0000e+00, 0.0000e+00,-2.9092e+02), p^2= 3.8291e-02, m= 0.0000e+00] (678,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 600 ( 39s elapsed / 18h 12m 7s left ) -> ETA: Thu Apr 11 04:27  XS = 4.00582e+09 pb +- ( 6.1294e+08 pb = 15 % )  
  Event 700 ( 45s elapsed / 17h 53m 46s left ) -> ETA: Thu Apr 11 04:09  XS = 4.56355e+09 pb +- ( 5.95953e+08 pb = 13 % )  
  Event 800 ( 50s elapsed / 17h 36m 14s left ) -> ETA: Thu Apr 11 03:52  XS = 4.94893e+09 pb +- ( 6.08199e+08 pb = 12 % )  
  Event 900 ( 56s elapsed / 17h 30m 43s left ) -> ETA: Thu Apr 11 03:46  XS = 4.86403e+09 pb +- ( 5.59772e+08 pb = 11 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 cb                    6 (     ->    2) [( 1.9406e+03,-0.0000e+00,-0.0000e+00, 1.9406e+03), p^2= 0.0000e+00, m= 1.8000e+00] (  0,601) 0
[I] 1 db                   63 (     ->    4) [( 4.0525e+02,-0.0000e+00,-0.0000e+00, 4.0525e+02), p^2= 0.0000e+00, m= 3.0000e-01] (  0,649) 0
 and Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 3.4965e+03,-0.0000e+00,-0.0000e+00,-3.4965e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 sb                   64 (     ->    4) [( 1.9051e+00,-0.0000e+00,-0.0000e+00,-1.9051e+00), p^2= 0.0000e+00, m= 4.0000e-01] (  0,601) 1
 and the corresponding remnants are Particle List with 4 elements
[B] 1 ud_0                 75 (     ->     ) [( 1.0865e+03, 0.0000e+00, 0.0000e+00, 1.0865e+03), p^2= 2.5727e-01, m= 5.7933e-01] (  0,658) 0
[B] 1 d                    70 (     ->     ) [( 1.2641e+01, 0.0000e+00, 0.0000e+00, 1.2641e+01), p^2= 3.4822e-05, m= 0.0000e+00] (658,  0) 0
[B] 1 c                    58 (     ->     ) [( 2.2694e+00, 0.0000e+00, 0.0000e+00, 2.2694e+00), p^2= 1.1223e-06, m= 0.0000e+00] (649,  0) 0
[B] 1 u                    74 (     ->     ) [( 5.2757e+01, 0.0000e+00, 0.0000e+00, 5.2757e+01), p^2= 6.0657e-04, m= 0.0000e+00] (601,  0) 0
 and Particle List with 3 elements
[B] 1 ud_0                 77 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,659) 1
[B] 1 s                    71 (     ->     ) [( 4.8049e-01, 0.0000e+00, 0.0000e+00,-4.8045e-01), p^2= 3.6990e-05, m= 0.0000e+00] (659,  0) 1
[B] 1 u                    76 (     ->     ) [( 1.0894e+00, 0.0000e+00, 0.0000e+00,-1.0893e+00), p^2= 1.9013e-04, m= 0.0000e+00] (603,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 1000 ( 1m 3s elapsed / 17h 32m 26s left ) -> ETA: Thu Apr 11 03:48  XS = 4.82772e+09 pb +- ( 5.50867e+08 pb = 11 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 u                     6 (     ->    2) [( 1.4563e+03,-0.0000e+00,-0.0000e+00, 1.4563e+03), p^2= 0.0000e+00, m= 3.0000e-01] (611,  0) 0
[I] 1 d                    51 (     ->    4) [( 3.2993e+02,-0.0000e+00,-0.0000e+00, 3.2993e+02), p^2= 0.0000e+00, m= 3.0000e-01] (642,  0) 0
[I] 1 G                    66 (     ->    6) [( 6.0433e+02,-0.0000e+00,-0.0000e+00, 6.0433e+02), p^2= 0.0000e+00, m= 0.0000e+00] (654,642) 0
 and Particle List with 3 elements
[I] 1 G                     5 (     ->    2) [( 3.4698e+03,-0.0000e+00,-0.0000e+00,-3.4698e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 db                   52 (     ->    4) [( 2.1192e+01,-0.0000e+00,-0.0000e+00,-2.1192e+01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,647) 1
[I] 1 G                    67 (     ->    6) [( 7.4522e+00,-0.0000e+00,-0.0000e+00,-7.4522e+00), p^2= 0.0000e+00, m= 0.0000e+00] (647,658) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 78 (     ->     ) [( 9.8100e+02, 0.0000e+00, 0.0000e+00, 9.8099e+02), p^2= 2.1819e-01, m= 5.7933e-01] (  0,654) 0
[B] 1 db                   60 (     ->     ) [( 1.2842e+02, 0.0000e+00, 0.0000e+00, 1.2842e+02), p^2= 3.7391e-03, m= 0.0000e+00] (  0,611) 0
