Welcome to Sherpa, Daniel Reichelt on ip3-cpu3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Mar 7 21:23:53 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1338 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... <S /()))))~~~~~~~~## + /\ + ............................ (!H (~~)))))~~~~~~#/ + + | + ................ ........... (!E (~~~))))) /|/ + + ............................ (!R (~~~))))) ||| + + + ..... ...................... (!P (~~~~))) /| + + + ............................ (!A> (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mMM[0m [34mMM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m [34mM[0m I [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. [34mPythia8_Hadronisation::Pythia8_Hadronisation[0m:([32m"Initialising Pythia8 hadronisation interface"[0m) [34mPythia8_Hadronisation::ApplyPythiaSettings[0m:([32m"Applying Pythia8 settings"[0m) [34mPythia8_Hadronisation::HarmonizeMasses[0m:([32m"Harmonizing particle masses and widths!"[0m) [34mPythia8_Hadronisation::ModifyPythiaValues[0m:([32m"Changing Pythia Values"[0m) Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) [1m2_2__j__j__j__j[0m : [34m[1m4.95201e+09 pb[0m +- ( [31m2.57792e+07 pb = 0.52058 %[0m ) [1m exp. eff: [31m0.320522 %[0m reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 10d 5h 49m 56s left ) -> ETA: Mon Mar 18 03:13 XS = 6.289e-09 pb +- ( 6.289e-09 pb = 100 % ) Event 2 ( 3s elapsed / 5d 7h 25m 46s left ) -> ETA: Wed Mar 13 04:49 XS = 609.023 pb +- ( 609.023 pb = 99 % ) Event 3 ( 3s elapsed / 3d 13h 52m 42s left ) -> ETA: Mon Mar 11 11:16 XS = 203.014 pb +- ( 203.006 pb = 99 % ) Event 4 ( 3s elapsed / 2d 16h 55m 46s left ) -> ETA: Sun Mar 10 14:19 XS = 42069 pb +- ( 41933.8 pb = 99 % ) Event 5 ( 3s elapsed / 2d 5h 3m 16s left ) -> ETA: Sun Mar 10 02:27 XS = 32360.7 pb +- ( 32259.4 pb = 99 % ) Event 6 ( 3s elapsed / 1d 21h 1m 19s left ) -> ETA: Sat Mar 09 18:25 XS = 21034.5 pb +- ( 20970.5 pb = 99 % ) Event 7 ( 3s elapsed / 1d 15h 5m 10s left ) -> ETA: Sat Mar 09 12:29 XS = 17528.8 pb +- ( 17475.8 pb = 99 % ) Event 8 ( 4s elapsed / 1d 10h 48m 28s left ) -> ETA: Sat Mar 09 08:12 XS = 16220.1 pb +- ( 16130.2 pb = 99 % ) Event 9 ( 4s elapsed / 1d 7h 1m 2s left ) -> ETA: Sat Mar 09 04:25 XS = 4.86575e+07 pb +- ( 4.86412e+07 pb = 99 % ) Event 10 ( 4s elapsed / 1d 4h 49m 5s left ) -> ETA: Sat Mar 09 02:13 XS = 4.69197e+07 pb +- ( 4.69041e+07 pb = 99 % ) Event 20 ( 4s elapsed / 16h 54m 30s left ) -> ETA: Fri Mar 08 14:18 XS = 3.14013e+08 pb +- ( 1.76855e+08 pb = 56 % ) Event 30 ( 5s elapsed / 13h 27s left ) -> ETA: Fri Mar 08 10:24 XS = 1.26881e+09 pb +- ( 1.04021e+09 pb = 81 % ) Event 40 ( 6s elapsed / 10h 56m 8s left ) -> ETA: Fri Mar 08 08:20 XS = 1.36874e+09 pb +- ( 8.72274e+08 pb = 63 % ) Event 50 ( 7s elapsed / 9h 49m 2s left ) -> ETA: Fri Mar 08 07:13 XS = 1.34694e+09 pb +- ( 7.29525e+08 pb = 54 % ) Event 60 ( 8s elapsed / 9h 26m 31s left ) -> ETA: Fri Mar 08 06:50 XS = 1.20201e+09 pb +- ( 6.41673e+08 pb = 53 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 c 6 ( -> 2) [( 3.4937e+03,-0.0000e+00,-0.0000e+00, 3.4937e+03), p^2= 0.0000e+00, m= 1.8000e+00] (601, 0) 0 [I] 1 db 51 ( -> 4) [( 3.2605e+00,-0.0000e+00,-0.0000e+00, 3.2605e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 and Particle List with 2 elements [I] 1 u 5 ( -> 2) [( 1.2784e+03,-0.0000e+00,-0.0000e+00,-1.2784e+03), p^2= 0.0000e+00, m= 3.0000e-01] (636, 0) 1 [I] 1 ub 52 ( -> 4) [( 2.3597e+02,-0.0000e+00,-0.0000e+00,-2.3597e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,636) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 63 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,645) 0 [B] 1 d 58 ( -> ) [( 3.9431e-01, 0.0000e+00, 0.0000e+00, 3.9430e-01), p^2= 1.2948e-05, m= 0.0000e+00] (645, 0) 0 [B] 1 cb 46 ( -> ) [( 2.2293e+00, 0.0000e+00, 0.0000e+00, 2.2292e+00), p^2= 4.1388e-04, m= 0.0000e+00] ( 0,639) 0 [B] 1 u 62 ( -> ) [( 3.9667e-01, 0.0000e+00, 0.0000e+00, 3.9665e-01), p^2= 1.3103e-05, m= 0.0000e+00] (639, 0) 0 and Particle List with 2 elements [B] 1 ud_0 64 ( -> ) [( 1.6443e+03, 0.0000e+00, 0.0000e+00,-1.6443e+03), p^2= 3.4249e-01, m= 5.7933e-01] ( 0,646) 1 [B] 1 u 59 ( -> ) [( 3.4133e+02, 0.0000e+00, 0.0000e+00,-3.4133e+02), p^2= 1.4759e-02, m= 0.0000e+00] (646, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 70 ( 8s elapsed / 8h 40m 5s left ) -> ETA: Fri Mar 08 06:04 XS = 1.02628e+09 pb +- ( 5.24794e+08 pb = 51 % ) Event 80 ( 9s elapsed / 8h 8m 23s left ) -> ETA: Fri Mar 08 05:32 XS = 1.10401e+09 pb +- ( 5.00511e+08 pb = 45 % ) Event 90 ( 10s elapsed / 7h 52m 58s left ) -> ETA: Fri Mar 08 05:17 XS = 9.40146e+08 pb +- ( 4.21985e+08 pb = 44 % ) Event 100 ( 10s elapsed / 7h 26m 4s left ) -> ETA: Fri Mar 08 04:50 XS = 2.01347e+09 pb +- ( 1.00675e+09 pb = 50 % ) Event 200 ( 17s elapsed / 6h 10m 19s left ) -> ETA: Fri Mar 08 03:34 XS = 3.47823e+09 pb +- ( 1.02431e+09 pb = 29 % ) Event 300 ( 24s elapsed / 5h 35m 34s left ) -> ETA: Fri Mar 08 02:59 XS = 3.9969e+09 pb +- ( 1.0088e+09 pb = 25 % ) Event 400 ( 30s elapsed / 5h 15m 32s left ) -> ETA: Fri Mar 08 02:39 XS = 4.36953e+09 pb +- ( 9.25102e+08 pb = 21 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 3.4923e+03,-0.0000e+00,-0.0000e+00, 3.4923e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 G 30 ( -> 4) [( 2.1629e+00,-0.0000e+00,-0.0000e+00, 2.1629e+00), p^2= 0.0000e+00, m= 0.0000e+00] (624,601) 0 [I] 1 ub 44 ( -> 6) [( 3.2838e+00,-0.0000e+00,-0.0000e+00, 3.2838e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,632) 0 [I] 1 G 63 ( -> 8) [( 6.3495e-01,-0.0000e+00,-0.0000e+00, 6.3495e-01), p^2= 0.0000e+00, m= 0.0000e+00] (648,624) 0 [I] 1 G 76 ( -> 10) [( 1.1209e-01, 0.0000e+00, 0.0000e+00, 1.1209e-01), p^2= 0.0000e+00, m= 0.0000e+00] (655,648) 0 and Particle List with 5 elements [I] 1 G 6 ( -> 2) [( 6.5540e+01,-0.0000e+00,-0.0000e+00,-6.5540e+01), p^2= 0.0000e+00, m= 0.0000e+00] (619,617) 1 [I] 1 u 31 ( -> 4) [( 1.0299e+03,-0.0000e+00,-0.0000e+00,-1.0299e+03), p^2= 0.0000e+00, m= 3.0000e-01] (617, 0) 1 [I] 1 G 45 ( -> 6) [( 4.6293e+02,-0.0000e+00,-0.0000e+00,-4.6293e+02), p^2= 0.0000e+00, m= 0.0000e+00] (638,619) 1 [I] 1 u 64 ( -> 8) [( 1.0066e+03,-0.0000e+00,-0.0000e+00,-1.0066e+03), p^2= 0.0000e+00, m= 3.0000e-01] (624, 0) 1 [I] 1 G 77 ( -> 10) [( 1.4789e+02, 0.0000e+00, 0.0000e+00,-1.4789e+02), p^2= 0.0000e+00, m= 0.0000e+00] (648,624) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 83 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,655) 0 [B] 1 u 58 ( -> ) [( 5.9295e-01, 0.0000e+00, 0.0000e+00, 5.9291e-01), p^2= 5.7788e-05, m= 0.0000e+00] (603, 0) 0 [B] 1 u 82 ( -> ) [( 9.3735e-01, 0.0000e+00, 0.0000e+00, 9.3727e-01), p^2= 1.4441e-04, m= 0.0000e+00] (632, 0) 0 and Particle List with 2 elements [B] 1 ud_0 84 ( -> ) [( 2.4921e+02, 0.0000e+00, 0.0000e+00,-2.4921e+02), p^2= 1.9847e-02, m= 5.7933e-01] ( 0,648) 1 [B] 1 ub 71 ( -> ) [( 5.3791e+02, 0.0000e+00, 0.0000e+00,-5.3791e+02), p^2= 9.2463e-02, m= 0.0000e+00] ( 0,638) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 36s elapsed / 5h 4m 43s left ) -> ETA: Fri Mar 08 02:29 XS = 4.40842e+09 pb +- ( 7.95093e+08 pb = 18 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 2.2448e+03,-0.0000e+00,-0.0000e+00, 2.2448e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 d 55 ( -> 4) [( 9.2135e+01,-0.0000e+00,-0.0000e+00, 9.2135e+01), p^2= 0.0000e+00, m= 3.0000e-01] (603, 0) 0 [I] 1 G 88 ( -> 6) [( 4.7964e+02,-0.0000e+00,-0.0000e+00, 4.7964e+02), p^2= 0.0000e+00, m= 0.0000e+00] (673,601) 0 [I] 1 u 103 ( -> 8) [( 2.5667e+02,-0.0000e+00,-0.0000e+00, 2.5667e+02), p^2= 0.0000e+00, m= 3.0000e-01] (684, 0) 0 and Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 2.7532e+03,-0.0000e+00,-0.0000e+00,-2.7532e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 1 [I] 1 u 56 ( -> 4) [( 7.4029e+02,-0.0000e+00,-0.0000e+00,-7.4029e+02), p^2= 0.0000e+00, m= 3.0000e-01] (662, 0) 1 [I] 1 u 89 ( -> 6) [( 4.5910e+00,-0.0000e+00,-0.0000e+00,-4.5910e+00), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 1 [I] 1 G 104 ( -> 8) [( 9.8314e-01,-0.0000e+00,-0.0000e+00,-9.8314e-01), p^2= 0.0000e+00, m= 0.0000e+00] (689,662) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 113 ( -> ) [( 4.1256e+02, 0.0000e+00, 0.0000e+00, 4.1256e+02), p^2= 1.0031e-01, m= 7.7133e-01] ( 0,684) 0 [B] 1 ub 110 ( -> ) [( 1.4243e+01, 0.0000e+00, 0.0000e+00, 1.4243e+01), p^2= 1.1956e-04, m= 0.0000e+00] ( 0,673) 0 and Particle List with 2 elements [B] 1 ud_0 114 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,689) 1 [B] 1 ub 83 ( -> ) [( 9.0846e-01, 0.0000e+00, 0.0000e+00,-9.0833e-01), p^2= 2.2849e-04, m= 0.0000e+00] ( 0,604) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 600 ( 42s elapsed / 4h 56m 22s left ) -> ETA: Fri Mar 08 02:21 XS = 4.2555e+09 pb +- ( 7.22072e+08 pb = 16 % ) Event 700 ( 48s elapsed / 4h 46m 48s left ) -> ETA: Fri Mar 08 02:11 XS = 4.14549e+09 pb +- ( 6.53839e+08 pb = 15 % ) Event 800 ( 54s elapsed / 4h 43m 27s left ) -> ETA: Fri Mar 08 02:08 XS = 3.89711e+09 pb +- ( 5.77636e+08 pb = 14 % ) Event 900 ( 1m 2s elapsed / 4h 46m 19s left ) -> ETA: Fri Mar 08 02:11 XS = 3.81513e+09 pb +- ( 5.32114e+08 pb = 13 % ) Event 1000 ( 1m 8s elapsed / 4h 43m 54s left ) -> ETA: Fri Mar 08 02:08 [1m Memory usage increased by 18 MB, now 146 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.28898e+09 pb +- ( 5.66387e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 d 6 ( -> 2) [( 4.9202e+02,-0.0000e+00,-0.0000e+00, 4.9202e+02), p^2= 0.0000e+00, m= 3.0000e-01] (622, 0) 0 [I] 1 d 40 ( -> 4) [( 2.5419e+02,-0.0000e+00,-0.0000e+00, 2.5419e+02), p^2= 0.0000e+00, m= 3.0000e-01] (644, 0) 0 [I] 1 u 58 ( -> 6) [( 1.1557e+02,-0.0000e+00,-0.0000e+00, 1.1557e+02), p^2= 0.0000e+00, m= 3.0000e-01] (646, 0) 0 [I] 1 G 74 ( -> 8) [( 1.9522e+03,-0.0000e+00,-0.0000e+00, 1.9522e+03), p^2= 0.0000e+00, m= 0.0000e+00] (667,646) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.4906e+03,-0.0000e+00,-0.0000e+00,-3.4906e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 G 41 ( -> 4) [( 6.9252e+00,-0.0000e+00,-0.0000e+00,-6.9252e+00), p^2= 0.0000e+00, m= 0.0000e+00] (639,601) 1 [I] 1 G 59 ( -> 6) [( 7.2263e-01,-0.0000e+00,-0.0000e+00,-7.2263e-01), p^2= 0.0000e+00, m= 0.0000e+00] (654,639) 1 [I] 1 db 75 ( -> 8) [( 5.7535e-01,-0.0000e+00,-0.0000e+00,-5.7535e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,665) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 86 ( -> ) [( 3.4298e+02, 0.0000e+00, 0.0000e+00, 3.4298e+02), p^2= 4.3131e-02, m= 7.7133e-01] ( 0,667) 0 [B] 1 ub 69 ( -> ) [( 7.8498e-01, 0.0000e+00, 0.0000e+00, 7.8498e-01), p^2= 2.2592e-07, m= 0.0000e+00] ( 0,644) 0 [B] 1 db 53 ( -> ) [( 3.4227e+02, 0.0000e+00, 0.0000e+00, 3.4227e+02), p^2= 4.2952e-02, m= 0.0000e+00] ( 0,622) 0 and Particle List with 3 elements [B] 1 uu_1 88 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,654) 1 [B] 1 d 83 ( -> ) [( 6.9348e-01, 0.0000e+00, 0.0000e+00,-6.9341e-01), p^2= 1.0373e-04, m= 0.0000e+00] (603, 0) 1 [B] 1 d 87 ( -> ) [( 4.7258e-01, 0.0000e+00, 0.0000e+00,-4.7253e-01), p^2= 4.8172e-05, m= 0.0000e+00] (665, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 u 6 ( -> 2) [( 2.4315e+03,-0.0000e+00,-0.0000e+00, 2.4315e+03), p^2= 0.0000e+00, m= 3.0000e-01] (621, 0) 0 [I] 1 G 47 ( -> 4) [( 5.8266e+01,-0.0000e+00,-0.0000e+00, 5.8266e+01), p^2= 0.0000e+00, m= 0.0000e+00] (638,621) 0 [I] 1 G 60 ( -> 6) [( 3.6392e+02,-0.0000e+00,-0.0000e+00, 3.6392e+02), p^2= 0.0000e+00, m= 0.0000e+00] (653,603) 0 [I] 1 u 73 ( -> 8) [( 1.6879e+01, 0.0000e+00, 0.0000e+00, 1.6879e+01), p^2= 0.0000e+00, m= 3.0000e-01] (603, 0) 0 [I] 1 ub 82 ( -> 10) [( 4.5009e+02,-0.0000e+00,-0.0000e+00, 4.5009e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,638) 0 and Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 3.4434e+03,-0.0000e+00,-0.0000e+00,-3.4434e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,603) 1 [I] 1 db 48 ( -> 4) [( 4.7002e+01,-0.0000e+00,-0.0000e+00,-4.7002e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,602) 1 [I] 1 d 61 ( -> 6) [( 6.4886e-01,-0.0000e+00,-0.0000e+00,-6.4886e-01), p^2= 0.0000e+00, m= 3.0000e-01] (603, 0) 1 [I] 1 G 74 ( -> 8) [( 6.1155e+00, 0.0000e+00, 0.0000e+00,-6.1155e+00), p^2= 0.0000e+00, m= 0.0000e+00] (659,643) 1 [I] 1 sb 83 ( -> 10) [( 9.4706e-01,-0.0000e+00,-0.0000e+00,-9.4706e-01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,659) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 94 ( -> ) [( 1.2731e+02, 0.0000e+00, 0.0000e+00, 1.2731e+02), p^2= 2.2727e-02, m= 5.7933e-01] ( 0,653) 0 [B] 1 G 95 ( -> ) [( 2.7767e+00, 0.0000e+00, 0.0000e+00, 2.7767e+00), p^2= 1.0811e-05, m= 0.0000e+00] (661,668) 0 [B] 1 G 96 ( -> ) [( 4.9291e+01, 0.0000e+00, 0.0000e+00, 4.9291e+01), p^2= 3.4070e-03, m= 0.0000e+00] (668,661) 0 and Particle List with 3 elements [B] 1 uu_1 98 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,669) 1 [B] 1 s 91 ( -> ) [( 4.2843e-01, 0.0000e+00, 0.0000e+00,-4.2841e-01), p^2= 2.4412e-05, m= 0.0000e+00] (669, 0) 1 [B] 1 d 97 ( -> ) [( 1.4627e+00, 0.0000e+00, 0.0000e+00,-1.4626e+00), p^2= 2.8456e-04, m= 0.0000e+00] (643, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 2m 12s elapsed / 4h 34m 2s left ) -> ETA: Fri Mar 08 02:00 XS = 4.83187e+09 pb +- ( 4.72663e+08 pb = 9 % ) Event 3000 ( 3m 14s elapsed / 4h 27m 20s left ) -> ETA: Fri Mar 08 01:54 XS = 4.47938e+09 pb +- ( 3.47301e+08 pb = 7 % ) Event 4000 ( 4m 16s elapsed / 4h 23m left ) -> ETA: Fri Mar 08 01:51 XS = 4.66683e+09 pb +- ( 2.93904e+08 pb = 6 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 5000 ( 5m 20s elapsed / 4h 22m 3s left ) -> ETA: Fri Mar 08 01:51 XS = 4.82757e+09 pb +- ( 2.65896e+08 pb = 5 % ) Event 6000 ( 6m 26s elapsed / 4h 21m 54s left ) -> ETA: Fri Mar 08 01:52 XS = 4.73467e+09 pb +- ( 2.36255e+08 pb = 4 % ) Event 7000 ( 7m 29s elapsed / 4h 20m 4s left ) -> ETA: Fri Mar 08 01:51 XS = 4.6784e+09 pb +- ( 2.15146e+08 pb = 4 % ) Event 8000 ( 8m 31s elapsed / 4h 17m 55s left ) -> ETA: Fri Mar 08 01:50 XS = 4.91457e+09 pb +- ( 2.4655e+08 pb = 5 % ) Event 9000 ( 9m 38s elapsed / 4h 18m 1s left ) -> ETA: Fri Mar 08 01:51 XS = 4.8488e+09 pb +- ( 2.24986e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 10000 ( 10m 43s elapsed / 4h 17m 25s left ) -> ETA: Fri Mar 08 01:52 XS = 4.85243e+09 pb +- ( 2.13166e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Pythia8 hadronisation failed. Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 20000 ( 21m 28s elapsed / 4h 6m 56s left ) -> ETA: Fri Mar 08 01:52 [1m Memory usage increased by 22 MB, now 168 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.9008e+09 pb +- ( 1.54991e+08 pb = 3 % ) Event 30000 ( 32m 19s elapsed / 3h 57m 1s left ) -> ETA: Fri Mar 08 01:53 XS = 4.86565e+09 pb +- ( 1.2255e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 40000 ( 43m 11s elapsed / 3h 46m 43s left ) -> ETA: Fri Mar 08 01:53 [1m Memory usage increased by 35 MB, now 204 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.88498e+09 pb +- ( 1.05905e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 50000 ( 54m 24s elapsed / 3h 37m 36s left ) -> ETA: Fri Mar 08 01:55 XS = 4.94266e+09 pb +- ( 9.53482e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 60000 ( 1h 6m 2s elapsed / 3h 29m 6s left ) -> ETA: Fri Mar 08 01:59 XS = 4.98343e+09 pb +- ( 8.89284e+07 pb = 1 % ) Event 70000 ( 1h 17m 29s elapsed / 3h 19m 15s left ) -> ETA: Fri Mar 08 02:00 XS = 4.93468e+09 pb +- ( 8.04706e+07 pb = 1 % ) Event 80000 ( 1h 29m 11s elapsed / 3h 9m 31s left ) -> ETA: Fri Mar 08 02:02 XS = 4.94885e+09 pb +- ( 7.52996e+07 pb = 1 % ) Event 90000 ( 1h 40m 53s elapsed / 2h 59m 22s left ) -> ETA: Fri Mar 08 02:04 XS = 4.95699e+09 pb +- ( 7.13058e+07 pb = 1 % ) Event 100000 ( 1h 52m 34s elapsed / 2h 48m 52s left ) -> ETA: Fri Mar 08 02:05 XS = 4.94687e+09 pb +- ( 6.78776e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 40m 19s elapsed / 55m 4s left ) -> ETA: Fri Mar 08 01:59 [1m Memory usage increased by 17 MB, now 221 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.86096e+09 pb +- ( 4.69504e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 250000 ( 16329 s total ) = 1.32278e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. [31mRivet_Interface::Finish([32mAnalysis_Alaric_Final_noWeight/1338[31m)[0m[31m{[0m [31m}[0m -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- [1mNominal [0m[34m[1m 4.8919e+09[0m[33m 0 %[31m 4.22147e+07 0.86 %[0m -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 250000 Errors { From "Hadronization:Pythia8": 15 (250015) -> 0 % } New events { From "Beam_Remnants:Parametrised": 835 (250850) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 835 fails in creating good beam breakups. Remnant Kinematics: 835 errors (no kinematics found) and 155 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 4h 32m 14s on Fri Mar 8 01:56:08 2024 (User: 4h 30m 56s, System: 2s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Mon Apr 8 13:57:58 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1338 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... <S /()))))~~~~~~~~## + /\ + ............................ (!H (~~)))))~~~~~~#/ + + | + ................ ........... (!E (~~~))))) /|/ + + ............................ (!R (~~~))))) ||| + + + ..... ...................... (!P (~~~~))) /| + + + ............................ (!A> (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mMM[0m [34mMM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m [34mM[0m I [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. [34mPythia8_Hadronisation::Pythia8_Hadronisation[0m:([32m"Initialising Pythia8 hadronisation interface"[0m) [34mPythia8_Hadronisation::ApplyPythiaSettings[0m:([32m"Applying Pythia8 settings"[0m) [34mPythia8_Hadronisation::HarmonizeMasses[0m:([32m"Harmonizing particle masses and widths!"[0m) [34mPythia8_Hadronisation::ModifyPythiaValues[0m:([32m"Changing Pythia Values"[0m) Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) [1m2_2__j__j__j__j[0m : [34m[1m4.95201e+09 pb[0m +- ( [31m2.57792e+07 pb = 0.52058 %[0m ) [1m exp. eff: [31m0.320522 %[0m reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 5s elapsed / 1d 11h 54m 4s left ) -> ETA: Wed Apr 10 01:52 XS = 6.289e-09 pb +- ( 6.289e-09 pb = 100 % ) Event 2 ( 5s elapsed / 18h 34m 29s left ) -> ETA: Tue Apr 09 08:32 XS = 609.023 pb +- ( 609.023 pb = 99 % ) Event 3 ( 5s elapsed / 12h 24m 21s left ) -> ETA: Tue Apr 09 02:22 XS = 8.27313e+09 pb +- ( 8.27313e+09 pb = 99 % ) Event 4 ( 5s elapsed / 9h 26m 34s left ) -> ETA: Mon Apr 08 23:24 XS = 5.51566e+09 pb +- ( 5.51537e+09 pb = 99 % ) Event 5 ( 5s elapsed / 7h 39m 54s left ) -> ETA: Mon Apr 08 21:38 XS = 4.13675e+09 pb +- ( 4.13654e+09 pb = 99 % ) Event 6 ( 5s elapsed / 6h 25m 19s left ) -> ETA: Mon Apr 08 20:23 XS = 3.67748e+09 pb +- ( 3.67688e+09 pb = 99 % ) Event 7 ( 5s elapsed / 5h 32m 38s left ) -> ETA: Mon Apr 08 19:30 XS = 5.50016e+09 pb +- ( 3.76001e+09 pb = 68 % ) Event 8 ( 5s elapsed / 4h 51m 34s left ) -> ETA: Mon Apr 08 18:49 XS = 6.74018e+09 pb +- ( 3.58823e+09 pb = 53 % ) Event 9 ( 5s elapsed / 4h 20m 5s left ) -> ETA: Mon Apr 08 18:18 XS = 7.4318e+09 pb +- ( 3.34684e+09 pb = 45 % ) Event 10 ( 5s elapsed / 3h 54m 29s left ) -> ETA: Mon Apr 08 17:52 XS = 7.6738e+09 pb +- ( 3.14002e+09 pb = 40 % ) Event 20 ( 6s elapsed / 2h 12m 36s left ) -> ETA: Mon Apr 08 16:10 XS = 8.36977e+09 pb +- ( 4.17327e+09 pb = 49 % ) Event 30 ( 6s elapsed / 1h 36m 16s left ) -> ETA: Mon Apr 08 15:34 XS = 6.52483e+09 pb +- ( 2.87234e+09 pb = 44 % ) Event 40 ( 7s elapsed / 1h 18m left ) -> ETA: Mon Apr 08 15:16 XS = 5.76267e+09 pb +- ( 2.26047e+09 pb = 39 % ) Event 50 ( 8s elapsed / 1h 9m 16s left ) -> ETA: Mon Apr 08 15:07 XS = 4.48002e+09 pb +- ( 1.71422e+09 pb = 38 % ) Event 60 ( 9s elapsed / 1h 2m 58s left ) -> ETA: Mon Apr 08 15:01 XS = 3.90793e+09 pb +- ( 1.37736e+09 pb = 35 % ) Event 70 ( 9s elapsed / 57m 16s left ) -> ETA: Mon Apr 08 14:55 XS = 3.48907e+09 pb +- ( 1.17282e+09 pb = 33 % ) Event 80 ( 10s elapsed / 54m 30s left ) -> ETA: Mon Apr 08 14:52 XS = 4.34358e+09 pb +- ( 1.35547e+09 pb = 31 % ) Event 90 ( 11s elapsed / 51m 42s left ) -> ETA: Mon Apr 08 14:49 XS = 5.10338e+09 pb +- ( 1.72183e+09 pb = 33 % ) Event 100 ( 11s elapsed / 49m 18s left ) -> ETA: Mon Apr 08 14:47 XS = 5.5663e+09 pb +- ( 1.77969e+09 pb = 31 % ) Event 200 ( 18s elapsed / 37m 44s left ) -> ETA: Mon Apr 08 14:36 XS = 5.18734e+09 pb +- ( 1.54612e+09 pb = 29 % ) Event 300 ( 24s elapsed / 33m 26s left ) -> ETA: Mon Apr 08 14:31 XS = 5.79631e+09 pb +- ( 1.43237e+09 pb = 24 % ) Event 400 ( 30s elapsed / 31m 4s left ) -> ETA: Mon Apr 08 14:29 XS = 5.55015e+09 pb +- ( 1.13033e+09 pb = 20 % ) Event 500 ( 37s elapsed / 30m 39s left ) -> ETA: Mon Apr 08 14:29 XS = 5.49499e+09 pb +- ( 1.00518e+09 pb = 18 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 600 ( 44s elapsed / 29m 49s left ) -> ETA: Mon Apr 08 14:28 XS = 5.32145e+09 pb +- ( 8.97271e+08 pb = 16 % ) Event 700 ( 50s elapsed / 29m 8s left ) -> ETA: Mon Apr 08 14:28 XS = 5.09868e+09 pb +- ( 7.99058e+08 pb = 15 % ) Event 800 ( 56s elapsed / 28m 23s left ) -> ETA: Mon Apr 08 14:27 XS = 5.04033e+09 pb +- ( 7.23901e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 u 5 ( -> 2) [( 1.2251e+03,-0.0000e+00,-0.0000e+00, 1.2251e+03), p^2= 0.0000e+00, m= 3.0000e-01] (651, 0) 0 [I] 1 d 68 ( -> 4) [( 7.5157e+01,-0.0000e+00,-0.0000e+00, 7.5157e+01), p^2= 0.0000e+00, m= 3.0000e-01] (657, 0) 0 and Particle List with 2 elements [I] 1 d 6 ( -> 2) [( 3.4973e+03,-0.0000e+00,-0.0000e+00,-3.4973e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 s 69 ( -> 4) [( 7.5641e-01,-0.0000e+00,-0.0000e+00,-7.5641e-01), p^2= 0.0000e+00, m= 4.0000e-01] (656, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 77 ( -> ) [( 1.9573e+03, 0.0000e+00, 0.0000e+00, 1.9573e+03), p^2= 4.3805e-01, m= 5.7933e-01] ( 0,657) 0 [B] 1 db 73 ( -> ) [( 2.4243e+02, 0.0000e+00, 0.0000e+00, 2.4243e+02), p^2= 6.7204e-03, m= 0.0000e+00] ( 0,651) 0 and Particle List with 4 elements [B] 1 ud_0 79 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,601) 1 [B] 1 sb 74 ( -> ) [( 6.7569e-01, 0.0000e+00, 0.0000e+00,-6.7565e-01), p^2= 5.9751e-05, m= 0.0000e+00] ( 0,661) 1 [B] 1 db 63 ( -> ) [( 6.9093e-01, 0.0000e+00, 0.0000e+00,-6.9089e-01), p^2= 6.2477e-05, m= 0.0000e+00] ( 0,656) 1 [B] 1 u 78 ( -> ) [( 5.5526e-01, 0.0000e+00, 0.0000e+00,-5.5522e-01), p^2= 4.0350e-05, m= 0.0000e+00] (661, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 u 6 ( -> 2) [( 3.4917e+03,-0.0000e+00,-0.0000e+00, 3.4917e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 36 ( -> 4) [( 4.3158e+00,-0.0000e+00,-0.0000e+00, 4.3158e+00), p^2= 0.0000e+00, m= 0.0000e+00] (624,632) 0 [I] 1 s 52 ( -> 6) [( 2.3889e+00,-0.0000e+00,-0.0000e+00, 2.3889e+00), p^2= 0.0000e+00, m= 4.0000e-01] (659, 0) 0 and Particle List with 3 elements [I] 1 u 5 ( -> 2) [( 1.1241e+03,-0.0000e+00,-0.0000e+00,-1.1241e+03), p^2= 0.0000e+00, m= 3.0000e-01] (617, 0) 1 [I] 1 u 37 ( -> 4) [( 3.1691e+02,-0.0000e+00,-0.0000e+00,-3.1691e+02), p^2= 0.0000e+00, m= 3.0000e-01] (623, 0) 1 [I] 1 u 53 ( -> 6) [( 9.1768e+01,-0.0000e+00,-0.0000e+00,-9.1768e+01), p^2= 0.0000e+00, m= 3.0000e-01] (654, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 66 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,659) 0 [B] 1 sb 61 ( -> ) [( 4.7547e-01, 0.0000e+00, 0.0000e+00, 4.7543e-01), p^2= 3.6666e-05, m= 0.0000e+00] ( 0,601) 0 [B] 1 G 67 ( -> ) [( 1.0753e+00, 0.0000e+00, 0.0000e+00, 1.0753e+00), p^2= 1.8755e-04, m= 0.0000e+00] (632,624) 0 and Particle List with 3 elements [B] 1 ud_0 68 ( -> ) [( 1.4285e+03, 0.0000e+00, 0.0000e+00,-1.4285e+03), p^2= 2.6092e-01, m= 5.7933e-01] ( 0,654) 1 [B] 1 ub 62 ( -> ) [( 8.9051e-01, 0.0000e+00, 0.0000e+00,-8.9051e-01), p^2= 1.0139e-07, m= 0.0000e+00] ( 0,617) 1 [B] 1 ub 30 ( -> ) [( 5.3785e+02, 0.0000e+00, 0.0000e+00,-5.3785e+02), p^2= 3.6988e-02, m= 0.0000e+00] ( 0,623) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 3s elapsed / 28m 18s left ) -> ETA: Mon Apr 08 14:27 XS = 4.97408e+09 pb +- ( 6.61641e+08 pb = 13 % ) Event 1000 ( 1m 9s elapsed / 27m 56s left ) -> ETA: Mon Apr 08 14:27 XS = 4.68115e+09 pb +- ( 6.00783e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 5 ( -> 2) [( 2.3634e+03,-0.0000e+00,-0.0000e+00, 2.3634e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 0 [I] 1 G 36 ( -> 4) [( 3.5610e+01,-0.0000e+00,-0.0000e+00, 3.5610e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,626) 0 [I] 1 sb 65 ( -> 6) [( 6.3189e+00,-0.0000e+00,-0.0000e+00, 6.3189e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,603) 0 [I] 1 u 82 ( -> 8) [( 3.6715e+01,-0.0000e+00,-0.0000e+00, 3.6715e+01), p^2= 0.0000e+00, m= 3.0000e-01] (626, 0) 0 [I] 1 G 93 ( -> 10) [( 1.4333e+02,-0.0000e+00,-0.0000e+00, 1.4333e+02), p^2= 0.0000e+00, m= 0.0000e+00] (669,654) 0 [I] 1 u 111 ( -> 12) [( 8.8188e+02,-0.0000e+00,-0.0000e+00, 8.8188e+02), p^2= 0.0000e+00, m= 3.0000e-01] (674, 0) 0 [I] 1 G 125 ( -> 14) [( 3.1399e+01,-0.0000e+00,-0.0000e+00, 3.1399e+01), p^2= 0.0000e+00, m= 0.0000e+00] (692,674) 0 and Particle List with 7 elements [I] 1 u 6 ( -> 2) [( 6.3504e+02,-0.0000e+00,-0.0000e+00,-6.3504e+02), p^2= 0.0000e+00, m= 3.0000e-01] (617, 0) 1 [I] 1 u 37 ( -> 4) [( 9.5571e+02,-0.0000e+00,-0.0000e+00,-9.5571e+02), p^2= 0.0000e+00, m= 3.0000e-01] (641, 0) 1 [I] 1 G 66 ( -> 6) [( 9.5386e+01,-0.0000e+00,-0.0000e+00,-9.5386e+01), p^2= 0.0000e+00, m= 0.0000e+00] (650,641) 1 [I] 1 G 83 ( -> 8) [( 1.7193e+01,-0.0000e+00,-0.0000e+00,-1.7193e+01), p^2= 0.0000e+00, m= 0.0000e+00] (656,650) 1 [I] 1 G 94 ( -> 10) [( 5.2981e+02,-0.0000e+00,-0.0000e+00,-5.2981e+02), p^2= 0.0000e+00, m= 0.0000e+00] (667,656) 1 [I] 1 db 112 ( -> 12) [( 1.2155e+03,-0.0000e+00,-0.0000e+00,-1.2155e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,667) 1 [I] 1 G 126 ( -> 14) [( 4.9240e+01,-0.0000e+00,-0.0000e+00,-4.9240e+01), p^2= 0.0000e+00, m= 0.0000e+00] (691,680) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 135 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,692) 0 [B] 1 ub 119 ( -> ) [( 6.7712e-01, 0.0000e+00, 0.0000e+00, 6.7706e-01), p^2= 8.6360e-05, m= 0.0000e+00] ( 0,669) 0 [B] 1 s 77 ( -> ) [( 6.5821e-01, 0.0000e+00, 0.0000e+00, 6.5815e-01), p^2= 8.1604e-05, m= 0.0000e+00] (654, 0) 0 and Particle List with 3 elements [B] 1 ud_0 136 ( -> ) [( 1.2682e+00, 0.0000e+00, 0.0000e+00,-1.2681e+00), p^2= 1.9536e-04, m= 5.7933e-01] ( 0,691) 1 [B] 1 d 120 ( -> ) [( 4.3625e-01, 0.0000e+00, 0.0000e+00,-4.3623e-01), p^2= 2.3118e-05, m= 0.0000e+00] (680, 0) 1 [B] 1 ub 60 ( -> ) [( 3.6616e-01, 0.0000e+00, 0.0000e+00,-3.6614e-01), p^2= 1.6286e-05, m= 0.0000e+00] ( 0,617) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 10 elements [I] 1 u 5 ( -> 2) [( 3.1628e+02,-0.0000e+00,-0.0000e+00, 3.1628e+02), p^2= 0.0000e+00, m= 3.0000e-01] (612, 0) 0 [I] 1 d 39 ( -> 4) [( 2.6087e+02,-0.0000e+00,-0.0000e+00, 2.6087e+02), p^2= 0.0000e+00, m= 3.0000e-01] (638, 0) 0 [I] 1 G 62 ( -> 6) [( 2.1214e+02,-0.0000e+00,-0.0000e+00, 2.1214e+02), p^2= 0.0000e+00, m= 0.0000e+00] (644,638) 0 [I] 1 u 87 ( -> 8) [( 1.0748e+03,-0.0000e+00,-0.0000e+00, 1.0748e+03), p^2= 0.0000e+00, m= 3.0000e-01] (669, 0) 0 [I] 1 G 114 ( -> 10) [( 7.6289e+01,-0.0000e+00,-0.0000e+00, 7.6289e+01), p^2= 0.0000e+00, m= 0.0000e+00] (686,669) 0 [I] 1 d 134 ( -> 12) [( 7.4354e+02,-0.0000e+00,-0.0000e+00, 7.4354e+02), p^2= 0.0000e+00, m= 3.0000e-01] (709, 0) 0 [I] 1 u 156 ( -> 14) [( 2.7887e+02,-0.0000e+00,-0.0000e+00, 2.7887e+02), p^2= 0.0000e+00, m= 3.0000e-01] (715, 0) 0 [I] 1 u 169 ( -> 16) [( 1.9591e+00,-0.0000e+00,-0.0000e+00, 1.9591e+00), p^2= 0.0000e+00, m= 3.0000e-01] (719, 0) 0 [I] 1 G 181 ( -> 18) [( 3.6789e+02,-0.0000e+00,-0.0000e+00, 3.6789e+02), p^2= 0.0000e+00, m= 0.0000e+00] (725,719) 0 [I] 1 s 194 ( -> 20) [( 1.6496e+02,-0.0000e+00,-0.0000e+00, 1.6496e+02), p^2= 0.0000e+00, m= 4.0000e-01] (732, 0) 0 and Particle List with 10 elements [I] 1 G 6 ( -> 2) [( 2.9772e+02,-0.0000e+00,-0.0000e+00,-2.9772e+02), p^2= 0.0000e+00, m= 0.0000e+00] (621,616) 1 [I] 1 G 40 ( -> 4) [( 1.9871e+02,-0.0000e+00,-0.0000e+00,-1.9871e+02), p^2= 0.0000e+00, m= 0.0000e+00] (616,636) 1 [I] 1 u 63 ( -> 6) [( 5.0981e+02,-0.0000e+00,-0.0000e+00,-5.0981e+02), p^2= 0.0000e+00, m= 3.0000e-01] (636, 0) 1 [I] 1 G 88 ( -> 8) [( 2.0098e+02,-0.0000e+00,-0.0000e+00,-2.0098e+02), p^2= 0.0000e+00, m= 0.0000e+00] (668,621) 1 [I] 1 d 115 ( -> 10) [( 9.3761e+01,-0.0000e+00,-0.0000e+00,-9.3761e+01), p^2= 0.0000e+00, m= 3.0000e-01] (694, 0) 1 [I] 1 G 135 ( -> 12) [( 3.5299e+02,-0.0000e+00,-0.0000e+00,-3.5299e+02), p^2= 0.0000e+00, m= 0.0000e+00] (708,694) 1 [I] 1 db 157 ( -> 14) [( 2.5924e+02,-0.0000e+00,-0.0000e+00,-2.5924e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,708) 1 [I] 1 G 170 ( -> 16) [( 1.1265e+02,-0.0000e+00,-0.0000e+00,-1.1265e+02), p^2= 0.0000e+00, m= 0.0000e+00] (723,718) 1 [I] 1 G 182 ( -> 18) [( 1.5126e+02,-0.0000e+00,-0.0000e+00,-1.5126e+02), p^2= 0.0000e+00, m= 0.0000e+00] (728,723) 1 [I] 1 db 195 ( -> 20) [( 3.3502e+02,-0.0000e+00,-0.0000e+00,-3.3502e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,728) 1 and the corresponding remnants are Particle List with 7 elements [B] 1 ud_0 209 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,732) 0 [B] 1 sb 205 ( -> ) [( 5.4206e-01, 0.0000e+00, 0.0000e+00, 5.4203e-01), p^2= 3.1302e-05, m= 0.0000e+00] ( 0,725) 0 [B] 1 ub 176 ( -> ) [( 3.6713e-01, 0.0000e+00, 0.0000e+00, 3.6711e-01), p^2= 1.4359e-05, m= 0.0000e+00] ( 0,715) 0 [B] 1 ub 163 ( -> ) [( 4.0167e-01, 0.0000e+00, 0.0000e+00, 4.0165e-01), p^2= 1.7188e-05, m= 0.0000e+00] ( 0,709) 0 [B] 1 db 151 ( -> ) [( 4.2185e-01, 0.0000e+00, 0.0000e+00, 4.2183e-01), p^2= 1.8958e-05, m= 0.0000e+00] ( 0,686) 0 [B] 1 ub 109 ( -> ) [( 3.0661e-01, 0.0000e+00, 0.0000e+00, 3.0659e-01), p^2= 1.0015e-05, m= 0.0000e+00] ( 0,644) 0 [B] 1 db 57 ( -> ) [( 3.2168e-01, 0.0000e+00, 0.0000e+00, 3.2167e-01), p^2= 1.1024e-05, m= 0.0000e+00] ( 0,612) 0 and Particle List with 2 elements [B] 1 ud_0 210 ( -> ) [( 8.2082e+02, 0.0000e+00, 0.0000e+00,-8.2082e+02), p^2= 1.7155e-01, m= 5.7933e-01] ( 0,668) 1 [B] 1 d 164 ( -> ) [( 1.6704e+02, 0.0000e+00, 0.0000e+00,-1.6704e+02), p^2= 7.1046e-03, m= 0.0000e+00] (718, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 ub 6 ( -> 2) [( 3.4880e+03,-0.0000e+00,-0.0000e+00, 3.4880e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 [I] 1 s 42 ( -> 4) [( 1.0228e+01,-0.0000e+00,-0.0000e+00, 1.0228e+01), p^2= 0.0000e+00, m= 4.0000e-01] (601, 0) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 2.4875e+03,-0.0000e+00,-0.0000e+00,-2.4875e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 d 43 ( -> 4) [( 3.0444e+02,-0.0000e+00,-0.0000e+00,-3.0444e+02), p^2= 0.0000e+00, m= 3.0000e-01] (603, 0) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 59 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,632) 0 [B] 1 sb 55 ( -> ) [( 5.9220e-01, 0.0000e+00, 0.0000e+00, 5.9216e-01), p^2= 4.8647e-05, m= 0.0000e+00] ( 0,644) 0 [B] 1 u 37 ( -> ) [( 7.4014e-01, 0.0000e+00, 0.0000e+00, 7.4009e-01), p^2= 7.5989e-05, m= 0.0000e+00] (632, 0) 0 [B] 1 u 58 ( -> ) [( 4.8090e-01, 0.0000e+00, 0.0000e+00, 4.8086e-01), p^2= 3.2079e-05, m= 0.0000e+00] (644, 0) 0 and Particle List with 1 elements [B] 1 uu_1 60 ( -> ) [( 7.0811e+02, 0.0000e+00, 0.0000e+00,-7.0811e+02), p^2= 1.7811e-01, m= 7.7133e-01] ( 0,601) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 2m 16s elapsed / 26m 13s left ) -> ETA: Mon Apr 08 14:26 XS = 4.17851e+09 pb +- ( 3.80909e+08 pb = 9 % ) Event 3000 ( 3m 22s elapsed / 24m 42s left ) -> ETA: Mon Apr 08 14:26 XS = 4.59578e+09 pb +- ( 3.32499e+08 pb = 7 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Event 4000 ( 4m 27s elapsed / 23m 24s left ) -> ETA: Mon Apr 08 14:25 [1m Memory usage increased by 61 MB, now 189 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.52054e+09 pb +- ( 2.76728e+08 pb = 6 % ) Event 5000 ( 5m 30s elapsed / 22m 2s left ) -> ETA: Mon Apr 08 14:25 XS = 4.4072e+09 pb +- ( 2.41817e+08 pb = 5 % ) Event 6000 ( 6m 35s elapsed / 20m 51s left ) -> ETA: Mon Apr 08 14:25 XS = 4.63597e+09 pb +- ( 2.31095e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 7000 ( 7m 40s elapsed / 19m 44s left ) -> ETA: Mon Apr 08 14:25 XS = 5.01647e+09 pb +- ( 2.45597e+08 pb = 4 % ) Event 8000 ( 8m 48s elapsed / 18m 43s left ) -> ETA: Mon Apr 08 14:25 XS = 4.97797e+09 pb +- ( 2.29256e+08 pb = 4 % ) Event 9000 ( 9m 51s elapsed / 17m 31s left ) -> ETA: Mon Apr 08 14:25 XS = 4.93321e+09 pb +- ( 2.11473e+08 pb = 4 % ) Event 10000 ( 10m 58s elapsed / 16m 27s left ) -> ETA: Mon Apr 08 14:25 XS = 4.80427e+09 pb +- ( 1.97095e+08 pb = 4 % ) Welcome to Sherpa, Daniel Reichelt on ip3-cpu5.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Apr 9 21:40:11 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1338 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... <S /()))))~~~~~~~~## + /\ + ............................ (!H (~~)))))~~~~~~#/ + + | + ................ ........... (!E (~~~))))) /|/ + + ............................ (!R (~~~))))) ||| + + + ..... ...................... (!P (~~~~))) /| + + + ............................ (!A> (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mMM[0m [34mMM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m [34mM[0m I [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. [34mPythia8_Hadronisation::Pythia8_Hadronisation[0m:([32m"Initialising Pythia8 hadronisation interface"[0m) [34mPythia8_Hadronisation::ApplyPythiaSettings[0m:([32m"Applying Pythia8 settings"[0m) [34mPythia8_Hadronisation::HarmonizeMasses[0m:([32m"Harmonizing particle masses and widths!"[0m) [34mPythia8_Hadronisation::ModifyPythiaValues[0m:([32m"Changing Pythia Values"[0m) Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) [1m2_2__j__j__j__j[0m : [34m[1m4.95201e+09 pb[0m +- ( [31m2.57792e+07 pb = 0.52058 %[0m ) [1m exp. eff: [31m0.320522 %[0m reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 4d 1h 13m 16s left ) -> ETA: Sat Apr 13 22:53 XS = 6.289e-09 pb +- ( 6.289e-09 pb = 100 % ) Event 2 ( 3s elapsed / 2d 1h 18m 16s left ) -> ETA: Thu Apr 11 22:58 XS = 2.6873e+06 pb +- ( 2.6873e+06 pb = 99 % ) Event 3 ( 3s elapsed / 1d 9h 53m 16s left ) -> ETA: Thu Apr 11 07:33 XS = 1.79153e+06 pb +- ( 1.79153e+06 pb = 99 % ) Event 4 ( 3s elapsed / 1d 1h 49m 56s left ) -> ETA: Wed Apr 10 23:30 XS = 2.00333e+06 pb +- ( 1.27759e+06 pb = 63 % ) Event 5 ( 3s elapsed / 21h 9m 56s left ) -> ETA: Wed Apr 10 18:50 XS = 1.33555e+06 pb +- ( 889708 pb = 66 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 u 5 ( -> 2) [( 1.5750e+03,-0.0000e+00,-0.0000e+00, 1.5750e+03), p^2= 0.0000e+00, m= 3.0000e-01] (617, 0) 0 [I] 1 G 48 ( -> 4) [( 1.7714e+03,-0.0000e+00,-0.0000e+00, 1.7714e+03), p^2= 0.0000e+00, m= 0.0000e+00] (638,617) 0 [I] 1 G 63 ( -> 6) [( 1.5006e+02,-0.0000e+00,-0.0000e+00, 1.5006e+02), p^2= 0.0000e+00, m= 0.0000e+00] (657,638) 0 [I] 1 G 79 ( -> 8) [( 1.2344e+00,-0.0000e+00,-0.0000e+00, 1.2344e+00), p^2= 0.0000e+00, m= 0.0000e+00] (668,657) 0 [I] 1 db 90 ( -> 10) [( 3.3692e-01,-0.0000e+00,-0.0000e+00, 3.3692e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,668) 0 [I] 1 u 105 ( -> 12) [( 5.4978e-01,-0.0000e+00,-0.0000e+00, 5.4978e-01), p^2= 0.0000e+00, m= 3.0000e-01] (698, 0) 0 and Particle List with 6 elements [I] 1 G 6 ( -> 2) [( 1.7616e+03,-0.0000e+00,-0.0000e+00,-1.7616e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,607) 1 [I] 1 G 49 ( -> 4) [( 3.7525e+02,-0.0000e+00,-0.0000e+00,-3.7525e+02), p^2= 0.0000e+00, m= 0.0000e+00] (607,642) 1 [I] 1 G 64 ( -> 6) [( 6.4961e+01,-0.0000e+00,-0.0000e+00,-6.4961e+01), p^2= 0.0000e+00, m= 0.0000e+00] (655,604) 1 [I] 1 G 80 ( -> 8) [( 1.9807e+02,-0.0000e+00,-0.0000e+00,-1.9807e+02), p^2= 0.0000e+00, m= 0.0000e+00] (642,667) 1 [I] 1 G 91 ( -> 10) [( 5.2221e+02,-0.0000e+00,-0.0000e+00,-5.2221e+02), p^2= 0.0000e+00, m= 0.0000e+00] (667,682) 1 [I] 1 G 106 ( -> 12) [( 4.0024e+02,-0.0000e+00,-0.0000e+00,-4.0024e+02), p^2= 0.0000e+00, m= 0.0000e+00] (682,697) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 120 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,698) 0 [B] 1 ub 117 ( -> ) [( 4.1888e-01, 0.0000e+00, 0.0000e+00, 4.1884e-01), p^2= 3.1065e-05, m= 0.0000e+00] ( 0,685) 0 [B] 1 d 100 ( -> ) [( 1.0017e+00, 0.0000e+00, 0.0000e+00, 1.0017e+00), p^2= 1.7766e-04, m= 0.0000e+00] (685, 0) 0 and Particle List with 2 elements [B] 1 ud_0 122 ( -> ) [( 1.7404e+02, 0.0000e+00, 0.0000e+00,-1.7404e+02), p^2= 4.2879e-02, m= 5.7933e-01] ( 0,655) 1 [B] 1 u 121 ( -> ) [( 3.6462e+00, 0.0000e+00, 0.0000e+00,-3.6462e+00), p^2= 1.8820e-05, m= 0.0000e+00] (697, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 6 ( 3s elapsed / 18h 3m 16s left ) -> ETA: Wed Apr 10 15:43 XS = 8.97402e+07 pb +- ( 8.85412e+07 pb = 98 % ) Event 7 ( 3s elapsed / 15h 38m 1s left ) -> ETA: Wed Apr 10 13:18 XS = 8.22618e+07 pb +- ( 8.11719e+07 pb = 98 % ) Event 8 ( 4s elapsed / 14h 1m 35s left ) -> ETA: Wed Apr 10 11:41 XS = 5.48412e+07 pb +- ( 5.41361e+07 pb = 98 % ) Event 9 ( 4s elapsed / 12h 42m 53s left ) -> ETA: Wed Apr 10 10:23 XS = 4.93571e+07 pb +- ( 4.87262e+07 pb = 98 % ) Event 10 ( 4s elapsed / 11h 38m 15s left ) -> ETA: Wed Apr 10 09:18 XS = 3.94857e+07 pb +- ( 3.89863e+07 pb = 98 % ) Event 20 ( 4s elapsed / 6h 50m 45s left ) -> ETA: Wed Apr 10 04:31 XS = 2.11505e+09 pb +- ( 1.27022e+09 pb = 60 % ) Event 30 ( 5s elapsed / 5h 22m 40s left ) -> ETA: Wed Apr 10 03:03 XS = 6.13057e+09 pb +- ( 3.90627e+09 pb = 63 % ) Event 40 ( 6s elapsed / 4h 34m 3s left ) -> ETA: Wed Apr 10 02:14 XS = 5.07657e+09 pb +- ( 3.19719e+09 pb = 62 % ) Event 50 ( 7s elapsed / 4h 3m 12s left ) -> ETA: Wed Apr 10 01:43 XS = 5.01265e+09 pb +- ( 2.55717e+09 pb = 51 % ) Event 60 ( 7s elapsed / 3h 33m 45s left ) -> ETA: Wed Apr 10 01:14 XS = 5.2383e+09 pb +- ( 2.32641e+09 pb = 44 % ) Event 70 ( 8s elapsed / 3h 21m 17s left ) -> ETA: Wed Apr 10 01:01 XS = 4.33408e+09 pb +- ( 1.87225e+09 pb = 43 % ) Event 80 ( 9s elapsed / 3h 11m 55s left ) -> ETA: Wed Apr 10 00:52 XS = 4.03737e+09 pb +- ( 1.66867e+09 pb = 41 % ) Event 90 ( 9s elapsed / 3h 3m 43s left ) -> ETA: Wed Apr 10 00:44 XS = 4.29773e+09 pb +- ( 1.56059e+09 pb = 36 % ) Event 100 ( 10s elapsed / 2h 54m 29s left ) -> ETA: Wed Apr 10 00:34 XS = 4.60531e+09 pb +- ( 1.47815e+09 pb = 32 % ) Event 200 ( 16s elapsed / 2h 19m 13s left ) -> ETA: Tue Apr 09 23:59 XS = 4.37293e+09 pb +- ( 9.62965e+08 pb = 22 % ) Event 300 ( 22s elapsed / 2h 5m 43s left ) -> ETA: Tue Apr 09 23:46 XS = 5.08782e+09 pb +- ( 9.00582e+08 pb = 17 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 400 ( 29s elapsed / 2h 3m 30s left ) -> ETA: Tue Apr 09 23:44 XS = 4.55799e+09 pb +- ( 7.14257e+08 pb = 15 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 u 6 ( -> 2) [( 8.2763e+02,-0.0000e+00,-0.0000e+00, 8.2763e+02), p^2= 0.0000e+00, m= 3.0000e-01] (625, 0) 0 [I] 1 G 46 ( -> 4) [( 1.0930e+03,-0.0000e+00,-0.0000e+00, 1.0930e+03), p^2= 0.0000e+00, m= 0.0000e+00] (648,625) 0 [I] 1 G 78 ( -> 6) [( 9.9830e+02,-0.0000e+00,-0.0000e+00, 9.9830e+02), p^2= 0.0000e+00, m= 0.0000e+00] (667,648) 0 [I] 1 d 92 ( -> 8) [( 3.2047e+02,-0.0000e+00,-0.0000e+00, 3.2047e+02), p^2= 0.0000e+00, m= 3.0000e-01] (686, 0) 0 [I] 1 d 114 ( -> 10) [( 2.5509e+02,-0.0000e+00,-0.0000e+00, 2.5509e+02), p^2= 0.0000e+00, m= 3.0000e-01] (690, 0) 0 and Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 3.4246e+03,-0.0000e+00,-0.0000e+00,-3.4246e+03), p^2= 0.0000e+00, m= 0.0000e+00] (609,610) 1 [I] 1 G 47 ( -> 4) [( 5.7480e+01,-0.0000e+00,-0.0000e+00,-5.7480e+01), p^2= 0.0000e+00, m= 0.0000e+00] (662,609) 1 [I] 1 db 79 ( -> 6) [( 1.0115e+01,-0.0000e+00,-0.0000e+00,-1.0115e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,662) 1 [I] 1 G 93 ( -> 8) [( 2.9895e+00,-0.0000e+00,-0.0000e+00,-2.9895e+00), p^2= 0.0000e+00, m= 0.0000e+00] (688,674) 1 [I] 1 G 115 ( -> 10) [( 3.3959e+00,-0.0000e+00,-0.0000e+00,-3.3959e+00), p^2= 0.0000e+00, m= 0.0000e+00] (696,688) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 125 ( -> ) [( 4.6152e+00, 0.0000e+00, 0.0000e+00, 4.6151e+00), p^2= 9.7387e-04, m= 5.7933e-01] ( 0,690) 0 [B] 1 db 122 ( -> ) [( 3.2668e-01, 0.0000e+00, 0.0000e+00, 3.2667e-01), p^2= 4.8793e-06, m= 0.0000e+00] ( 0,686) 0 [B] 1 db 109 ( -> ) [( 5.5939e-01, 0.0000e+00, 0.0000e+00, 5.5938e-01), p^2= 1.4307e-05, m= 0.0000e+00] ( 0,667) 0 and Particle List with 3 elements [B] 1 uu_1 127 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,696) 1 [B] 1 d 87 ( -> ) [( 4.0140e-01, 0.0000e+00, 0.0000e+00,-4.0137e-01), p^2= 2.8086e-05, m= 0.0000e+00] (674, 0) 1 [B] 1 d 126 ( -> ) [( 1.0415e+00, 0.0000e+00, 0.0000e+00,-1.0414e+00), p^2= 1.8908e-04, m= 0.0000e+00] (610, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 36s elapsed / 2h 55s left ) -> ETA: Tue Apr 09 23:41 XS = 4.30549e+09 pb +- ( 6.15011e+08 pb = 14 % ) Event 600 ( 43s elapsed / 1h 59m 25s left ) -> ETA: Tue Apr 09 23:40 XS = 4.70107e+09 pb +- ( 6.7763e+08 pb = 14 % ) Event 700 ( 49s elapsed / 1h 58m 7s left ) -> ETA: Tue Apr 09 23:39 XS = 4.53977e+09 pb +- ( 6.07627e+08 pb = 13 % ) Event 800 ( 56s elapsed / 1h 57m 45s left ) -> ETA: Tue Apr 09 23:38 XS = 4.59069e+09 pb +- ( 5.56958e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 6 ( -> 2) [( 3.4953e+03,-0.0000e+00,-0.0000e+00, 3.4953e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 0 [I] 1 G 63 ( -> 4) [( 2.4566e+00,-0.0000e+00,-0.0000e+00, 2.4566e+00), p^2= 0.0000e+00, m= 0.0000e+00] (602,658) 0 [I] 1 s 85 ( -> 6) [( 7.9058e-01,-0.0000e+00,-0.0000e+00, 7.9058e-01), p^2= 0.0000e+00, m= 4.0000e-01] (658, 0) 0 and Particle