 and Particle List with 3 elements
[B] 1 uu_1                 80 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,601) 1
[B] 1 d                    61 (     ->     ) [( 5.2305e-01, 0.0000e+00, 0.0000e+00,-5.2301e-01), p^2= 4.3461e-05, m= 0.0000e+00] (603,  0) 1
[B] 1 d                    79 (     ->     ) [( 1.0603e+00, 0.0000e+00, 0.0000e+00,-1.0602e+00), p^2= 1.7858e-04, m= 0.0000e+00] (658,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 1.3051e+03,-0.0000e+00,-0.0000e+00, 1.3051e+03), p^2= 0.0000e+00, m= 0.0000e+00] (611,612) 0
[I] 1 G                    56 (     ->    4) [( 1.3004e+03,-0.0000e+00,-0.0000e+00, 1.3004e+03), p^2= 0.0000e+00, m= 0.0000e+00] (643,611) 0
 and Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 3.4939e+03,-0.0000e+00,-0.0000e+00,-3.4939e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 1
[I] 1 sb                   57 (     ->    4) [( 4.7571e+00,-0.0000e+00,-0.0000e+00,-4.7571e+00), p^2= 0.0000e+00, m= 4.0000e-01] (  0,603) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 70 (     ->     ) [( 4.8483e+02, 0.0000e+00, 0.0000e+00, 4.8483e+02), p^2= 6.6099e-02, m= 5.7933e-01] (  0,643) 0
[B] 1 u                    69 (     ->     ) [( 4.0964e+02, 0.0000e+00, 0.0000e+00, 4.0964e+02), p^2= 4.7189e-02, m= 0.0000e+00] (612,  0) 0
 and Particle List with 3 elements
[B] 1 ud_0                 72 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,650) 1
[B] 1 s                    66 (     ->     ) [( 9.0255e-01, 0.0000e+00, 0.0000e+00,-9.0247e-01), p^2= 1.5333e-04, m= 0.0000e+00] (650,  0) 1
[B] 1 u                    71 (     ->     ) [( 4.3371e-01, 0.0000e+00, 0.0000e+00,-4.3366e-01), p^2= 3.5405e-05, m= 0.0000e+00] (602,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 2000 ( 2m 7s elapsed / 17h 38m 2s left ) -> ETA: Thu Apr 11 03:55  
    Memory usage increased by 16 MB, now 144 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.30784e+09 pb +- ( 4.56719e+08 pb = 10 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 3000 ( 3m 14s elapsed / 17h 57m 2s left ) -> ETA: Thu Apr 11 04:15  XS = 4.26488e+09 pb +- ( 3.47578e+08 pb = 8 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 4000 ( 4m 18s elapsed / 17h 53m 11s left ) -> ETA: Thu Apr 11 04:12  XS = 4.44009e+09 pb +- ( 3.22746e+08 pb = 7 % )  
  Event 5000 ( 5m 24s elapsed / 17h 57m 35s left ) -> ETA: Thu Apr 11 04:18  XS = 4.38423e+09 pb +- ( 2.82329e+08 pb = 6 % )  
  Event 6000 ( 6m 32s elapsed / 18h 4m 13s left ) -> ETA: Thu Apr 11 04:25  XS = 4.42375e+09 pb +- ( 2.63402e+08 pb = 5 % )  
  Event 7000 ( 7m 37s elapsed / 18h 2m 15s left ) -> ETA: Thu Apr 11 04:25  XS = 4.48664e+09 pb +- ( 2.45319e+08 pb = 5 % )  
  Event 8000 ( 8m 43s elapsed / 18h 1m 39s left ) -> ETA: Thu Apr 11 04:25  XS = 4.48808e+09 pb +- ( 2.25053e+08 pb = 5 % )  
  Event 9000 ( 9m 47s elapsed / 17h 58m 47s left ) -> ETA: Thu Apr 11 04:23  XS = 4.54908e+09 pb +- ( 2.12067e+08 pb = 4 % )  
  Event 10000 ( 10m 50s elapsed / 17h 53m 32s left ) -> ETA: Thu Apr 11 04:19  XS = 4.52073e+09 pb +- ( 1.98059e+08 pb = 4 % )  
  Event 20000 ( 22m 8s elapsed / 18h 5m 14s left ) -> ETA: Thu Apr 11 04:42  XS = 4.70351e+09 pb +- ( 1.45837e+08 pb = 3 % )  
Pythia8 hadronisation failed.

  Event 30000 ( 33m 21s elapsed / 17h 58m 32s left ) -> ETA: Thu Apr 11 04:47  
    Memory usage increased by 17 MB, now 161 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.77528e+09 pb +- ( 1.18018e+08 pb = 2 % )  
  Event 40000 ( 44m 23s elapsed / 17h 45m 24s left ) -> ETA: Thu Apr 11 04:45  XS = 4.78119e+09 pb +- ( 1.02905e+08 pb = 2 % )  
Pythia8 hadronisation failed.