List with 3 elements [I] 1 d 5 ( -> 2) [( 2.1984e+03,-0.0000e+00,-0.0000e+00,-2.1984e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 u 64 ( -> 4) [( 1.1989e+03,-0.0000e+00,-0.0000e+00,-1.1989e+03), p^2= 0.0000e+00, m= 3.0000e-01] (660, 0) 1 [I] 1 G 86 ( -> 6) [( 9.5990e+01,-0.0000e+00,-0.0000e+00,-9.5990e+01), p^2= 0.0000e+00, m= 0.0000e+00] (672,660) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 95 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,603) 0 [B] 1 sb 91 ( -> ) [( 6.4463e-01, 0.0000e+00, 0.0000e+00, 6.4457e-01), p^2= 7.4095e-05, m= 0.0000e+00] ( 0,673) 0 [B] 1 d 94 ( -> ) [( 7.6594e-01, 0.0000e+00, 0.0000e+00, 7.6588e-01), p^2= 1.0461e-04, m= 0.0000e+00] (673, 0) 0 and Particle List with 2 elements [B] 1 uu_1 96 ( -> ) [( 2.5875e+00, 0.0000e+00, 0.0000e+00,-2.5874e+00), p^2= 2.5135e-04, m= 7.7133e-01] ( 0,672) 1 [B] 1 ub 80 ( -> ) [( 4.1123e+00, 0.0000e+00, 0.0000e+00,-4.1122e+00), p^2= 6.3488e-04, m= 0.0000e+00] ( 0,601) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 4s elapsed / 1h 59m 6s left ) -> ETA: Tue Apr 09 23:40 XS = 4.60038e+09 pb +- ( 5.33888e+08 pb = 11 % ) Event 1000 ( 1m 12s elapsed / 1h 59m 4s left ) -> ETA: Tue Apr 09 23:40 XS = 4.68513e+09 pb +- ( 5.14701e+08 pb = 10 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 8 elements [I] 1 G 5 ( -> 2) [( 1.0493e+03,-0.0000e+00,-0.0000e+00, 1.0493e+03), p^2= 0.0000e+00, m= 0.0000e+00] (655,629) 0 [I] 1 u 82 ( -> 4) [( 3.9610e+01,-0.0000e+00,-0.0000e+00, 3.9610e+01), p^2= 0.0000e+00, m= 3.0000e-01] (671, 0) 0 [I] 1 d 95 ( -> 6) [( 6.0166e+01,-0.0000e+00,-0.0000e+00, 6.0166e+01), p^2= 0.0000e+00, m= 3.0000e-01] (686, 0) 0 [I] 1 G 116 ( -> 8) [( 3.5124e+02,-0.0000e+00,-0.0000e+00, 3.5124e+02), p^2= 0.0000e+00, m= 0.0000e+00] (629,702) 0 [I] 1 d 141 ( -> 10) [( 8.4488e+01,-0.0000e+00,-0.0000e+00, 8.4488e+01), p^2= 0.0000e+00, m= 3.0000e-01] (702, 0) 0 [I] 1 u 163 ( -> 12) [( 7.2788e+02,-0.0000e+00,-0.0000e+00, 7.2788e+02), p^2= 0.0000e+00, m= 3.0000e-01] (721, 0) 0 [I] 1 u 183 ( -> 14) [( 9.4283e+02,-0.0000e+00,-0.0000e+00, 9.4283e+02), p^2= 0.0000e+00, m= 3.0000e-01] (737, 0) 0 [I] 1 G 197 ( -> 16) [( 1.9379e+02,-0.0000e+00,-0.0000e+00, 1.9379e+02), p^2= 0.0000e+00, m= 0.0000e+00] (749,737) 0 and Particle List with 8 elements [I] 1 u 6 ( -> 2) [( 2.0527e+03,-0.0000e+00,-0.0000e+00,-2.0527e+03), p^2= 0.0000e+00, m= 3.0000e-01] (661, 0) 1 [I] 1 db 83 ( -> 4) [( 1.6773e+01,-0.0000e+00,-0.0000e+00,-1.6773e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,661) 1 [I] 1 u 96 ( -> 6) [( 5.8372e+02,-0.0000e+00,-0.0000e+00,-5.8372e+02), p^2= 0.0000e+00, m= 3.0000e-01] (683, 0) 1 [I] 1 G 117 ( -> 8) [( 6.0285e+02,-0.0000e+00,-0.0000e+00,-6.0285e+02), p^2= 0.0000e+00, m= 0.0000e+00] (696,683) 1 [I] 1 G 142 ( -> 10) [( 2.2944e+02,-0.0000e+00,-0.0000e+00,-2.2944e+02), p^2= 0.0000e+00, m= 0.0000e+00] (711,696) 1 [I] 1 G 164 ( -> 12) [( 9.1916e+00,-0.0000e+00,-0.0000e+00,-9.1916e+00), p^2= 0.0000e+00, m= 0.0000e+00] (734,711) 1 [I] 1 G 184 ( -> 14) [( 3.0773e+00,-0.0000e+00,-0.0000e+00,-3.0773e+00), p^2= 0.0000e+00, m= 0.0000e+00] (738,734) 1 [I] 1 s 198 ( -> 16) [( 7.2126e-01,-0.0000e+00,-0.0000e+00,-7.2126e-01), p^2= 0.0000e+00, m= 4.0000e-01] (751, 0) 1 and the corresponding remnants are Particle List with 5 elements [B] 1 ud_0 208 ( -> ) [( 3.7835e+01, 0.0000e+00, 0.0000e+00, 3.7835e+01), p^2= 7.0974e-03, m= 5.7933e-01] ( 0,749) 0 [B] 1 ub 192 ( -> ) [( 4.2427e-01, 0.0000e+00, 0.0000e+00, 4.2427e-01), p^2= 8.9248e-07, m= 0.0000e+00] ( 0,686) 0 [B] 1 db 158 ( -> ) [( 5.7437e-01, 0.0000e+00, 0.0000e+00, 5.7437e-01), p^2= 1.6357e-06, m= 0.0000e+00] ( 0,721) 0 [B] 1 db 110 ( -> ) [( 8.5437e+00, 0.0000e+00, 0.0000e+00, 8.5437e+00), p^2= 3.6191e-04, m= 0.0000e+00] ( 0,671) 0 [B] 1 ub 89 ( -> ) [( 3.3540e+00, 0.0000e+00, 0.0000e+00, 3.3540e+00), p^2= 5.5775e-05, m= 0.0000e+00] ( 0,655) 0 and Particle List with 4 elements [B] 1 ud_0 209 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,751) 1 [B] 1 sb 205 ( -> ) [( 7.1978e-01, 0.0000e+00, 0.0000e+00,-7.1971e-01), p^2= 8.8117e-05, m= 0.0000e+00] ( 0,738) 1 [B] 1 ub 111 ( -> ) [( 3.4115e-01, 0.0000e+00, 0.0000e+00,-3.4112e-01), p^2= 1.9795e-05, m= 0.0000e+00] ( 0,675) 1 [B] 1 d 90 ( -> ) [( 4.1787e-01, 0.0000e+00, 0.0000e+00,-4.1783e-01), p^2= 2.9699e-05, m= 0.0000e+00] (675, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 2.7618e+03,-0.0000e+00,-0.0000e+00, 2.7618e+03), p^2= 0.0000e+00, m= 0.0000e+00] (608,610) 0 [I] 1 u 45 ( -> 4) [( 4.8076e+02,-0.0000e+00,-0.0000e+00, 4.8076e+02), p^2= 0.0000e+00, m= 3.0000e-01] (610, 0) 0 [I] 1 G 65 ( -> 6) [( 1.7553e+02,-0.0000e+00,-0.0000e+00, 1.7553e+02), p^2= 0.0000e+00, m= 0.0000e+00] (655,608) 0 and Particle List with 3 elements [I] 1 G 6 ( -> 2) [( 3.3695e+03,-0.0000e+00,-0.0000e+00,-3.3695e+03), p^2= 0.0000e+00, m= 0.0000e+00] (610,609) 1 [I] 1 G 46 ( -> 4) [( 1.2591e+02,-0.0000e+00,-0.0000e+00,-1.2591e+02), p^2= 0.0000e+00, m= 0.0000e+00] (609,643) 1 [I] 1 ub 66 ( -> 6) [( 3.1389e+00,-0.0000e+00,-0.0000e+00,-3.1389e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,610) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 76 ( -> ) [( 8.1876e+01, 0.0000e+00, 0.0000e+00, 8.1875e+01), p^2= 2.0594e-02, m= 5.7933e-01] ( 0,655) 0 and Particle List with 3 elements [B] 1 uu_1 78 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,661) 1 [B] 1 u 73 ( -> ) [( 4.0406e-01, 0.0000e+00, 0.0000e+00,-4.0403e-01), p^2= 2.8469e-05, m= 0.0000e+00] (661, 0) 1 [B] 1 d 77 ( -> ) [( 1.0384e+00, 0.0000e+00, 0.0000e+00,-1.0383e+00), p^2= 1.8801e-04, m= 0.0000e+00] (643, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 2m 23s elapsed / 1h 57m 9s left ) -> ETA: Tue Apr 09 23:39 [1m Memory usage increased by 16 MB, now 146 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.77888e+09 pb +- ( 4.25673e+08 pb = 8 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Pythia8 hadronisation failed. Event 3000 ( 3m 32s elapsed / 1h 54m 17s left ) -> ETA: Tue Apr 09 23:38 XS = 5.24417e+09 pb +- ( 3.77193e+08 pb = 7 % ) Event 4000 ( 4m 42s elapsed / 1h 52m 59s left ) -> ETA: Tue Apr 09 23:37 XS = 5.30954e+09 pb +- ( 3.37069e+08 pb = 6 % ) Event 5000 ( 5m 55s elapsed / 1h 52m 28s left ) -> ETA: Tue Apr 09 23:38 XS = 5.05953e+09 pb +- ( 2.90043e+08 pb = 5 % ) Event 6000 ( 7m 8s elapsed / 1h 51m 51s left ) -> ETA: Tue Apr 09 23:39 XS = 4.98272e+09 pb +- ( 2.60787e+08 pb = 5 % ) Event 7000 ( 8m 18s elapsed / 1h 50m 28s left ) -> ETA: Tue Apr 09 23:39 XS = 5.10382e+09 pb +- ( 2.49038e+08 pb = 4 % ) Event 8000 ( 9m 33s elapsed / 1h 49m 57s left ) -> ETA: Tue Apr 09 23:39 XS = 4.96677e+09 pb +- ( 2.34562e+08 pb = 4 % ) Event 9000 ( 10m 44s elapsed / 1h 48m 37s left ) -> ETA: Tue Apr 09 23:39 XS = 4.94676e+09 pb +- ( 2.16198e+08 pb = 4 % ) Event 10000 ( 11m 54s elapsed / 1h 47m 14s left ) -> ETA: Tue Apr 09 23:39 XS = 4.95017e+09 pb +- ( 2.05355e+08 pb = 4 % ) Event 20000 ( 23m 40s elapsed / 1h 34m 40s left ) -> ETA: Tue Apr 09 23:38 XS = 5.20959e+09 pb +- ( 1.52284e+08 pb = 2 % ) Event 30000 ( 35m 36s elapsed / 1h 23m 4s left ) -> ETA: Tue Apr 09 23:38 [1m Memory usage increased by 25 MB, now 172 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 5.14248e+09 pb +- ( 1.30162e+08 pb = 2 % ) Event 40000 ( 47m 48s elapsed / 1h 11m 42s left ) -> ETA: Tue Apr 09 23:39 XS = 5.01262e+09 pb +- ( 1.08574e+08 pb = 2 % ) Event 50000 ( 1h 3s elapsed / 1h 3s left ) -> ETA: Tue Apr 09 23:40 XS = 4.95586e+09 pb +- ( 9.5132e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 60000 ( 1h 12m 15s elapsed / 48m 10s left ) -> ETA: Tue Apr 09 23:40 XS = 4.94508e+09 pb +- ( 8.60927e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 70000 ( 1h 24m 38s elapsed / 36m 16s left ) -> ETA: Tue Apr 09 23:41 XS = 4.90728e+09 pb +- ( 7.98092e+07 pb = 1 % ) Event 80000 ( 1h 37m 42s elapsed / 24m 25s left ) -> ETA: Tue Apr 09 23:42 [1m Memory usage increased by 44 MB, now 216 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.85443e+09 pb +- ( 7.3652e+07 pb = 1 % ) Event 90000 ( 1h 50m 40s elapsed / 12m 17s left ) -> ETA: Tue Apr 09 23:43 XS = 4.83205e+09 pb +- ( 6.91064e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 100000 ( 7397 s total ) = 1.16801e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. [31mRivet_Interface::Finish([32mAnalysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1338[31m)[0m[31m{[0m [31m}[0m -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- [1mNominal [0m[34m[1m 4.8455e+09[0m[33m 0 %[31m 6.54811e+07 1.35 %[0m -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100000 Errors { From "Hadronization:Pythia8": 6 (100006) -> 0 % } New events { From "Beam_Remnants:Parametrised": 427 (100433) -> 0.4 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 427 fails in creating good beam breakups. Remnant Kinematics: 427 errors (no kinematics found) and 107 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 2h 3m 22s on Tue Apr 9 23:43:34 2024 (User: 2h 2m 58s, System: 2s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu5.