  Event 50000 ( 55m 29s elapsed / 17h 34m 14s left ) -> ETA: Thu Apr 11 04:44  XS = 4.78967e+09 pb +- ( 9.23939e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 60000 ( 1h 6m 28s elapsed / 17h 21m 19s left ) -> ETA: Thu Apr 11 04:43  
    Memory usage increased by 51 MB, now 212 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.82223e+09 pb +- ( 8.42828e+07 pb = 1 % )  
  Event 70000 ( 1h 17m 22s elapsed / 17h 7m 57s left ) -> ETA: Thu Apr 11 04:40  XS = 4.81301e+09 pb +- ( 7.79082e+07 pb = 1 % )  
  Event 80000 ( 1h 28m 25s elapsed / 16h 56m 56s left ) -> ETA: Thu Apr 11 04:40  XS = 4.81049e+09 pb +- ( 7.27112e+07 pb = 1 % )  
  Event 90000 ( 1h 39m 22s elapsed / 16h 44m 49s left ) -> ETA: Thu Apr 11 04:39  XS = 4.8471e+09 pb +- ( 6.87151e+07 pb = 1 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 100000 ( 1h 49m 43s elapsed / 16h 27m 30s left ) -> ETA: Thu Apr 11 04:32  XS = 4.84402e+09 pb +- ( 6.50814e+07 pb = 1 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 200000 ( 3h 27m 34s elapsed / 13h 50m 17s left ) -> ETA: Thu Apr 11 03:33  XS = 4.80845e+09 pb +- ( 4.56288e+07 pb = 0 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 300000 ( 5h 6m 35s elapsed / 11h 55m 23s left ) -> ETA: Thu Apr 11 03:17  XS = 4.82056e+09 pb +- ( 3.7361e+07 pb = 0 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 400000 ( 6h 48m 41s elapsed / 10h 13m 1s left ) -> ETA: Thu Apr 11 03:16  
    Memory usage increased by 30 MB, now 243 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.83035e+09 pb +- ( 3.25423e+07 pb = 0 % )  
  Event 500000 ( 8h 31m 33s elapsed / 8h 31m 33s left ) -> ETA: Thu Apr 11 03:18  XS = 4.82205e+09 pb +- ( 2.92666e+07 pb = 0 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

WARNING: last allowed error message from 'Hadronize'
Pythia8 hadronisation failed.

  Event 600000 ( 10h 14m 18s elapsed / 6h 49m 32s left ) -> ETA: Thu Apr 11 03:19  
    Memory usage increased by 20 MB, now 263 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.82467e+09 pb +- ( 2.6685e+07 pb = 0 % )  
  Event 700000 ( 11h 56m 18s elapsed / 5h 6m 59s left ) -> ETA: Thu Apr 11 03:18  XS = 4.81379e+09 pb +- ( 2.46976e+07 pb = 0 % )  
  Event 800000 ( 13h 43m 13s elapsed / 3h 25m 48s left ) -> ETA: Thu Apr 11 03:24  XS = 4.82023e+09 pb +- ( 2.3106e+07 pb = 0 % )  
  Event 900000 ( 15h 30m 59s elapsed / 1h 43m 26s left ) -> ETA: Thu Apr 11 03:29  
    Memory usage increased by 24 MB, now 288 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.81985e+09 pb +- ( 2.17566e+07 pb = 0 % )  
  Event 1000000 ( 62550 s total ) = 1.38129e+06 evts/day                    
In Event_Handler::Finish : Summarizing the run may take some time.
Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_noWeight/1380){
}
--------------------------------------------------------------------------
Nominal or variation name     XS [pb]      RelDev  AbsErr [pb]      RelErr
--------------------------------------------------------------------------
Nominal                   4.80864e+09         0 %  2.05686e+07      0.42 %
--------------------------------------------------------------------------
Return_Value::PrintStatistics(): Statistics {
  Generated events: 1000000
  Errors {
    From "Hadronization:Pythia8": 49 (1000049) -> 0 %
  }
  New events {
    From "Beam_Remnants:Parametrised": 3537 (1003586) -> 0.3 %
  }
}
Blob_List: Momentum Fail Statistics {
}
Error messages from 'Hadronize' exceeded frequency limit: 49/20
Decay_Channel: Kinematics max fail statistics {
}
WARNING: You are using an unsupported development branch.
Remnant handling yields 3537 fails in creating good beam breakups.
Remnant Kinematics: 3537 errors (no kinematics found) and
                    702 warnings (scale kt down by factor of 10).
WARNING: Some settings that have been defined in the input
files and/or the command line have not been used. For more
details, see the Settings Report.
Time: 17h 22m 35s on Thu Apr 11 03:37:44 2024
 (User: 17h 12m 41s, System: 4m 7s, Children User: 0s, Children System: 0s)