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Apr 10 10:15:13 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1338 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... <S /()))))~~~~~~~~## + /\ + ............................ (!H (~~)))))~~~~~~#/ + + | + ................ ........... (!E (~~~))))) /|/ + + ............................ (!R (~~~))))) ||| + + + ..... ...................... (!P (~~~~))) /| + + + ............................ (!A> (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mMM[0m [34mMM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m [34mM[0m I [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. [34mPythia8_Hadronisation::Pythia8_Hadronisation[0m:([32m"Initialising Pythia8 hadronisation interface"[0m) [34mPythia8_Hadronisation::ApplyPythiaSettings[0m:([32m"Applying Pythia8 settings"[0m) [34mPythia8_Hadronisation::HarmonizeMasses[0m:([32m"Harmonizing particle masses and widths!"[0m) [34mPythia8_Hadronisation::ModifyPythiaValues[0m:([32m"Changing Pythia Values"[0m) Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) [1m2_2__j__j__j__j[0m : [34m[1m4.95201e+09 pb[0m +- ( [31m2.57792e+07 pb = 0.52058 %[0m ) [1m exp. eff: [31m0.320522 %[0m reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 41d 2h 6m 36s left ) -> ETA: Tue May 21 12:21 XS = 6.289e-09 pb +- ( 6.289e-09 pb = 100 % ) Event 2 ( 3s elapsed / 21d 5h 43m 16s left ) -> ETA: Wed May 01 15:58 XS = 609.023 pb +- ( 609.023 pb = 99 % ) Event 3 ( 3s elapsed / 14d 5h 39m 56s left ) -> ETA: Wed Apr 24 15:55 XS = 9.29642e+07 pb +- ( 9.29639e+07 pb = 99 % ) Event 4 ( 3s elapsed / 10d 17h 38m 16s left ) -> ETA: Sun Apr 21 03:53 XS = 4.72698e+08 pb +- ( 3.87245e+08 pb = 81 % ) Event 5 ( 3s elapsed / 8d 14h 39m 56s left ) -> ETA: Fri Apr 19 00:55 XS = 4.30352e+08 pb +- ( 2.61204e+08 pb = 60 % ) Event 6 ( 3s elapsed / 7d 6h 4m 22s left ) -> ETA: Wed Apr 17 16:19 XS = 3.58544e+08 pb +- ( 1.91947e+08 pb = 53 % ) Event 7 ( 3s elapsed / 6d 6h 47m 33s left ) -> ETA: Tue Apr 16 17:02 XS = 4.46763e+09 pb +- ( 4.11297e+09 pb = 92 % ) Event 8 ( 3s elapsed / 5d 14h 1m 36s left ) -> ETA: Tue Apr 16 00:16 XS = 4.1884e+09 pb +- ( 3.85745e+09 pb = 92 % ) Event 9 ( 3s elapsed / 5d 3m 38s left ) -> ETA: Mon Apr 15 10:18 XS = 4.33411e+09 pb +- ( 3.62637e+09 pb = 83 % ) Event 10 ( 3s elapsed / 4d 14h 33m 16s left ) -> ETA: Mon Apr 15 00:48 XS = 4.11149e+09 pb +- ( 3.42622e+09 pb = 83 % ) Event 20 ( 4s elapsed / 2d 16h 18m 15s left ) -> ETA: Sat Apr 13 02:33 XS = 1.89239e+09 pb +- ( 1.4152e+09 pb = 74 % ) Event 30 ( 5s elapsed / 1d 23h 35m 28s left ) -> ETA: Fri Apr 12 09:50 XS = 4.76769e+09 pb +- ( 3.75805e+09 pb = 78 % ) Event 40 ( 5s elapsed / 1d 15h 47m 24s left ) -> ETA: Fri Apr 12 02:02 XS = 3.95519e+09 pb +- ( 2.78539e+09 pb = 70 % ) Event 50 ( 6s elapsed / 1d 11h 26m 33s left ) -> ETA: Thu Apr 11 21:41 XS = 3.43398e+09 pb +- ( 2.39872e+09 pb = 69 % ) Event 60 ( 7s elapsed / 1d 9h 55m 59s left ) -> ETA: Thu Apr 11 20:11 XS = 3.48121e+09 pb +- ( 2.14236e+09 pb = 61 % ) Event 70 ( 7s elapsed / 1d 7h 11m 17s left ) -> ETA: Thu Apr 11 17:26 XS = 4.16239e+09 pb +- ( 2.14665e+09 pb = 51 % ) Event 80 ( 8s elapsed / 1d 6h 6m 6s left ) -> ETA: Thu Apr 11 16:21 XS = 3.70066e+09 pb +- ( 1.86953e+09 pb = 50 % ) Event 90 ( 9s elapsed / 1d 4h 56m 52s left ) -> ETA: Thu Apr 11 15:12 XS = 3.95985e+09 pb +- ( 1.76083e+09 pb = 44 % ) Event 100 ( 9s elapsed / 1d 3h 23m 10s left ) -> ETA: Thu Apr 11 13:38 XS = 4.22066e+09 pb +- ( 1.66237e+09 pb = 39 % ) Event 200 ( 16s elapsed / 22h 43m 3s left ) -> ETA: Thu Apr 11 08:58 XS = 3.16208e+09 pb +- ( 8.78197e+08 pb = 27 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 2.3041e+03,-0.0000e+00,-0.0000e+00, 2.3041e+03), p^2= 0.0000e+00, m= 0.0000e+00] (613,615) 0 [I] 1 G 53 ( -> 4) [( 2.9404e+02,-0.0000e+00,-0.0000e+00, 2.9404e+02), p^2= 0.0000e+00, m= 0.0000e+00] (661,613) 0 and Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 3.4951e+03,-0.0000e+00,-0.0000e+00,-3.4951e+03), p^2= 0.0000e+00, m= 0.0000e+00] (616,614) 1 [I] 1 db 54 ( -> 4) [( 3.5097e+00,-0.0000e+00,-0.0000e+00,-3.5097e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,664) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 64 ( -> ) [( 8.8306e+02, 0.0000e+00, 0.0000e+00, 8.8306e+02), p^2= 2.1747e-01, m= 7.7133e-01] ( 0,661) 0 [B] 1 d 63 ( -> ) [( 1.8847e+01, 0.0000e+00, 0.0000e+00, 1.8847e+01), p^2= 9.9067e-05, m= 0.0000e+00] (615, 0) 0 and Particle List with 3 elements [B] 1 ud_0 66 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,616) 1 [B] 1 d 60 ( -> ) [( 9.2298e-01, 0.0000e+00, 0.0000e+00,-9.2290e-01), p^2= 1.5138e-04, m= 0.0000e+00] (614, 0) 1 [B] 1 u 65 ( -> ) [( 4.9244e-01, 0.0000e+00, 0.0000e+00,-4.9240e-01), p^2= 4.3091e-05, m= 0.0000e+00] (664, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 300 ( 23s elapsed / 21h 17m 56s left ) -> ETA: Thu Apr 11 07:33 XS = 3.19412e+09 pb +- ( 7.69634e+08 pb = 24 % ) Event 400 ( 29s elapsed / 20h 12m 25s left ) -> ETA: Thu Apr 11 06:28 XS = 3.85789e+09 pb +- ( 7.06157e+08 pb = 18 % ) Event 500 ( 35s elapsed / 19h 49m 24s left ) -> ETA: Thu Apr 11 06:05 XS = 3.78129e+09 pb +- ( 5.95761e+08 pb = 15 % ) Event 600 ( 42s elapsed / 19h 39m 50s left ) -> ETA: Thu Apr 11 05:55 XS = 4.15747e+09 pb +- ( 6.25323e+08 pb = 15 % ) Event 700 ( 48s elapsed / 19h 24m 11s left ) -> ETA: Thu Apr 11 05:40 XS = 3.88696e+09 pb +- ( 5.50121e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 2.2029e+02,-0.0000e+00,-0.0000e+00, 2.2029e+02), p^2= 0.0000e+00, m= 0.0000e+00] (615,619) 0 [I] 1 G 23 ( -> 4) [( 1.9785e+02,-0.0000e+00,-0.0000e+00, 1.9785e+02), p^2= 0.0000e+00, m= 0.0000e+00] (619,629) 0 [I] 1 u 34 ( -> 6) [( 1.2294e+03,-0.0000e+00,-0.0000e+00, 1.2294e+03), p^2= 0.0000e+00, m= 3.0000e-01] (629, 0) 0 [I] 1 G 52 ( -> 8) [( 5.5335e+02,-0.0000e+00,-0.0000e+00, 5.5335e+02), p^2= 0.0000e+00, m= 0.0000e+00] (657,615) 0 [I] 1 G 70 ( -> 10) [( 6.1343e+01,-0.0000e+00,-0.0000e+00, 6.1343e+01), p^2= 0.0000e+00, m= 0.0000e+00] (662,657) 0 and Particle List with 5 elements [I] 1 ub 6 ( -> 2) [( 3.3488e+03,-0.0000e+00,-0.0000e+00,-3.3488e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,613) 1 [I] 1 s 24 ( -> 4) [( 3.4087e+00,-0.0000e+00,-0.0000e+00,-3.4087e+00), p^2= 0.0000e+00, m= 4.0000e-01] (625, 0) 1 [I] 1 db 35 ( -> 6) [( 4.2188e+01,-0.0000e+00,-0.0000e+00,-4.2188e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,631) 1 [I] 1 d 53 ( -> 8) [( 1.3750e+01,-0.0000e+00,-0.0000e+00,-1.3750e+01), p^2= 0.0000e+00, m= 3.0000e-01] (631, 0) 1 [I] 1 G 71 ( -> 10) [( 8.9803e+01,-0.0000e+00,-0.0000e+00,-8.9803e+01), p^2= 0.0000e+00, m= 0.0000e+00] (661,625) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 80 ( -> ) [( 1.2378e+03, 0.0000e+00, 0.0000e+00, 1.2378e+03), p^2= 3.1134e-01, m= 5.7933e-01] ( 0,662) 0 and Particle List with 4 elements [B] 1 uu_1 81 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,661) 1 [B] 1 d 47 ( -> ) [( 5.4842e-01, 0.0000e+00, 0.0000e+00,-5.4838e-01), p^2= 3.7512e-05, m= 0.0000e+00] (613, 0) 1 [B] 1 sb 29 ( -> ) [( 9.8431e-01, 0.0000e+00, 0.0000e+00,-9.8424e-01), p^2= 1.2084e-04, m= 0.0000e+00] ( 0,624) 1 [B] 1 u 18 ( -> ) [( 4.8388e-01, 0.0000e+00, 0.0000e+00,-4.8385e-01), p^2= 2.9203e-05, m= 0.0000e+00] (624, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 800 ( 55s elapsed / 19h 14m 4s left ) -> ETA: Thu Apr 11 05:30 XS = 4.53287e+09 pb +- ( 9.38197e+08 pb = 20 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 u 6 ( -> 2) [( 5.5461e+02,-0.0000e+00,-0.0000e+00, 5.5461e+02), p^2= 0.0000e+00, m= 3.0000e-01] (634, 0) 0 [I] 1 G 51 ( -> 4) [( 6.8454e+02,-0.0000e+00,-0.0000e+00, 6.8454e+02), p^2= 0.0000e+00, m= 0.0000e+00] (647,634) 0 [I] 1 ub 68 ( -> 6) [( 2.8332e+02,-0.0000e+00,-0.0000e+00, 2.8332e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,647) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.1558e+03,-0.0000e+00,-0.0000e+00,-3.1558e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1 [I] 1 db 52 ( -> 4) [( 1.6148e+00,-0.0000e+00,-0.0000e+00,-1.6148e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,603) 1 [I] 1 G 69 ( -> 6) [( 3.4115e+02,-0.0000e+00,-0.0000e+00,-3.4115e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,652) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 79 ( -> ) [( 1.5833e+03, 0.0000e+00, 0.0000e+00, 1.5833e+03), p^2= 3.1886e-01, m= 5.7933e-01] ( 0,656) 0 [B] 1 u 76 ( -> ) [( 3.9422e+02, 0.0000e+00, 0.0000e+00, 3.9422e+02), p^2= 1.9768e-02, m= 0.0000e+00] (656, 0) 0 and Particle List with 3 elements [B] 1 ud_0 81 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,649) 1 [B] 1 d 63 ( -> ) [( 4.2991e-01, 0.0000e+00, 0.0000e+00,-4.2987e-01), p^2= 3.2960e-05, m= 0.0000e+00] (649, 0) 1 [B] 1 u 80 ( -> ) [( 9.8047e-01, 0.0000e+00, 0.0000e+00,-9.8038e-01), p^2= 1.7144e-04, m= 0.0000e+00] (652, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 2s elapsed / 19h 13m 13s left ) -> ETA: Thu Apr 11 05:29 XS = 4.18926e+09 pb +- ( 8.28558e+08 pb = 19 % ) Event 1000 ( 1m 8s elapsed / 18h 59m 11s left ) -> ETA: Thu Apr 11 05:15 XS = 4.17123e+09 pb +- ( 7.55313e+08 pb = 18 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 1.2292e+03,-0.0000e+00,-0.0000e+00, 1.2292e+03), p^2= 0.0000e+00, m= 0.0000e+00] (608,616) 0 [I] 1 u 31 ( -> 4) [( 3.2335e+02,-0.0000e+00,-0.0000e+00, 3.2335e+02), p^2= 0.0000e+00, m= 3.0000e-01] (616, 0) 0 [I] 1 G 47 ( -> 6) [( 5.9578e+02,-0.0000e+00,-0.0000e+00, 5.9578e+02), p^2= 0.0000e+00, m= 0.0000e+00] (644,608) 0 [I] 1 G 57 ( -> 8) [( 4.3537e+01,-0.0000e+00,-0.0000e+00, 4.3537e+01), p^2= 0.0000e+00, m= 0.0000e+00] (638,651) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.4763e+03,-0.0000e+00,-0.0000e+00,-3.4763e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 1 [I] 1 ub 32 ( -> 4) [( 1.0444e+01,-0.0000e+00,-0.0000e+00,-1.0444e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,636) 1 [I] 1 G 48 ( -> 6) [( 2.9670e+00,-0.0000e+00,-0.0000e+00,-2.9670e+00), p^2= 0.0000e+00, m= 0.0000e+00] (641,605) 1 [I] 1 G 58 ( -> 8) [( 8.7129e+00,-0.0000e+00,-0.0000e+00,-8.7129e+00), p^2= 0.0000e+00, m= 0.0000e+00] (653,641) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 66 ( -> ) [( 5.8590e+02, 0.0000e+00, 0.0000e+00, 5.8590e+02), p^2= 6.6007e-02, m= 5.7933e-01] ( 0,644) 0 [B] 1 G 67 ( -> ) [( 7.2221e+02, 0.0000e+00, 0.0000e+00, 7.2221e+02), p^2= 1.0029e-01, m= 0.0000e+00] (651,638) 0 and Particle List with 3 elements [B] 1 ud_0 69 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,653) 1 [B] 1 u 42 ( -> ) [( 8.5402e-01, 0.0000e+00, 0.0000e+00,-8.5395e-01), p^2= 1.1837e-04, m= 0.0000e+00] (607, 0) 1 [B] 1 u 68 ( -> ) [( 6.9575e-01, 0.0000e+00, 0.0000e+00,-6.9569e-01), p^2= 7.8561e-05, m= 0.0000e+00] (636, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 2.3756e+03,-0.0000e+00,-0.0000e+00, 2.3756e+03), p^2= 0.0000e+00, m= 0.0000e+00] (648,603) 0 [I] 1 G 71 ( -> 4) [( 8.0450e+01,-0.0000e+00,-0.0000e+00, 8.0450e+01), p^2= 0.0000e+00, m= 0.0000e+00] (603,663) 0 [I] 1 ub 91 ( -> 6) [( 5.2890e+01,-0.0000e+00,-0.0000e+00, 5.2890e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,669) 0 [I] 1 G 112 ( -> 8) [( 6.1252e+02,-0.0000e+00,-0.0000e+00, 6.1252e+02), p^2= 0.0000e+00, m= 0.0000e+00] (669,689) 0 [I] 1 G 131 ( -> 10) [( 2.1412e+02,-0.0000e+00,-0.0000e+00, 2.1412e+02), p^2= 0.0000e+00, m= 0.0000e+00] (697,648) 0 [I] 1 G 145 ( -> 12) [( 9.6635e+01,-0.0000e+00,-0.0000e+00, 9.6635e+01), p^2= 0.0000e+00, m= 0.0000e+00] (689,709) 0 and Particle List with 6 elements [I] 1 u 6 ( -> 2) [( 2.3410e+03,-0.0000e+00,-0.0000e+00,-2.3410e+03), p^2= 0.0000e+00, m= 3.0000e-01] (608, 0) 1 [I] 1 G 72 ( -> 4) [( 1.1364e+02,-0.0000e+00,-0.0000e+00,-1.1364e+02), p^2= 0.0000e+00, m= 0.0000e+00] (665,608) 1 [I] 1 G 92 ( -> 6) [( 1.2399e+02,-0.0000e+00,-0.0000e+00,-1.2399e+02), p^2= 0.0000e+00, m= 0.0000e+00] (675,665) 1 [I] 1 G 113 ( -> 8) [( 7.1080e+02,-0.0000e+00,-0.0000e+00,-7.1080e+02), p^2= 0.0000e+00, m= 0.0000e+00] (687,675) 1 [I] 1 G 132 ( -> 10) [( 2.0908e+02,-0.0000e+00,-0.0000e+00,-2.0908e+02), p^2= 0.0000e+00, m= 0.0000e+00] (701,687) 1 [I] 1 ub 146 ( -> 12) [( 7.1979e-01,-0.0000e+00,-0.0000e+00,-7.1979e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,701) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 158 ( -> ) [( 5.8134e+01, 0.0000e+00, 0.0000e+00, 5.8134e+01), p^2= 1.2533e-02, m= 7.7133e-01] ( 0,697) 0 [B] 1 u 107 ( -> ) [( 5.3256e-01, 0.0000e+00, 0.0000e+00, 5.3256e-01), p^2= 1.0518e-06, m= 0.0000e+00] (663, 0) 0 [B] 1 d 157 ( -> ) [( 9.1588e+00, 0.0000e+00, 0.0000e+00, 9.1588e+00), p^2= 3.1108e-04, m= 0.0000e+00] (709, 0) 0 and Particle List with 2 elements [B] 1 ud_0 159 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,712) 1 [B] 1 u 154 ( -> ) [( 7.9016e-01, 0.0000e+00, 0.0000e+00,-7.9003e-01), p^2= 1.9873e-04, m= 0.0000e+00] (712, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 2m 12s elapsed / 18h 23m 12s left ) -> ETA: Thu Apr 11 04:40 [1m Memory usage increased by 16 MB, now 144 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.2741e+09 pb +- ( 4.70121e+08 pb = 10 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 3m 19s elapsed / 18h 26m 33s left ) -> ETA: Thu Apr 11 04:45 XS = 4.15658e+09 pb +- ( 3.58369e+08 pb = 8 % ) Event 4000 ( 4m 25s elapsed / 18h 20m 57s left ) -> ETA: Thu Apr 11 04:40 XS = 4.30316e+09 pb +- ( 3.14784e+08 pb = 7 % ) Event 5000 ( 5m 27s elapsed / 18h 5m 18s left ) -> ETA: Thu Apr 11 04:26 XS = 4.47712e+09 pb +- ( 2.80799e+08 pb = 6 % ) Event 6000 ( 6m 30s elapsed / 17h 59m 30s left ) -> ETA: Thu Apr 11 04:21 XS = 4.49063e+09 pb +- ( 2.51849e+08 pb = 5 % ) Event 7000 ( 7m 35s elapsed / 17h 57m 51s left ) -> ETA: Thu Apr 11 04:20 XS = 4.45534e+09 pb +- ( 2.28456e+08 pb = 5 % ) Event 8000 ( 8m 42s elapsed / 18h 2s left ) -> ETA: Thu Apr 11 04:24 XS = 4.39074e+09 pb +- ( 2.08126e+08 pb = 4 % ) Event 9000 ( 9m 48s elapsed / 17h 59m 44s left ) -> ETA: Thu Apr 11 04:24 XS = 4.47276e+09 pb +- ( 1.99407e+08 pb = 4 % ) Event 10000 ( 10m 55s elapsed / 18h 2m 14s left ) -> ETA: Thu Apr 11 04:28 XS = 4.4302e+09 pb +- ( 1.8646e+08 pb = 4 % ) Pythia8 hadronisation failed. Event 20000 ( 21m 52s elapsed / 17h 51m 33s left ) -> ETA: Thu Apr 11 04:28 XS = 4.70655e+09 pb +- ( 1.4496e+08 pb = 3 % ) Event 30000 ( 33m 35s elapsed / 18h 5m 58s left ) -> ETA: Thu Apr 11 04:54 XS = 4.73954e+09 pb +- ( 1.15825e+08 pb = 2 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 40000 ( 45m 13s elapsed / 18h 5m 24s left ) -> ETA: Thu Apr 11 05:05 [1m Memory usage increased by 25 MB, now 169 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.8445e+09 pb +- ( 1.03331e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 50000 ( 57m 2s elapsed / 18h 3m 38s left ) -> ETA: Thu Apr 11 05:15 XS = 4.80656e+09 pb +- ( 9.03051e+07 pb = 1 % ) Event 60000 ( 1h 8m 52s elapsed / 17h 59m 1s left ) -> ETA: Thu Apr 11 05:23 XS = 4.79197e+09 pb +- ( 8.14398e+07 pb = 1 % ) Event 70000 ( 1h 20m 52s elapsed / 17h 54m 24s left ) -> ETA: Thu Apr 11 05:30 XS = 4.78309e+09 pb +- ( 7.52824e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 80000 ( 1h 32m 45s elapsed / 17h 46m 37s left ) -> ETA: Thu Apr 11 05:34 XS = 4.75383e+09 pb +- ( 7.04695e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 90000 ( 1h 44m 39s elapsed / 17h 38m 8s left ) -> ETA: Thu Apr 11 05:38 XS = 4.78275e+09 pb +- ( 7.09341e+07 pb = 1 % ) Event 100000 ( 1h 56m 26s elapsed / 17h 27m 56s left ) -> ETA: Thu Apr 11 05:39 [1m Memory usage increased by 47 MB, now 217 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.75784e+09 pb +- ( 6.66838e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 55m elapsed / 15h 40m left ) -> ETA: Thu Apr 11 05:50 XS = 4.75573e+09 pb +- ( 4.51806e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 300000 ( 5h 45m 11s elapsed / 13h 25m 27s left ) -> ETA: Thu Apr 11 05:25 XS = 4.78563e+09 pb +- ( 3.69152e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed.