Welcome to Sherpa, Daniel Reichelt on ip3-cpu3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Mar 7 21:23:53 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1321 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 10d 5h 8m 16s left ) -> ETA: Mon Mar 18 02:32 XS = 22.4321 pb +- ( 22.4321 pb = 100 % ) Event 2 ( 3s elapsed / 5d 8h 7m 26s left ) -> ETA: Wed Mar 13 05:31 XS = 15.3048 pb +- ( 14.7828 pb = 96 % ) Event 3 ( 3s elapsed / 3d 14h 34m 22s left ) -> ETA: Mon Mar 11 11:58 XS = 9.82626e+07 pb +- ( 9.82626e+07 pb = 99 % ) Event 4 ( 3s elapsed / 2d 17h 47m 51s left ) -> ETA: Sun Mar 10 15:11 XS = 5.615e+07 pb +- ( 5.615e+07 pb = 99 % ) Event 5 ( 3s elapsed / 2d 5h 19m 56s left ) -> ETA: Sun Mar 10 02:43 XS = 3.59456e+07 pb +- ( 3.0298e+07 pb = 84 % ) Event 6 ( 3s elapsed / 1d 21h 22m 9s left ) -> ETA: Sat Mar 09 18:46 XS = 3.33784e+07 pb +- ( 2.81678e+07 pb = 84 % ) Event 7 ( 3s elapsed / 1d 15h 17m 4s left ) -> ETA: Sat Mar 09 12:41 XS = 4.20259e+09 pb +- ( 4.1693e+09 pb = 99 % ) Event 8 ( 4s elapsed / 1d 10h 43m 16s left ) -> ETA: Sat Mar 09 08:07 XS = 3.94022e+09 pb +- ( 3.90884e+09 pb = 99 % ) Event 9 ( 4s elapsed / 1d 7h 28m 49s left ) -> ETA: Sat Mar 09 04:52 XS = 3.70844e+09 pb +- ( 3.67902e+09 pb = 99 % ) Event 10 ( 4s elapsed / 1d 4h 40m 45s left ) -> ETA: Sat Mar 09 02:04 XS = 3.31987e+09 pb +- ( 3.29183e+09 pb = 99 % ) Event 20 ( 4s elapsed / 16h 42m left ) -> ETA: Fri Mar 08 14:06 XS = 1.73307e+09 pb +- ( 1.52685e+09 pb = 88 % ) Event 30 ( 5s elapsed / 12h 50m 44s left ) -> ETA: Fri Mar 08 10:14 XS = 1.25678e+09 pb +- ( 9.50057e+08 pb = 75 % ) Event 40 ( 6s elapsed / 10h 37m 23s left ) -> ETA: Fri Mar 08 08:01 XS = 1.14941e+09 pb +- ( 7.14524e+08 pb = 62 % ) Event 50 ( 6s elapsed / 9h 42m 23s left ) -> ETA: Fri Mar 08 07:06 XS = 1.14191e+09 pb +- ( 6.00534e+08 pb = 52 % ) Event 60 ( 7s elapsed / 9h 11m 15s left ) -> ETA: Fri Mar 08 06:35 XS = 9.49656e+08 pb +- ( 5.00005e+08 pb = 52 % ) Event 70 ( 8s elapsed / 8h 37m 7s left ) -> ETA: Fri Mar 08 06:01 XS = 2.92847e+09 pb +- ( 1.93347e+09 pb = 66 % ) Event 80 ( 9s elapsed / 7h 59m left ) -> ETA: Fri Mar 08 05:23 XS = 2.43226e+09 pb +- ( 1.58568e+09 pb = 65 % ) Event 90 ( 9s elapsed / 7h 25m 40s left ) -> ETA: Fri Mar 08 04:49 XS = 2.28615e+09 pb +- ( 1.38736e+09 pb = 60 % ) Event 100 ( 10s elapsed / 7h 2m 19s left ) -> ETA: Fri Mar 08 04:26 XS = 2.31986e+09 pb +- ( 1.26206e+09 pb = 54 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 u 6 ( -> 2) [( 2.8161e+03,-0.0000e+00,-0.0000e+00, 2.8161e+03), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 0 [I] 1 G 30 ( -> 4) [( 1.2921e+02,-0.0000e+00,-0.0000e+00, 1.2921e+02), p^2= 0.0000e+00, m= 0.0000e+00] (638,605) 0 [I] 1 u 59 ( -> 6) [( 2.2962e+02,-0.0000e+00,-0.0000e+00, 2.2962e+02), p^2= 0.0000e+00, m= 3.0000e-01] (655, 0) 0 [I] 1 G 79 ( -> 8) [( 3.2151e+02,-0.0000e+00,-0.0000e+00, 3.2151e+02), p^2= 0.0000e+00, m= 0.0000e+00] (664,655) 0 [I] 1 G 94 ( -> 10) [( 8.6624e-01, 0.0000e+00, 0.0000e+00, 8.6624e-01), p^2= 0.0000e+00, m= 0.0000e+00] (673,664) 0 [I] 1 u 102 ( -> 12) [( 1.2427e+00,-0.0000e+00,-0.0000e+00, 1.2427e+00), p^2= 0.0000e+00, m= 3.0000e-01] (676, 0) 0 and Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 9.3765e+01,-0.0000e+00,-0.0000e+00,-9.3765e+01), p^2= 0.0000e+00, m= 0.0000e+00] (622,617) 1 [I] 1 G 31 ( -> 4) [( 2.4573e+02,-0.0000e+00,-0.0000e+00,-2.4573e+02), p^2= 0.0000e+00, m= 0.0000e+00] (634,622) 1 [I] 1 sb 60 ( -> 6) [( 1.0570e+02,-0.0000e+00,-0.0000e+00,-1.0570e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,660) 1 [I] 1 G 80 ( -> 8) [( 2.1439e+02,-0.0000e+00,-0.0000e+00,-2.1439e+02), p^2= 0.0000e+00, m= 0.0000e+00] (672,634) 1 [I] 1 G 95 ( -> 10) [( 1.6314e+02, 0.0000e+00, 0.0000e+00,-1.6314e+02), p^2= 0.0000e+00, m= 0.0000e+00] (664,672) 1 [I] 1 G 103 ( -> 12) [( 6.1690e+02,-0.0000e+00,-0.0000e+00,-6.1690e+02), p^2= 0.0000e+00, m= 0.0000e+00] (680,664) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 113 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,676) 0 [B] 1 ub 110 ( -> ) [( 5.0153e-01, 0.0000e+00, 0.0000e+00, 5.0148e-01), p^2= 4.4732e-05, m= 0.0000e+00] ( 0,673) 0 [B] 1 ub 73 ( -> ) [( 9.1277e-01, 0.0000e+00, 0.0000e+00, 9.1269e-01), p^2= 1.4817e-04, m= 0.0000e+00] ( 0,638) 0 and Particle List with 3 elements [B] 1 uu_1 115 ( -> ) [( 9.4717e+02, 0.0000e+00, 0.0000e+00,-9.4717e+02), p^2= 1.0952e-01, m= 7.7133e-01] ( 0,680) 1 [B] 1 s 74 ( -> ) [( 7.0739e-01, 0.0000e+00, 0.0000e+00,-7.0739e-01), p^2= 6.1088e-08, m= 0.0000e+00] (617, 0) 1 [B] 1 d 114 ( -> ) [( 1.1125e+03, 0.0000e+00, 0.0000e+00,-1.1125e+03), p^2= 1.5109e-01, m= 0.0000e+00] (660, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 u 6 ( -> 2) [( 3.4985e+03,-0.0000e+00,-0.0000e+00, 3.4985e+03), p^2= 0.0000e+00, m= 3.0000e-01] (621, 0) 0 [I] 1 d 53 ( -> 4) [( 4.1932e-01,-0.0000e+00,-0.0000e+00, 4.1932e-01), p^2= 0.0000e+00, m= 3.0000e-01] (672, 0) 0 and Particle List with 2 elements [I] 1 d 5 ( -> 2) [( 6.2836e+02,-0.0000e+00,-0.0000e+00,-6.2836e+02), p^2= 0.0000e+00, m= 3.0000e-01] (645, 0) 1 [I] 1 d 54 ( -> 4) [( 7.4977e+02,-0.0000e+00,-0.0000e+00,-7.4977e+02), p^2= 0.0000e+00, m= 3.0000e-01] (671, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 65 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,672) 0 [B] 1 db 61 ( -> ) [( 1.0605e+00, 0.0000e+00, 0.0000e+00, 1.0604e+00), p^2= 2.6673e-04, m= 0.0000e+00] ( 0,621) 0 and Particle List with 2 elements [B] 1 uu_1 66 ( -> ) [( 2.0847e+03, 0.0000e+00, 0.0000e+00,-2.0847e+03), p^2= 5.1516e-01, m= 7.7133e-01] ( 0,671) 1 [B] 1 db 62 ( -> ) [( 3.7210e+01, 0.0000e+00, 0.0000e+00,-3.7210e+01), p^2= 1.6413e-04, m= 0.0000e+00] ( 0,645) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 200 ( 16s elapsed / 5h 42m 26s left ) -> ETA: Fri Mar 08 03:06 XS = 2.61561e+09 pb +- ( 8.46116e+08 pb = 32 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 cb 6 ( -> 2) [( 7.3242e+02,-0.0000e+00,-0.0000e+00, 7.3242e+02), p^2= 0.0000e+00, m= 1.8000e+00] ( 0,609) 0 [I] 1 d 31 ( -> 4) [( 1.6961e+02,-0.0000e+00,-0.0000e+00, 1.6961e+02), p^2= 0.0000e+00, m= 3.0000e-01] (609, 0) 0 [I] 1 G 52 ( -> 6) [( 5.4605e+02,-0.0000e+00,-0.0000e+00, 5.4605e+02), p^2= 0.0000e+00, m= 0.0000e+00] (643,620) 0 [I] 1 G 66 ( -> 8) [( 3.5787e+02,-0.0000e+00,-0.0000e+00, 3.5787e+02), p^2= 0.0000e+00, m= 0.0000e+00] (650,643) 0 [I] 1 G 79 ( -> 10) [( 1.2419e+01,-0.0000e+00,-0.0000e+00, 1.2419e+01), p^2= 0.0000e+00, m= 0.0000e+00] (657,650) 0 [I] 1 u 88 ( -> 12) [( 7.7944e+02,-0.0000e+00,-0.0000e+00, 7.7944e+02), p^2= 0.0000e+00, m= 3.0000e-01] (661, 0) 0 and Particle List with 6 elements [I] 1 u 5 ( -> 2) [( 3.4744e+03,-0.0000e+00,-0.0000e+00,-3.4744e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 s 32 ( -> 4) [( 9.7244e+00,-0.0000e+00,-0.0000e+00,-9.7244e+00), p^2= 0.0000e+00, m= 4.0000e-01] (631, 0) 1 [I] 1 G 53 ( -> 6) [( 4.6249e+00,-0.0000e+00,-0.0000e+00,-4.6249e+00), p^2= 0.0000e+00, m= 0.0000e+00] (641,631) 1 [I] 1 G 67 ( -> 8) [( 7.3473e+00,-0.0000e+00,-0.0000e+00,-7.3473e+00), p^2= 0.0000e+00, m= 0.0000e+00] (648,641) 1 [I] 1 G 80 ( -> 10) [( 2.3046e+00,-0.0000e+00,-0.0000e+00,-2.3046e+00), p^2= 0.0000e+00, m= 0.0000e+00] (660,648) 1 [I] 1 G 89 ( -> 12) [( 5.4546e-01,-0.0000e+00,-0.0000e+00,-5.4546e-01), p^2= 0.0000e+00, m= 0.0000e+00] (662,660) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 97 ( -> ) [( 4.5588e+02, 0.0000e+00, 0.0000e+00, 4.5588e+02), p^2= 5.7940e-02, m= 7.7133e-01] ( 0,661) 0 [B] 1 ub 94 ( -> ) [( 1.1280e+00, 0.0000e+00, 0.0000e+00, 1.1280e+00), p^2= 3.5474e-07, m= 0.0000e+00] ( 0,657) 0 [B] 1 c 26 ( -> ) [( 4.4519e+02, 0.0000e+00, 0.0000e+00, 4.4519e+02), p^2= 5.5257e-02, m= 0.0000e+00] (620, 0) 0 and Particle List with 2 elements [B] 1 ud_0 98 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,662) 1 [B] 1 sb 47 ( -> ) [( 1.0412e+00, 0.0000e+00, 0.0000e+00,-1.0411e+00), p^2= 2.6189e-04, m= 0.0000e+00] ( 0,601) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 300 ( 22s elapsed / 5h 10m 19s left ) -> ETA: Fri Mar 08 02:34 XS = 3.08241e+09 pb +- ( 7.39932e+08 pb = 24 % ) Event 400 ( 29s elapsed / 5h 9m 36s left ) -> ETA: Fri Mar 08 02:34 XS = 2.65358e+09 pb +- ( 5.70806e+08 pb = 21 % ) Event 500 ( 35s elapsed / 4h 58m 9s left ) -> ETA: Fri Mar 08 02:22 XS = 3.65513e+09 pb +- ( 6.67064e+08 pb = 18 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 6 ( -> 2) [( 3.4399e+03,-0.0000e+00,-0.0000e+00, 3.4399e+03), p^2= 0.0000e+00, m= 0.0000e+00] (607,605) 0 [I] 1 d 94 ( -> 4) [( 3.0700e+01,-0.0000e+00,-0.0000e+00, 3.0700e+01), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 0 [I] 1 G 113 ( -> 6) [( 1.0288e+01,-0.0000e+00,-0.0000e+00, 1.0288e+01), p^2= 0.0000e+00, m= 0.0000e+00] (701,607) 0 [I] 1 sb 130 ( -> 8) [( 1.5142e+01,-0.0000e+00,-0.0000e+00, 1.5142e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,701) 0 [I] 1 d 144 ( -> 10) [( 2.6229e+00,-0.0000e+00,-0.0000e+00, 2.6229e+00), p^2= 0.0000e+00, m= 3.0000e-01] (718, 0) 0 and Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 1.2155e+03,-0.0000e+00,-0.0000e+00,-1.2155e+03), p^2= 0.0000e+00, m= 0.0000e+00] (665,653) 1 [I] 1 u 95 ( -> 4) [( 1.2887e+03,-0.0000e+00,-0.0000e+00,-1.2887e+03), p^2= 0.0000e+00, m= 3.0000e-01] (653, 0) 1 [I] 1 d 114 ( -> 6) [( 1.3930e+02,-0.0000e+00,-0.0000e+00,-1.3930e+02), p^2= 0.0000e+00, m= 3.0000e-01] (698, 0) 1 [I] 1 G 131 ( -> 8) [( 1.2416e+02,-0.0000e+00,-0.0000e+00,-1.2416e+02), p^2= 0.0000e+00, m= 0.0000e+00] (711,698) 1 [I] 1 u 145 ( -> 10) [( 5.7650e+01,-0.0000e+00,-0.0000e+00,-5.7650e+01), p^2= 0.0000e+00, m= 3.0000e-01] (721, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 155 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,718) 0 [B] 1 db 151 ( -> ) [( 9.7443e-01, 0.0000e+00, 0.0000e+00, 9.7434e-01), p^2= 1.7130e-04, m= 0.0000e+00] ( 0,713) 0 [B] 1 s 139 ( -> ) [( 4.1969e-01, 0.0000e+00, 0.0000e+00, 4.1965e-01), p^2= 3.1778e-05, m= 0.0000e+00] (713, 0) 0 and Particle List with 3 elements [B] 1 ud_0 156 ( -> ) [( 5.6092e+02, 0.0000e+00, 0.0000e+00,-5.6092e+02), p^2= 1.1728e-01, m= 5.7933e-01] ( 0,721) 1 [B] 1 ub 152 ( -> ) [( 3.6229e+00, 0.0000e+00, 0.0000e+00,-3.6229e+00), p^2= 4.8925e-06, m= 0.0000e+00] ( 0,711) 1 [B] 1 db 125 ( -> ) [( 1.1024e+02, 0.0000e+00, 0.0000e+00,-1.1024e+02), p^2= 4.5302e-03, m= 0.0000e+00] ( 0,665) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 600 ( 42s elapsed / 4h 51m 43s left ) -> ETA: Fri Mar 08 02:16 XS = 3.60624e+09 pb +- ( 5.94597e+08 pb = 16 % ) Event 700 ( 48s elapsed / 4h 46m 13s left ) -> ETA: Fri Mar 08 02:10 XS = 3.31367e+09 pb +- ( 5.15464e+08 pb = 15 % ) Event 800 ( 55s elapsed / 4h 46m 56s left ) -> ETA: Fri Mar 08 02:11 XS = 3.71998e+09 pb +- ( 5.48336e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 2.7501e+03,-0.0000e+00,-0.0000e+00, 2.7501e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 0 [I] 1 u 40 ( -> 4) [( 4.5403e+02,-0.0000e+00,-0.0000e+00, 4.5403e+02), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4942e+03,-0.0000e+00,-0.0000e+00,-3.4942e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 d 41 ( -> 4) [( 4.6084e+00,-0.0000e+00,-0.0000e+00,-4.6084e+00), p^2= 0.0000e+00, m= 3.0000e-01] (603, 0) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 50 ( -> ) [( 2.9589e+02, 0.0000e+00, 0.0000e+00, 2.9589e+02), p^2= 7.4425e-02, m= 5.7933e-01] ( 0,603) 0 and Particle List with 3 elements [B] 1 ud_0 52 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,601) 1 [B] 1 db 47 ( -> ) [( 3.0962e-01, 0.0000e+00, 0.0000e+00,-3.0959e-01), p^2= 1.9831e-05, m= 0.0000e+00] ( 0,638) 1 [B] 1 u 51 ( -> ) [( 9.0625e-01, 0.0000e+00, 0.0000e+00,-9.0615e-01), p^2= 1.6989e-04, m= 0.0000e+00] (638, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 2s elapsed / 4h 46m 16s left ) -> ETA: Fri Mar 08 02:11 XS = 3.67328e+09 pb +- ( 5.0102e+08 pb = 13 % ) Event 1000 ( 1m 8s elapsed / 4h 44m 53s left ) -> ETA: Fri Mar 08 02:09 XS = 3.74e+09 pb +- ( 4.80718e+08 pb = 12 % ) Event 2000 ( 2m 12s elapsed / 4h 33m 56s left ) -> ETA: Fri Mar 08 02:00  Memory usage increased by 17 MB, now 148 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.42671e+09 pb +- ( 3.81074e+08 pb = 8 % ) Event 3000 ( 3m 18s elapsed / 4h 32m 35s left ) -> ETA: Fri Mar 08 01:59 XS = 4.7178e+09 pb +- ( 3.39517e+08 pb = 7 % ) Event 4000 ( 4m 24s elapsed / 4h 30m 53s left ) -> ETA: Fri Mar 08 01:59 XS = 4.76208e+09 pb +- ( 2.9459e+08 pb = 6 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 5000 ( 5m 27s elapsed / 4h 27m 45s left ) -> ETA: Fri Mar 08 01:57 XS = 4.85019e+09 pb +- ( 2.80007e+08 pb = 5 % ) Event 6000 ( 6m 33s elapsed / 4h 26m 23s left ) -> ETA: Fri Mar 08 01:56 XS = 4.78734e+09 pb +- ( 2.49053e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 7000 ( 7m 40s elapsed / 4h 26m 17s left ) -> ETA: Fri Mar 08 01:57 XS = 4.70677e+09 pb +- ( 2.26638e+08 pb = 4 % ) Event 8000 ( 8m 46s elapsed / 4h 25m 19s left ) -> ETA: Fri Mar 08 01:58 XS = 4.63162e+09 pb +- ( 2.06832e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 9000 ( 9m 52s elapsed / 4h 24m 22s left ) -> ETA: Fri Mar 08 01:58 XS = 4.64091e+09 pb +- ( 1.97017e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 10000 ( 10m 56s elapsed / 4h 22m 39s left ) -> ETA: Fri Mar 08 01:57 XS = 4.7482e+09 pb +- ( 1.89243e+08 pb = 3 % ) Event 20000 ( 21m 52s elapsed / 4h 11m 28s left ) -> ETA: Fri Mar 08 01:57 XS = 4.83573e+09 pb +- ( 1.58124e+08 pb = 3 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 30000 ( 32m 54s elapsed / 4h 1m 16s left ) -> ETA: Fri Mar 08 01:58  Memory usage increased by 28 MB, now 176 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.85629e+09 pb +- ( 1.29885e+08 pb = 2 % ) Event 40000 ( 43m 54s elapsed / 3h 50m 32s left ) -> ETA: Fri Mar 08 01:58 XS = 4.88963e+09 pb +- ( 1.09803e+08 pb = 2 % ) Event 50000 ( 55m elapsed / 3h 40m left ) -> ETA: Fri Mar 08 01:58 XS = 4.8858e+09 pb +- ( 9.76345e+07 pb = 1 % ) Event 60000 ( 1h 6m 17s elapsed / 3h 29m 54s left ) -> ETA: Fri Mar 08 02:00 XS = 4.90542e+09 pb +- ( 8.83224e+07 pb = 1 % ) Event 70000 ( 1h 17m 18s elapsed / 3h 18m 46s left ) -> ETA: Fri Mar 08 02:00 XS = 4.88776e+09 pb +- ( 8.10943e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 80000 ( 1h 28m 32s elapsed / 3h 8m 8s left ) -> ETA: Fri Mar 08 02:00  Memory usage increased by 24 MB, now 201 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.87269e+09 pb +- ( 7.53431e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 90000 ( 1h 39m 41s elapsed / 2h 57m 14s left ) -> ETA: Fri Mar 08 02:00 XS = 4.90128e+09 pb +- ( 7.11299e+07 pb = 1 % ) Event 100000 ( 1h 51m 1s elapsed / 2h 46m 31s left ) -> ETA: Fri Mar 08 02:01 XS = 4.91896e+09 pb +- ( 6.81001e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 39m 45s elapsed / 54m 56s left ) -> ETA: Fri Mar 08 01:58 XS = 4.9063e+09 pb +- ( 4.78624e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 250000 ( 16326 s total ) = 1.32302e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_Final_noWeight/1321){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.8815e+09 0 % 4.22538e+07 0.86 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 250000 Errors { From "Hadronization:Pythia8": 9 (250009) -> 0 % } New events { From "Beam_Remnants:Parametrised": 805 (250814) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 805 fails in creating good beam breakups. Remnant Kinematics: 805 errors (no kinematics found) and 136 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 4h 32m 11s on Fri Mar 8 01:56:04 2024 (User: 4h 30m 49s, System: 2s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu1.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Mon Apr 8 13:57:58 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1321 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 1d 1m 36s left ) -> ETA: Tue Apr 09 13:59 XS = 22.4321 pb +- ( 22.4321 pb = 100 % ) Event 2 ( 3s elapsed / 12h 27m 51s left ) -> ETA: Tue Apr 09 02:25 XS = 9.83973 pb +- ( 6.74665 pb = 68 % ) Event 3 ( 3s elapsed / 8h 26m 53s left ) -> ETA: Mon Apr 08 22:24 XS = 7.65312 pb +- ( 5.35196 pb = 69 % ) Event 4 ( 3s elapsed / 6h 25m 21s left ) -> ETA: Mon Apr 08 20:23 XS = 17943.2 pb +- ( 17935.6 pb = 99 % ) Event 5 ( 3s elapsed / 5h 14m 6s left ) -> ETA: Mon Apr 08 19:12 XS = 16312 pb +- ( 16305.1 pb = 99 % ) Event 6 ( 3s elapsed / 4h 27m 17s left ) -> ETA: Mon Apr 08 18:25 XS = 8985.28 pb +- ( 8967.27 pb = 99 % ) Event 7 ( 3s elapsed / 3h 50m 53s left ) -> ETA: Mon Apr 08 17:48 XS = 1.19283e+08 pb +- ( 1.19274e+08 pb = 99 % ) Event 8 ( 3s elapsed / 3h 27m 13s left ) -> ETA: Mon Apr 08 17:25 XS = 8.38398e+08 pb +- ( 7.50962e+08 pb = 89 % ) Event 9 ( 3s elapsed / 3h 4m 39s left ) -> ETA: Mon Apr 08 17:02 XS = 1.35973e+10 pb +- ( 1.27795e+10 pb = 93 % ) Event 10 ( 4s elapsed / 2h 47m 25s left ) -> ETA: Mon Apr 08 16:45 XS = 1.31539e+10 pb +- ( 1.23541e+10 pb = 93 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 d 6 ( -> 2) [( 1.5749e+03,-0.0000e+00,-0.0000e+00, 1.5749e+03), p^2= 0.0000e+00, m= 3.0000e-01] (624, 0) 0 [I] 1 G 43 ( -> 4) [( 4.1563e+02,-0.0000e+00,-0.0000e+00, 4.1563e+02), p^2= 0.0000e+00, m= 0.0000e+00] (642,624) 0 [I] 1 u 64 ( -> 6) [( 1.1315e+02,-0.0000e+00,-0.0000e+00, 1.1315e+02), p^2= 0.0000e+00, m= 3.0000e-01] (652, 0) 0 [I] 1 G 84 ( -> 8) [( 6.2982e+02,-0.0000e+00,-0.0000e+00, 6.2982e+02), p^2= 0.0000e+00, m= 0.0000e+00] (661,652) 0 [I] 1 G 106 ( -> 10) [( 4.4949e+01,-0.0000e+00,-0.0000e+00, 4.4949e+01), p^2= 0.0000e+00, m= 0.0000e+00] (681,661) 0 [I] 1 G 123 ( -> 12) [( 2.2750e+02,-0.0000e+00,-0.0000e+00, 2.2750e+02), p^2= 0.0000e+00, m= 0.0000e+00] (697,681) 0 [I] 1 G 140 ( -> 14) [( 6.2678e+01,-0.0000e+00,-0.0000e+00, 6.2678e+01), p^2= 0.0000e+00, m= 0.0000e+00] (711,697) 0 and Particle List with 7 elements [I] 1 u 5 ( -> 2) [( 1.3695e+03,-0.0000e+00,-0.0000e+00,-1.3695e+03), p^2= 0.0000e+00, m= 3.0000e-01] (609, 0) 1 [I] 1 u 44 ( -> 4) [( 1.8473e+03,-0.0000e+00,-0.0000e+00,-1.8473e+03), p^2= 0.0000e+00, m= 3.0000e-01] (639, 0) 1 [I] 1 G 65 ( -> 6) [( 9.5613e+01,-0.0000e+00,-0.0000e+00,-9.5613e+01), p^2= 0.0000e+00, m= 0.0000e+00] (650,639) 1 [I] 1 d 85 ( -> 8) [( 9.5976e+01,-0.0000e+00,-0.0000e+00,-9.5976e+01), p^2= 0.0000e+00, m= 3.0000e-01] (664, 0) 1 [I] 1 G 107 ( -> 10) [( 7.3514e+00,-0.0000e+00,-0.0000e+00,-7.3514e+00), p^2= 0.0000e+00, m= 0.0000e+00] (682,664) 1 [I] 1 G 124 ( -> 12) [( 8.1010e+01,-0.0000e+00,-0.0000e+00,-8.1010e+01), p^2= 0.0000e+00, m= 0.0000e+00] (696,682) 1 [I] 1 s 141 ( -> 14) [( 1.9331e+00,-0.0000e+00,-0.0000e+00,-1.9331e+00), p^2= 0.0000e+00, m= 4.0000e-01] (712, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 153 ( -> ) [( 2.6314e+02, 0.0000e+00, 0.0000e+00, 2.6314e+02), p^2= 4.0379e-02, m= 7.7133e-01] ( 0,711) 0 [B] 1 ub 79 ( -> ) [( 1.6819e+02, 0.0000e+00, 0.0000e+00, 1.6819e+02), p^2= 1.6496e-02, m= 0.0000e+00] ( 0,642) 0 and Particle List with 4 elements [B] 1 ud_0 154 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,712) 1 [B] 1 sb 150 ( -> ) [( 6.5009e-01, 0.0000e+00, 0.0000e+00,-6.5003e-01), p^2= 7.9301e-05, m= 0.0000e+00] ( 0,696) 1 [B] 1 db 101 ( -> ) [( 3.0743e-01, 0.0000e+00, 0.0000e+00,-3.0740e-01), p^2= 1.7735e-05, m= 0.0000e+00] ( 0,650) 1 [B] 1 ub 59 ( -> ) [( 3.8290e-01, 0.0000e+00, 0.0000e+00,-3.8287e-01), p^2= 2.7511e-05, m= 0.0000e+00] ( 0,609) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 20 ( 4s elapsed / 1h 36m 35s left ) -> ETA: Mon Apr 08 15:34 XS = 7.92984e+09 pb +- ( 7.27092e+09 pb = 91 % ) Event 30 ( 5s elapsed / 1h 9m 54s left ) -> ETA: Mon Apr 08 15:08 XS = 5.25866e+09 pb +- ( 3.89492e+09 pb = 74 % ) Event 40 ( 5s elapsed / 57m 5s left ) -> ETA: Mon Apr 08 14:55 XS = 6.6046e+09 pb +- ( 3.64936e+09 pb = 55 % ) Event 50 ( 6s elapsed / 50m 53s left ) -> ETA: Mon Apr 08 14:49 XS = 5.86112e+09 pb +- ( 3.10274e+09 pb = 52 % ) Event 60 ( 6s elapsed / 44m 49s left ) -> ETA: Mon Apr 08 14:42 XS = 5.6707e+09 pb +- ( 2.72812e+09 pb = 48 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 u 6 ( -> 2) [( 1.6758e+03,-0.0000e+00,-0.0000e+00, 1.6758e+03), p^2= 0.0000e+00, m= 3.0000e-01] (654, 0) 0 [I] 1 u 79 ( -> 4) [( 6.2326e+02,-0.0000e+00,-0.0000e+00, 6.2326e+02), p^2= 0.0000e+00, m= 3.0000e-01] (669, 0) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4967e+03,-0.0000e+00,-0.0000e+00,-3.4967e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 db 80 ( -> 4) [( 2.0679e+00,-0.0000e+00,-0.0000e+00,-2.0679e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 92 ( -> ) [( 9.8122e+02, 0.0000e+00, 0.0000e+00, 9.8122e+02), p^2= 2.0166e-01, m= 5.7933e-01] ( 0,669) 0 [B] 1 ub 88 ( -> ) [( 2.1968e+02, 0.0000e+00, 0.0000e+00, 2.1968e+02), p^2= 1.0108e-02, m= 0.0000e+00] ( 0,654) 0 and Particle List with 3 elements [B] 1 ud_0 94 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,671) 1 [B] 1 d 89 ( -> ) [( 9.0412e-01, 0.0000e+00, 0.0000e+00,-9.0403e-01), p^2= 1.6103e-04, m= 0.0000e+00] (671, 0) 1 [B] 1 u 93 ( -> ) [( 3.7265e-01, 0.0000e+00, 0.0000e+00,-3.7262e-01), p^2= 2.7357e-05, m= 0.0000e+00] (603, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 70 ( 6s elapsed / 41m 29s left ) -> ETA: Mon Apr 08 14:39 XS = 6.24046e+09 pb +- ( 2.53117e+09 pb = 40 % ) Event 80 ( 7s elapsed / 38m 43s left ) -> ETA: Mon Apr 08 14:36 XS = 5.74456e+09 pb +- ( 2.26044e+09 pb = 39 % ) Event 90 ( 7s elapsed / 36m 23s left ) -> ETA: Mon Apr 08 14:34 XS = 5.21104e+09 pb +- ( 1.99342e+09 pb = 38 % ) Event 100 ( 8s elapsed / 35m 41s left ) -> ETA: Mon Apr 08 14:33 XS = 5.28037e+09 pb +- ( 1.88788e+09 pb = 35 % ) Event 200 ( 14s elapsed / 30m 1s left ) -> ETA: Mon Apr 08 14:28 XS = 3.64331e+09 pb +- ( 1.05592e+09 pb = 28 % ) Event 300 ( 20s elapsed / 27m 50s left ) -> ETA: Mon Apr 08 14:26 XS = 3.6211e+09 pb +- ( 8.11973e+08 pb = 22 % ) Event 400 ( 26s elapsed / 27m 12s left ) -> ETA: Mon Apr 08 14:25 XS = 3.48122e+09 pb +- ( 6.7429e+08 pb = 19 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 500 ( 32s elapsed / 26m 50s left ) -> ETA: Mon Apr 08 14:25 XS = 4.22948e+09 pb +- ( 7.38693e+08 pb = 17 % ) Event 600 ( 39s elapsed / 26m 57s left ) -> ETA: Mon Apr 08 14:25  Memory usage increased by 31 MB, now 163 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.33425e+09 pb +- ( 6.66524e+08 pb = 15 % ) Event 700 ( 45s elapsed / 26m 27s left ) -> ETA: Mon Apr 08 14:25 XS = 4.39653e+09 pb +- ( 6.19869e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 4.0220e+02,-0.0000e+00,-0.0000e+00, 4.0220e+02), p^2= 0.0000e+00, m= 0.0000e+00] (620,617) 0 [I] 1 G 41 ( -> 4) [( 4.9086e+02,-0.0000e+00,-0.0000e+00, 4.9086e+02), p^2= 0.0000e+00, m= 0.0000e+00] (637,620) 0 [I] 1 u 55 ( -> 6) [( 9.4647e+02,-0.0000e+00,-0.0000e+00, 9.4647e+02), p^2= 0.0000e+00, m= 3.0000e-01] (617, 0) 0 [I] 1 G 67 ( -> 8) [( 2.6042e+02,-0.0000e+00,-0.0000e+00, 2.6042e+02), p^2= 0.0000e+00, m= 0.0000e+00] (670,637) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.3538e+03,-0.0000e+00,-0.0000e+00,-3.3538e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 G 42 ( -> 4) [( 1.3924e+02,-0.0000e+00,-0.0000e+00,-1.3924e+02), p^2= 0.0000e+00, m= 0.0000e+00] (603,640) 1 [I] 1 u 56 ( -> 6) [( 4.9534e+00,-0.0000e+00,-0.0000e+00,-4.9534e+00), p^2= 0.0000e+00, m= 3.0000e-01] (640, 0) 1 [I] 1 sb 68 ( -> 8) [( 1.1366e+00,-0.0000e+00,-0.0000e+00,-1.1366e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,601) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 80 ( -> ) [( 1.4001e+03, 0.0000e+00, 0.0000e+00, 1.4001e+03), p^2= 3.5215e-01, m= 5.7933e-01] ( 0,670) 0 and Particle List with 2 elements [B] 1 ud_0 81 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,672) 1 [B] 1 s 77 ( -> ) [( 9.0522e-01, 0.0000e+00, 0.0000e+00,-9.0509e-01), p^2= 2.2767e-04, m= 0.0000e+00] (672, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 800 ( 51s elapsed / 26m left ) -> ETA: Mon Apr 08 14:24 XS = 4.27315e+09 pb +- ( 5.56683e+08 pb = 13 % ) Event 900 ( 57s elapsed / 25m 51s left ) -> ETA: Mon Apr 08 14:24 XS = 3.94314e+09 pb +- ( 4.95733e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 2.0069e+03,-0.0000e+00,-0.0000e+00, 2.0069e+03), p^2= 0.0000e+00, m= 0.0000e+00] (642,641) 0 [I] 1 d 56 ( -> 4) [( 5.4459e+02,-0.0000e+00,-0.0000e+00, 5.4459e+02), p^2= 0.0000e+00, m= 3.0000e-01] (641, 0) 0 [I] 1 u 78 ( -> 6) [( 5.3357e+02,-0.0000e+00,-0.0000e+00, 5.3357e+02), p^2= 0.0000e+00, m= 3.0000e-01] (667, 0) 0 [I] 1 G 94 ( -> 8) [( 3.7029e+02,-0.0000e+00,-0.0000e+00, 3.7029e+02), p^2= 0.0000e+00, m= 0.0000e+00] (680,667) 0 [I] 1 G 110 ( -> 10) [( 2.9843e+01,-0.0000e+00,-0.0000e+00, 2.9843e+01), p^2= 0.0000e+00, m= 0.0000e+00] (698,680) 0 and Particle List with 5 elements [I] 1 db 6 ( -> 2) [( 3.1533e+03,-0.0000e+00,-0.0000e+00,-3.1533e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,606) 1 [I] 1 G 57 ( -> 4) [( 3.0189e+02,-0.0000e+00,-0.0000e+00,-3.0189e+02), p^2= 0.0000e+00, m= 0.0000e+00] (654,648) 1 [I] 1 G 79 ( -> 6) [( 3.2150e+01,-0.0000e+00,-0.0000e+00,-3.2150e+01), p^2= 0.0000e+00, m= 0.0000e+00] (606,672) 1 [I] 1 u 95 ( -> 8) [( 9.4353e+00,-0.0000e+00,-0.0000e+00,-9.4353e+00), p^2= 0.0000e+00, m= 3.0000e-01] (672, 0) 1 [I] 1 G 111 ( -> 10) [( 2.0926e+00,-0.0000e+00,-0.0000e+00,-2.0926e+00), p^2= 0.0000e+00, m= 0.0000e+00] (680,654) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 117 ( -> ) [( 1.3924e+01, 0.0000e+00, 0.0000e+00, 1.3924e+01), p^2= 3.2997e-03, m= 7.7133e-01] ( 0,698) 0 [B] 1 ub 89 ( -> ) [( 8.5490e-01, 0.0000e+00, 0.0000e+00, 8.5490e-01), p^2= 1.2439e-05, m= 0.0000e+00] ( 0,642) 0 and Particle List with 2 elements [B] 1 ud_0 118 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,680) 1 [B] 1 d 51 ( -> ) [( 1.1752e+00, 0.0000e+00, 0.0000e+00,-1.1750e+00), p^2= 2.9557e-04, m= 0.0000e+00] (648, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 1000 ( 1m 4s elapsed / 25m 47s left ) -> ETA: Mon Apr 08 14:24 XS = 3.87883e+09 pb +- ( 4.61688e+08 pb = 11 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 sb 5 ( -> 2) [( 1.2832e+03,-0.0000e+00,-0.0000e+00, 1.2832e+03), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,622) 0 [I] 1 G 36 ( -> 4) [( 8.6122e+02,-0.0000e+00,-0.0000e+00, 8.6122e+02), p^2= 0.0000e+00, m= 0.0000e+00] (622,632) 0 [I] 1 u 54 ( -> 6) [( 6.4815e+02,-0.0000e+00,-0.0000e+00, 6.4815e+02), p^2= 0.0000e+00, m= 3.0000e-01] (632, 0) 0 [I] 1 u 93 ( -> 8) [( 4.3809e+01,-0.0000e+00,-0.0000e+00, 4.3809e+01), p^2= 0.0000e+00, m= 3.0000e-01] (664, 0) 0 [I] 1 G 104 ( -> 10) [( 5.5015e+02,-0.0000e+00,-0.0000e+00, 5.5015e+02), p^2= 0.0000e+00, m= 0.0000e+00] (676,623) 0 and Particle List with 5 elements [I] 1 u 6 ( -> 2) [( 3.0770e+03,-0.0000e+00,-0.0000e+00,-3.0770e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 d 37 ( -> 4) [( 4.8649e-01,-0.0000e+00,-0.0000e+00,-4.8649e-01), p^2= 0.0000e+00, m= 3.0000e-01] (627, 0) 1 [I] 1 G 55 ( -> 6) [( 4.1728e+02,-0.0000e+00,-0.0000e+00,-4.1728e+02), p^2= 0.0000e+00, m= 0.0000e+00] (642,627) 1 [I] 1 ub 94 ( -> 8) [( 3.1872e+00,-0.0000e+00,-0.0000e+00,-3.1872e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,642) 1 [I] 1 G 105 ( -> 10) [( 5.2593e-01,-0.0000e+00,-0.0000e+00,-5.2593e-01), p^2= 0.0000e+00, m= 0.0000e+00] (679,672) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 112 ( -> ) [( 9.8338e+01, 0.0000e+00, 0.0000e+00, 9.8338e+01), p^2= 2.1434e-02, m= 5.7933e-01] ( 0,676) 0 [B] 1 ub 88 ( -> ) [( 1.4920e+00, 0.0000e+00, 0.0000e+00, 1.4920e+00), p^2= 4.9338e-06, m= 0.0000e+00] ( 0,664) 0 [B] 1 s 31 ( -> ) [( 1.3653e+01, 0.0000e+00, 0.0000e+00, 1.3653e+01), p^2= 4.1316e-04, m= 0.0000e+00] (623, 0) 0 and Particle List with 3 elements [B] 1 ud_0 113 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,679) 1 [B] 1 u 99 ( -> ) [( 3.2220e-01, 0.0000e+00, 0.0000e+00,-3.2217e-01), p^2= 1.7349e-05, m= 0.0000e+00] (672, 0) 1 [B] 1 db 49 ( -> ) [( 1.1828e+00, 0.0000e+00, 0.0000e+00,-1.1827e+00), p^2= 2.3381e-04, m= 0.0000e+00] ( 0,601) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 2m 5s elapsed / 24m 6s left ) -> ETA: Mon Apr 08 14:24 XS = 3.73816e+09 pb +- ( 3.15401e+08 pb = 8 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Event 3000 ( 3m 9s elapsed / 23m 12s left ) -> ETA: Mon Apr 08 14:24 XS = 4.13759e+09 pb +- ( 3.2732e+08 pb = 7 % ) Event 4000 ( 4m 10s elapsed / 21m 55s left ) -> ETA: Mon Apr 08 14:24 XS = 4.1515e+09 pb +- ( 2.87177e+08 pb = 6 % ) Event 5000 ( 5m 14s elapsed / 20m 56s left ) -> ETA: Mon Apr 08 14:24 XS = 4.31028e+09 pb +- ( 2.57778e+08 pb = 5 % ) Event 6000 ( 6m 18s elapsed / 19m 58s left ) -> ETA: Mon Apr 08 14:24 XS = 4.32997e+09 pb +- ( 2.31948e+08 pb = 5 % ) Event 7000 ( 7m 22s elapsed / 18m 59s left ) -> ETA: Mon Apr 08 14:24 XS = 4.37906e+09 pb +- ( 2.18655e+08 pb = 4 % ) Event 8000 ( 8m 26s elapsed / 17m 56s left ) -> ETA: Mon Apr 08 14:24 XS = 4.42827e+09 pb +- ( 2.06453e+08 pb = 4 % ) Event 9000 ( 9m 28s elapsed / 16m 51s left ) -> ETA: Mon Apr 08 14:24 XS = 4.50948e+09 pb +- ( 1.98866e+08 pb = 4 % ) Event 10000 ( 10m 33s elapsed / 15m 49s left ) -> ETA: Mon Apr 08 14:24 XS = 4.62967e+09 pb +- ( 1.95793e+08 pb = 4 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 20000 ( 21m 35s elapsed / 5m 23s left ) -> ETA: Mon Apr 08 14:25  Memory usage increased by 43 MB, now 206 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.88608e+09 pb +- ( 1.54225e+08 pb = 3 % ) Pythia8 hadronisation failed. Event 25000 ( 1626 s total ) = 1.32899e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmod_noWeight/1321){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  5.03188e+09 0 % 1.43013e+08 2.84 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 25000 Errors { From "Hadronization:Pythia8": 3 (25003) -> 0 % } New events { From "Beam_Remnants:Parametrised": 89 (25092) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 89 fails in creating good beam breakups. Remnant Kinematics: 89 errors (no kinematics found) and 22 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 27m 10s on Mon Apr 8 14:25:09 2024 (User: 27m 4s, System: 3s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu5.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Apr 9 21:40:04 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1321 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 3d 20h 46m 36s left ) -> ETA: Sat Apr 13 18:26 XS = 22.4321 pb +- ( 22.4321 pb = 100 % ) Event 2 ( 3s elapsed / 1d 23h 21m 36s left ) -> ETA: Thu Apr 11 21:01 XS = 11.2161 pb +- ( 11.2161 pb = 99 % ) Event 3 ( 3s elapsed / 1d 8h 29m 56s left ) -> ETA: Thu Apr 11 06:10 XS = 3.75633 pb +- ( 3.73712 pb = 99 % ) Event 4 ( 3s elapsed / 1d 47m 26s left ) -> ETA: Wed Apr 10 22:27 XS = 1.66861e+08 pb +- ( 1.66861e+08 pb = 99 % ) Event 5 ( 3s elapsed / 20h 9m 56s left ) -> ETA: Wed Apr 10 17:50 XS = 1.54943e+08 pb +- ( 1.54943e+08 pb = 99 % ) Event 6 ( 3s elapsed / 17h 4m 56s left ) -> ETA: Wed Apr 10 14:45 XS = 1.44614e+08 pb +- ( 1.44613e+08 pb = 99 % ) Event 7 ( 3s elapsed / 14h 50m 24s left ) -> ETA: Wed Apr 10 12:30 XS = 1.1417e+08 pb +- ( 1.14168e+08 pb = 99 % ) Event 8 ( 3s elapsed / 13h 26m 11s left ) -> ETA: Wed Apr 10 11:06 XS = 1.03296e+08 pb +- ( 1.03295e+08 pb = 99 % ) Event 9 ( 3s elapsed / 12h 16m 58s left ) -> ETA: Wed Apr 10 09:57 XS = 8.34317e+07 pb +- ( 8.34306e+07 pb = 99 % ) Event 10 ( 4s elapsed / 11h 9m 55s left ) -> ETA: Wed Apr 10 08:50 XS = 8.87776e+07 pb +- ( 8.04589e+07 pb = 90 % ) Event 20 ( 4s elapsed / 6h 39m 55s left ) -> ETA: Wed Apr 10 04:20 XS = 1.61313e+09 pb +- ( 1.25502e+09 pb = 77 % ) Event 30 ( 5s elapsed / 5h 14m 54s left ) -> ETA: Wed Apr 10 02:55 XS = 9.78171e+08 pb +- ( 7.61741e+08 pb = 77 % ) Event 40 ( 6s elapsed / 4h 19m 28s left ) -> ETA: Wed Apr 10 01:59 XS = 7.48611e+08 pb +- ( 5.73682e+08 pb = 76 % ) Event 50 ( 7s elapsed / 4h 12s left ) -> ETA: Wed Apr 10 01:40 XS = 3.35622e+09 pb +- ( 2.41795e+09 pb = 72 % ) Event 60 ( 7s elapsed / 3h 36m 32s left ) -> ETA: Wed Apr 10 01:16 XS = 4.22982e+09 pb +- ( 2.41536e+09 pb = 57 % ) Event 70 ( 8s elapsed / 3h 21m 31s left ) -> ETA: Wed Apr 10 01:01 XS = 4.46002e+09 pb +- ( 2.25231e+09 pb = 50 % ) Event 80 ( 9s elapsed / 3h 8m 35s left ) -> ETA: Wed Apr 10 00:48 XS = 5.67022e+09 pb +- ( 2.61628e+09 pb = 46 % ) Event 90 ( 9s elapsed / 2h 59m 5s left ) -> ETA: Wed Apr 10 00:39 XS = 5.61357e+09 pb +- ( 2.39701e+09 pb = 42 % ) Event 100 ( 10s elapsed / 3h 39s left ) -> ETA: Wed Apr 10 00:40 XS = 5.11251e+09 pb +- ( 2.18514e+09 pb = 42 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 u 6 ( -> 2) [( 3.4954e+03,-0.0000e+00,-0.0000e+00, 3.4954e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 db 59 ( -> 4) [( 3.9159e+00,-0.0000e+00,-0.0000e+00, 3.9159e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 2.6037e+03,-0.0000e+00,-0.0000e+00,-2.6037e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,603) 1 [I] 1 u 60 ( -> 4) [( 7.1327e+02,-0.0000e+00,-0.0000e+00,-7.1327e+02), p^2= 0.0000e+00, m= 3.0000e-01] (603, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 75 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,654) 0 [B] 1 d 72 ( -> ) [( 7.1952e-01, 0.0000e+00, 0.0000e+00, 7.1940e-01), p^2= 1.8097e-04, m= 0.0000e+00] (654, 0) 0 and Particle List with 1 elements [B] 1 ud_0 76 ( -> ) [( 1.8306e+02, 0.0000e+00, 0.0000e+00,-1.8306e+02), p^2= 4.6045e-02, m= 5.7933e-01] ( 0,602) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 200 ( 17s elapsed / 2h 26m 7s left ) -> ETA: Wed Apr 10 00:06 XS = 4.07383e+09 pb +- ( 1.18554e+09 pb = 29 % ) Event 300 ( 23s elapsed / 2h 12m 29s left ) -> ETA: Tue Apr 09 23:53 XS = 4.45332e+09 pb +- ( 1.01326e+09 pb = 22 % ) Event 400 ( 30s elapsed / 2h 5m 54s left ) -> ETA: Tue Apr 09 23:46 XS = 4.59099e+09 pb +- ( 8.27128e+08 pb = 18 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 2.9993e+03,-0.0000e+00,-0.0000e+00, 2.9993e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 0 [I] 1 s 42 ( -> 4) [( 1.7756e+01,-0.0000e+00,-0.0000e+00, 1.7756e+01), p^2= 0.0000e+00, m= 4.0000e-01] (601, 0) 0 [I] 1 G 63 ( -> 6) [( 4.6267e+02,-0.0000e+00,-0.0000e+00, 4.6267e+02), p^2= 0.0000e+00, m= 0.0000e+00] (643,650) 0 [I] 1 s 80 ( -> 8) [( 1.6324e+01,-0.0000e+00,-0.0000e+00, 1.6324e+01), p^2= 0.0000e+00, m= 4.0000e-01] (660, 0) 0 [I] 1 db 94 ( -> 10) [( 1.8421e+00,-0.0000e+00,-0.0000e+00, 1.8421e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,660) 0 and Particle List with 5 elements [I] 1 s 6 ( -> 2) [( 2.0588e+03,-0.0000e+00,-0.0000e+00,-2.0588e+03), p^2= 0.0000e+00, m= 4.0000e-01] (601, 0) 1 [I] 1 G 43 ( -> 4) [( 8.1703e+02,-0.0000e+00,-0.0000e+00,-8.1703e+02), p^2= 0.0000e+00, m= 0.0000e+00] (629,642) 1 [I] 1 G 64 ( -> 6) [( 9.3902e+01,-0.0000e+00,-0.0000e+00,-9.3902e+01), p^2= 0.0000e+00, m= 0.0000e+00] (649,601) 1 [I] 1 ub 81 ( -> 8) [( 9.3220e+01,-0.0000e+00,-0.0000e+00,-9.3220e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,649) 1 [I] 1 G 95 ( -> 10) [( 2.3511e+02,-0.0000e+00,-0.0000e+00,-2.3511e+02), p^2= 0.0000e+00, m= 0.0000e+00] (642,668) 1 and the corresponding remnants are Particle List with 5 elements [B] 1 ud_0 105 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,673) 0 [B] 1 d 101 ( -> ) [( 6.6380e-01, 0.0000e+00, 0.0000e+00, 6.6376e-01), p^2= 5.3717e-05, m= 0.0000e+00] (673, 0) 0 [B] 1 sb 88 ( -> ) [( 6.4566e-01, 0.0000e+00, 0.0000e+00, 6.4562e-01), p^2= 5.0822e-05, m= 0.0000e+00] ( 0,603) 0 [B] 1 sb 58 ( -> ) [( 4.2766e-01, 0.0000e+00, 0.0000e+00, 4.2763e-01), p^2= 2.2296e-05, m= 0.0000e+00] ( 0,643) 0 [B] 1 u 104 ( -> ) [( 3.2605e-01, 0.0000e+00, 0.0000e+00, 3.2603e-01), p^2= 1.2960e-05, m= 0.0000e+00] (650, 0) 0 and Particle List with 4 elements [B] 1 uu_1 107 ( -> ) [( 1.9274e+02, 0.0000e+00, 0.0000e+00,-1.9274e+02), p^2= 4.6277e-02, m= 7.7133e-01] ( 0,663) 1 [B] 1 u 89 ( -> ) [( 5.7002e-01, 0.0000e+00, 0.0000e+00,-5.7002e-01), p^2= 4.0475e-07, m= 0.0000e+00] (663, 0) 1 [B] 1 sb 37 ( -> ) [( 2.4797e+00, 0.0000e+00, 0.0000e+00,-2.4797e+00), p^2= 7.6596e-06, m= 0.0000e+00] ( 0,629) 1 [B] 1 d 106 ( -> ) [( 6.1288e+00, 0.0000e+00, 0.0000e+00,-6.1288e+00), p^2= 4.6790e-05, m= 0.0000e+00] (668, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 2.6950e+03,-0.0000e+00,-0.0000e+00, 2.6950e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 G 55 ( -> 4) [( 9.6726e+01,-0.0000e+00,-0.0000e+00, 9.6726e+01), p^2= 0.0000e+00, m= 0.0000e+00] (656,601) 0 [I] 1 G 75 ( -> 6) [( 6.9486e+02,-0.0000e+00,-0.0000e+00, 6.9486e+02), p^2= 0.0000e+00, m= 0.0000e+00] (603,664) 0 [I] 1 G 103 ( -> 8) [( 9.7944e+00,-0.0000e+00,-0.0000e+00, 9.7944e+00), p^2= 0.0000e+00, m= 0.0000e+00] (664,689) 0 [I] 1 G 120 ( -> 10) [( 2.4531e+00,-0.0000e+00,-0.0000e+00, 2.4531e+00), p^2= 0.0000e+00, m= 0.0000e+00] (689,703) 0 and Particle List with 5 elements [I] 1 G 6 ( -> 2) [( 2.7337e+03,-0.0000e+00,-0.0000e+00,-2.7337e+03), p^2= 0.0000e+00, m= 0.0000e+00] (619,630) 1 [I] 1 G 56 ( -> 4) [( 3.5626e+02,-0.0000e+00,-0.0000e+00,-3.5626e+02), p^2= 0.0000e+00, m= 0.0000e+00] (630,653) 1 [I] 1 G 76 ( -> 6) [( 1.5323e+02,-0.0000e+00,-0.0000e+00,-1.5323e+02), p^2= 0.0000e+00, m= 0.0000e+00] (680,619) 1 [I] 1 G 104 ( -> 8) [( 2.4755e+02,-0.0000e+00,-0.0000e+00,-2.4755e+02), p^2= 0.0000e+00, m= 0.0000e+00] (690,680) 1 [I] 1 ub 121 ( -> 10) [( 7.9383e+00,-0.0000e+00,-0.0000e+00,-7.9383e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,690) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 132 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,656) 0 [B] 1 u 131 ( -> ) [( 1.1262e+00, 0.0000e+00, 0.0000e+00, 1.1261e+00), p^2= 2.8326e-04, m= 0.0000e+00] (703, 0) 0 and Particle List with 3 elements [B] 1 uu_1 134 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,709) 1 [B] 1 u 128 ( -> ) [( 4.5759e-01, 0.0000e+00, 0.0000e+00,-4.5755e-01), p^2= 3.9037e-05, m= 0.0000e+00] (709, 0) 1 [B] 1 d 133 ( -> ) [( 8.9151e-01, 0.0000e+00, 0.0000e+00,-8.9143e-01), p^2= 1.4818e-04, m= 0.0000e+00] (653, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 37s elapsed / 2h 2m 54s left ) -> ETA: Tue Apr 09 23:43 XS = 4.40615e+09 pb +- ( 7.08579e+08 pb = 16 % ) Event 600 ( 44s elapsed / 2h 1m 34s left ) -> ETA: Tue Apr 09 23:42 XS = 4.25622e+09 pb +- ( 6.39468e+08 pb = 15 % ) Event 700 ( 51s elapsed / 2h 40s left ) -> ETA: Tue Apr 09 23:41 XS = 4.61742e+09 pb +- ( 6.41888e+08 pb = 13 % ) Event 800 ( 57s elapsed / 1h 58m 56s left ) -> ETA: Tue Apr 09 23:40 XS = 4.72526e+09 pb +- ( 6.70333e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 1.6499e+03,-0.0000e+00,-0.0000e+00, 1.6499e+03), p^2= 0.0000e+00, m= 0.0000e+00] (640,611) 0 [I] 1 d 61 ( -> 4) [( 3.3184e+02,-0.0000e+00,-0.0000e+00, 3.3184e+02), p^2= 0.0000e+00, m= 3.0000e-01] (611, 0) 0 [I] 1 u 82 ( -> 6) [( 1.2454e+03,-0.0000e+00,-0.0000e+00, 1.2454e+03), p^2= 0.0000e+00, m= 3.0000e-01] (667, 0) 0 [I] 1 G 96 ( -> 8) [( 6.0614e+01,-0.0000e+00,-0.0000e+00, 6.0614e+01), p^2= 0.0000e+00, m= 0.0000e+00] (679,667) 0 and Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 3.4459e+03,-0.0000e+00,-0.0000e+00,-3.4459e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 1 [I] 1 G 62 ( -> 4) [( 4.2846e+01,-0.0000e+00,-0.0000e+00,-4.2846e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,658) 1 [I] 1 G 83 ( -> 6) [( 4.4822e+00,-0.0000e+00,-0.0000e+00,-4.4822e+00), p^2= 0.0000e+00, m= 0.0000e+00] (665,604) 1 [I] 1 ub 97 ( -> 8) [( 5.4900e+00,-0.0000e+00,-0.0000e+00,-5.4900e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,675) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 107 ( -> ) [( 1.1993e+02, 0.0000e+00, 0.0000e+00, 1.1993e+02), p^2= 1.7045e-02, m= 7.7133e-01] ( 0,679) 0 [B] 1 ub 91 ( -> ) [( 9.2310e+01, 0.0000e+00, 0.0000e+00, 9.2310e+01), p^2= 1.0099e-02, m= 0.0000e+00] ( 0,640) 0 and Particle List with 3 elements [B] 1 ud_0 109 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,665) 1 [B] 1 u 104 ( -> ) [( 4.6272e-01, 0.0000e+00, 0.0000e+00,-4.6268e-01), p^2= 4.1895e-05, m= 0.0000e+00] (658, 0) 1 [B] 1 u 108 ( -> ) [( 8.2271e-01, 0.0000e+00, 0.0000e+00,-8.2263e-01), p^2= 1.3244e-04, m= 0.0000e+00] (675, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 4s elapsed / 1h 58m 32s left ) -> ETA: Tue Apr 09 23:39 XS = 4.64697e+09 pb +- ( 6.15583e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 9 elements [I] 1 db 5 ( -> 2) [( 3.5624e+02,-0.0000e+00,-0.0000e+00, 3.5624e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,609) 0 [I] 1 G 33 ( -> 4) [( 6.7758e+02,-0.0000e+00,-0.0000e+00, 6.7758e+02), p^2= 0.0000e+00, m= 0.0000e+00] (629,623) 0 [I] 1 d 55 ( -> 6) [( 9.6821e+02,-0.0000e+00,-0.0000e+00, 9.6821e+02), p^2= 0.0000e+00, m= 3.0000e-01] (609, 0) 0 [I] 1 G 75 ( -> 8) [( 1.5180e+02,-0.0000e+00,-0.0000e+00, 1.5180e+02), p^2= 0.0000e+00, m= 0.0000e+00] (656,629) 0 [I] 1 u 90 ( -> 10) [( 1.1491e+03,-0.0000e+00,-0.0000e+00, 1.1491e+03), p^2= 0.0000e+00, m= 3.0000e-01] (671, 0) 0 [I] 1 G 109 ( -> 12) [( 5.3109e+01,-0.0000e+00,-0.0000e+00, 5.3109e+01), p^2= 0.0000e+00, m= 0.0000e+00] (678,671) 0 [I] 1 G 127 ( -> 14) [( 5.5928e+01,-0.0000e+00,-0.0000e+00, 5.5928e+01), p^2= 0.0000e+00, m= 0.0000e+00] (689,678) 0 [I] 1 G 141 ( -> 16) [( 2.7973e+01,-0.0000e+00,-0.0000e+00, 2.7973e+01), p^2= 0.0000e+00, m= 0.0000e+00] (703,689) 0 [I] 1 G 157 ( -> 18) [( 5.6879e+01,-0.0000e+00,-0.0000e+00, 5.6879e+01), p^2= 0.0000e+00, m= 0.0000e+00] (713,703) 0 and Particle List with 9 elements [I] 1 d 6 ( -> 2) [( 6.4887e+02,-0.0000e+00,-0.0000e+00,-6.4887e+02), p^2= 0.0000e+00, m= 3.0000e-01] (610, 0) 1 [I] 1 G 34 ( -> 4) [( 9.9558e+02,-0.0000e+00,-0.0000e+00,-9.9558e+02), p^2= 0.0000e+00, m= 0.0000e+00] (635,610) 1 [I] 1 G 56 ( -> 6) [( 8.0193e+02,-0.0000e+00,-0.0000e+00,-8.0193e+02), p^2= 0.0000e+00, m= 0.0000e+00] (645,635) 1 [I] 1 db 76 ( -> 8) [( 2.4410e+01,-0.0000e+00,-0.0000e+00,-2.4410e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,645) 1 [I] 1 G 91 ( -> 10) [( 3.8056e+01,-0.0000e+00,-0.0000e+00,-3.8056e+01), p^2= 0.0000e+00, m= 0.0000e+00] (672,661) 1 [I] 1 u 110 ( -> 12) [( 1.0045e+02,-0.0000e+00,-0.0000e+00,-1.0045e+02), p^2= 0.0000e+00, m= 3.0000e-01] (683, 0) 1 [I] 1 u 128 ( -> 14) [( 1.1283e+00,-0.0000e+00,-0.0000e+00,-1.1283e+00), p^2= 0.0000e+00, m= 3.0000e-01] (692, 0) 1 [I] 1 G 142 ( -> 16) [( 6.8896e+02,-0.0000e+00,-0.0000e+00,-6.8896e+02), p^2= 0.0000e+00, m= 0.0000e+00] (706,692) 1 [I] 1 G 158 ( -> 18) [( 1.9915e+02,-0.0000e+00,-0.0000e+00,-1.9915e+02), p^2= 0.0000e+00, m= 0.0000e+00] (717,706) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 168 ( -> ) [( 2.2370e+00, 0.0000e+00, 0.0000e+00, 2.2370e+00), p^2= 3.9215e-04, m= 7.7133e-01] ( 0,713) 0 [B] 1 ub 104 ( -> ) [( 3.8903e-01, 0.0000e+00, 0.0000e+00, 3.8901e-01), p^2= 1.1859e-05, m= 0.0000e+00] ( 0,656) 0 [B] 1 d 28 ( -> ) [( 5.8376e-01, 0.0000e+00, 0.0000e+00, 5.8374e-01), p^2= 2.6703e-05, m= 0.0000e+00] (623, 0) 0 and Particle List with 4 elements [B] 1 uu_1 169 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,717) 1 [B] 1 ub 136 ( -> ) [( 3.1423e-01, 0.0000e+00, 0.0000e+00,-3.1420e-01), p^2= 1.6889e-05, m= 0.0000e+00] ( 0,683) 1 [B] 1 ub 122 ( -> ) [( 6.2300e-01, 0.0000e+00, 0.0000e+00,-6.2295e-01), p^2= 6.6389e-05, m= 0.0000e+00] ( 0,672) 1 [B] 1 d 85 ( -> ) [( 5.3323e-01, 0.0000e+00, 0.0000e+00,-5.3319e-01), p^2= 4.8635e-05, m= 0.0000e+00] (661, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 1000 ( 1m 11s elapsed / 1h 58m 37s left ) -> ETA: Tue Apr 09 23:39 XS = 4.87528e+09 pb +- ( 6.25753e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 2m 23s elapsed / 1h 56m 47s left ) -> ETA: Tue Apr 09 23:39 XS = 4.89825e+09 pb +- ( 4.21631e+08 pb = 8 % ) Event 3000 ( 3m 35s elapsed / 1h 56m 6s left ) -> ETA: Tue Apr 09 23:39 XS = 5.12833e+09 pb +- ( 4.91036e+08 pb = 9 % ) Pythia8 hadronisation failed. Event 4000 ( 4m 47s elapsed / 1h 55m 2s left ) -> ETA: Tue Apr 09 23:39 XS = 5.01885e+09 pb +- ( 3.99545e+08 pb = 7 % ) Pythia8 hadronisation failed. Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 5000 ( 6m 1s elapsed / 1h 54m 20s left ) -> ETA: Tue Apr 09 23:40 XS = 4.85932e+09 pb +- ( 3.35669e+08 pb = 6 % ) Event 6000 ( 7m 14s elapsed / 1h 53m 24s left ) -> ETA: Tue Apr 09 23:40 XS = 4.76459e+09 pb +- ( 3.03056e+08 pb = 6 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 7000 ( 8m 28s elapsed / 1h 52m 40s left ) -> ETA: Tue Apr 09 23:41 XS = 4.67477e+09 pb +- ( 2.71167e+08 pb = 5 % ) Event 8000 ( 9m 39s elapsed / 1h 51m 5s left ) -> ETA: Tue Apr 09 23:40 XS = 4.66962e+09 pb +- ( 2.46219e+08 pb = 5 % ) Event 9000 ( 10m 54s elapsed / 1h 50m 13s left ) -> ETA: Tue Apr 09 23:41 XS = 4.65112e+09 pb +- ( 2.268e+08 pb = 4 % ) Event 10000 ( 12m 10s elapsed / 1h 49m 32s left ) -> ETA: Tue Apr 09 23:41 XS = 4.64186e+09 pb +- ( 2.10871e+08 pb = 4 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 20000 ( 23m 35s elapsed / 1h 34m 20s left ) -> ETA: Tue Apr 09 23:38  Memory usage increased by 17 MB, now 149 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.82929e+09 pb +- ( 1.47908e+08 pb = 3 % ) Event 30000 ( 34m 17s elapsed / 1h 20m 1s left ) -> ETA: Tue Apr 09 23:34 XS = 4.82381e+09 pb +- ( 1.20987e+08 pb = 2 % ) Event 40000 ( 45m 6s elapsed / 1h 7m 40s left ) -> ETA: Tue Apr 09 23:32  Memory usage increased by 56 MB, now 206 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.83941e+09 pb +- ( 1.04209e+08 pb = 2 % ) Event 50000 ( 55m 44s elapsed / 55m 44s left ) -> ETA: Tue Apr 09 23:31 XS = 4.80392e+09 pb +- ( 9.18537e+07 pb = 1 % ) Event 60000 ( 1h 6m 37s elapsed / 44m 25s left ) -> ETA: Tue Apr 09 23:31 XS = 4.79622e+09 pb +- ( 8.3467e+07 pb = 1 % ) Event 70000 ( 1h 17m 27s elapsed / 33m 11s left ) -> ETA: Tue Apr 09 23:30 XS = 4.80024e+09 pb +- ( 7.69779e+07 pb = 1 % ) Event 80000 ( 1h 28m 24s elapsed / 22m 6s left ) -> ETA: Tue Apr 09 23:30 XS = 4.76697e+09 pb +- ( 7.14887e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 90000 ( 1h 39m 22s elapsed / 11m 2s left ) -> ETA: Tue Apr 09 23:30 XS = 4.76164e+09 pb +- ( 6.77133e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 100000 ( 6626 s total ) = 1.3039e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1321){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.73101e+09 0 % 6.37609e+07 1.34 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100000 Errors { From "Hadronization:Pythia8": 7 (100007) -> 0 % } New events { From "Beam_Remnants:Parametrised": 469 (100476) -> 0.4 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 469 fails in creating good beam breakups. Remnant Kinematics: 469 errors (no kinematics found) and 119 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 1h 50m 30s on Tue Apr 9 23:30:35 2024 (User: 1h 50m 5s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu5.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Apr 10 10:15:06 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1321 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 38d 10h 13m 16s left ) -> ETA: Sat May 18 20:28 XS = 22.4321 pb +- ( 22.4321 pb = 100 % ) Event 2 ( 3s elapsed / 19d 16h 13m 16s left ) -> ETA: Tue Apr 30 02:28 XS = 11.2161 pb +- ( 11.2161 pb = 99 % ) Event 3 ( 3s elapsed / 13d 8h 22m 9s left ) -> ETA: Tue Apr 23 18:37 XS = 6.68421 pb +- ( 6.36911 pb = 95 % ) Event 4 ( 3s elapsed / 10d 5h 8m 16s left ) -> ETA: Sat Apr 20 15:23 XS = 133.63 pb +- ( 127.066 pb = 95 % ) Event 5 ( 3s elapsed / 8d 7h 59m 56s left ) -> ETA: Thu Apr 18 18:15 XS = 5.95625e+09 pb +- ( 5.95625e+09 pb = 99 % ) Event 6 ( 3s elapsed / 7d 58m 49s left ) -> ETA: Wed Apr 17 11:14 XS = 5.3656e+09 pb +- ( 5.36007e+09 pb = 99 % ) Event 7 ( 3s elapsed / 6d 4h 24m 41s left ) -> ETA: Tue Apr 16 14:39 XS = 4.87782e+09 pb +- ( 4.87284e+09 pb = 99 % ) Event 8 ( 3s elapsed / 5d 10h 12m 26s left ) -> ETA: Mon Apr 15 20:27 XS = 7.59254e+09 pb +- ( 5.21123e+09 pb = 68 % ) Event 9 ( 3s elapsed / 4d 20h 58m 27s left ) -> ETA: Mon Apr 15 07:13 XS = 6.50789e+09 pb +- ( 4.4988e+09 pb = 69 % ) Event 10 ( 3s elapsed / 4d 13h 59m 56s left ) -> ETA: Mon Apr 15 00:15 XS = 5.35944e+09 pb +- ( 3.7319e+09 pb = 69 % ) Event 20 ( 4s elapsed / 2d 13h 56m 35s left ) -> ETA: Sat Apr 13 00:11 XS = 2.66954e+09 pb +- ( 1.48024e+09 pb = 55 % ) Event 30 ( 5s elapsed / 1d 23h 24m 21s left ) -> ETA: Fri Apr 12 09:39 XS = 1.92013e+09 pb +- ( 1.01202e+09 pb = 52 % ) Event 40 ( 5s elapsed / 1d 14h 57m 24s left ) -> ETA: Fri Apr 12 01:12 XS = 1.56666e+09 pb +- ( 7.78063e+08 pb = 49 % ) Event 50 ( 6s elapsed / 1d 9h 19m 54s left ) -> ETA: Thu Apr 11 19:35 XS = 2.22184e+09 pb +- ( 9.39525e+08 pb = 42 % ) Event 60 ( 6s elapsed / 1d 6h 38m 46s left ) -> ETA: Thu Apr 11 16:54 XS = 2.33877e+09 pb +- ( 8.82485e+08 pb = 37 % ) Event 70 ( 7s elapsed / 1d 4h 46m 4s left ) -> ETA: Thu Apr 11 15:01 XS = 3.54782e+09 pb +- ( 1.30699e+09 pb = 36 % ) Event 80 ( 7s elapsed / 1d 3h 19m 27s left ) -> ETA: Thu Apr 11 13:34 XS = 3.30893e+09 pb +- ( 1.14405e+09 pb = 34 % ) Event 90 ( 8s elapsed / 1d 2h 6m 31s left ) -> ETA: Thu Apr 11 12:21 XS = 3.12629e+09 pb +- ( 9.86883e+08 pb = 31 % ) Event 100 ( 9s elapsed / 1d 2h 19m 50s left ) -> ETA: Thu Apr 11 12:35 XS = 2.73528e+09 pb +- ( 8.64354e+08 pb = 31 % ) Event 200 ( 15s elapsed / 21h 1m 24s left ) -> ETA: Thu Apr 11 07:16 XS = 3.29185e+09 pb +- ( 8.77197e+08 pb = 26 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 u 5 ( -> 2) [( 3.4880e+03,-0.0000e+00,-0.0000e+00, 3.4880e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 33 ( -> 4) [( 8.3943e+00,-0.0000e+00,-0.0000e+00, 8.3943e+00), p^2= 0.0000e+00, m= 0.0000e+00] (623,601) 0 [I] 1 ub 47 ( -> 6) [( 2.3698e+00,-0.0000e+00,-0.0000e+00, 2.3698e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,623) 0 and Particle List with 3 elements [I] 1 sb 6 ( -> 2) [( 1.3833e+03,-0.0000e+00,-0.0000e+00,-1.3833e+03), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,601) 1 [I] 1 G 34 ( -> 4) [( 3.0885e+02,-0.0000e+00,-0.0000e+00,-3.0885e+02), p^2= 0.0000e+00, m= 0.0000e+00] (629,622) 1 [I] 1 G 48 ( -> 6) [( 2.5134e+02,-0.0000e+00,-0.0000e+00,-2.5134e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,643) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 62 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,644) 0 [B] 1 u 59 ( -> ) [( 1.2179e+00, 0.0000e+00, 0.0000e+00, 1.2178e+00), p^2= 3.0632e-04, m= 0.0000e+00] (644, 0) 0 and Particle List with 3 elements [B] 1 uu_1 64 ( -> ) [( 1.0817e+03, 0.0000e+00, 0.0000e+00,-1.0817e+03), p^2= 1.8907e-01, m= 7.7133e-01] ( 0,629) 1 [B] 1 s 28 ( -> ) [( 1.9900e+00, 0.0000e+00, 0.0000e+00,-1.9900e+00), p^2= 6.3995e-07, m= 0.0000e+00] (622, 0) 1 [B] 1 d 63 ( -> ) [( 4.7287e+02, 0.0000e+00, 0.0000e+00,-4.7287e+02), p^2= 3.6134e-02, m= 0.0000e+00] (643, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 300 ( 21s elapsed / 19h 50m 11s left ) -> ETA: Thu Apr 11 06:05 XS = 5.4058e+09 pb +- ( 2.0119e+09 pb = 37 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 u 6 ( -> 2) [( 3.4858e+03,-0.0000e+00,-0.0000e+00, 3.4858e+03), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 G 32 ( -> 4) [( 9.4897e+00,-0.0000e+00,-0.0000e+00, 9.4897e+00), p^2= 0.0000e+00, m= 0.0000e+00] (634,602) 0 [I] 1 d 55 ( -> 6) [( 2.8793e+00,-0.0000e+00,-0.0000e+00, 2.8793e+00), p^2= 0.0000e+00, m= 3.0000e-01] (620, 0) 0 [I] 1 G 79 ( -> 8) [( 8.2297e-01,-0.0000e+00,-0.0000e+00, 8.2297e-01), p^2= 0.0000e+00, m= 0.0000e+00] (659,634) 0 and Particle List with 4 elements [I] 1 d 5 ( -> 2) [( 2.0098e+02,-0.0000e+00,-0.0000e+00,-2.0098e+02), p^2= 0.0000e+00, m= 3.0000e-01] (613, 0) 1 [I] 1 G 33 ( -> 4) [( 7.3835e+02,-0.0000e+00,-0.0000e+00,-7.3835e+02), p^2= 0.0000e+00, m= 0.0000e+00] (626,613) 1 [I] 1 u 56 ( -> 6) [( 6.7464e+02,-0.0000e+00,-0.0000e+00,-6.7464e+02), p^2= 0.0000e+00, m= 3.0000e-01] (645, 0) 1 [I] 1 u 80 ( -> 8) [( 4.5978e+02,-0.0000e+00,-0.0000e+00,-4.5978e+02), p^2= 0.0000e+00, m= 3.0000e-01] (660, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 91 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,659) 0 [B] 1 ub 27 ( -> ) [( 1.0557e+00, 0.0000e+00, 0.0000e+00, 1.0556e+00), p^2= 2.6553e-04, m= 0.0000e+00] ( 0,620) 0 and Particle List with 3 elements [B] 1 uu_1 92 ( -> ) [( 8.4214e+02, 0.0000e+00, 0.0000e+00,-8.4214e+02), p^2= 1.2507e-01, m= 7.7133e-01] ( 0,660) 1 [B] 1 ub 88 ( -> ) [( 3.4860e+00, 0.0000e+00, 0.0000e+00,-3.4860e+00), p^2= 2.1432e-06, m= 0.0000e+00] ( 0,645) 1 [B] 1 ub 74 ( -> ) [( 5.8062e+02, 0.0000e+00, 0.0000e+00,-5.8062e+02), p^2= 5.9454e-02, m= 0.0000e+00] ( 0,626) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 400 ( 27s elapsed / 18h 48m 17s left ) -> ETA: Thu Apr 11 05:03 XS = 5.81342e+09 pb +- ( 1.59201e+09 pb = 27 % ) Event 500 ( 33s elapsed / 18h 36m 26s left ) -> ETA: Thu Apr 11 04:52 XS = 5.77578e+09 pb +- ( 1.35467e+09 pb = 23 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 s 5 ( -> 2) [( 3.1799e+03,-0.0000e+00,-0.0000e+00, 3.1799e+03), p^2= 0.0000e+00, m= 4.0000e-01] (601, 0) 0 [I] 1 G 43 ( -> 4) [( 1.9306e+02,-0.0000e+00,-0.0000e+00, 1.9306e+02), p^2= 0.0000e+00, m= 0.0000e+00] (635,601) 0 [I] 1 G 54 ( -> 6) [( 4.3743e+01,-0.0000e+00,-0.0000e+00, 4.3743e+01), p^2= 0.0000e+00, m= 0.0000e+00] (647,635) 0 and Particle List with 3 elements [I] 1 b 6 ( -> 2) [( 3.4849e+03,-0.0000e+00,-0.0000e+00,-3.4849e+03), p^2= 0.0000e+00, m= 5.1000e+00] (602, 0) 1 [I] 1 d 44 ( -> 4) [( 9.7811e-01,-0.0000e+00,-0.0000e+00,-9.7811e-01), p^2= 0.0000e+00, m= 3.0000e-01] (638, 0) 1 [I] 1 G 55 ( -> 6) [( 7.5664e+00,-0.0000e+00,-0.0000e+00,-7.5664e+00), p^2= 0.0000e+00, m= 0.0000e+00] (644,638) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 69 ( -> ) [( 4.5406e+01, 0.0000e+00, 0.0000e+00, 4.5406e+01), p^2= 6.2226e-03, m= 5.7933e-01] ( 0,647) 0 [B] 1 sb 37 ( -> ) [( 1.0142e+00, 0.0000e+00, 0.0000e+00, 1.0142e+00), p^2= 3.1047e-06, m= 0.0000e+00] ( 0,629) 0 [B] 1 u 68 ( -> ) [( 3.6917e+01, 0.0000e+00, 0.0000e+00, 3.6917e+01), p^2= 4.1134e-03, m= 0.0000e+00] (629, 0) 0 and Particle List with 4 elements [B] 1 ud_0 71 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,644) 1 [B] 1 db 49 ( -> ) [( 5.6678e-01, 0.0000e+00, 0.0000e+00,-5.6677e-01), p^2= 1.2240e-05, m= 0.0000e+00] ( 0,602) 1 [B] 1 bb 38 ( -> ) [( 5.4515e+00, 0.0000e+00, 0.0000e+00,-5.4514e+00), p^2= 1.1323e-03, m= 0.0000e+00] ( 0,630) 1 [B] 1 u 70 ( -> ) [( 5.8333e-01, 0.0000e+00, 0.0000e+00,-5.8332e-01), p^2= 1.2965e-05, m= 0.0000e+00] (630, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 600 ( 40s elapsed / 18h 31m 16s left ) -> ETA: Thu Apr 11 04:47 XS = 5.98957e+09 pb +- ( 1.20952e+09 pb = 20 % ) Event 700 ( 46s elapsed / 18h 16m 8s left ) -> ETA: Thu Apr 11 04:32 XS = 6.01883e+09 pb +- ( 1.08736e+09 pb = 18 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 2.8649e+03,-0.0000e+00,-0.0000e+00, 2.8649e+03), p^2= 0.0000e+00, m= 0.0000e+00] (608,610) 0 [I] 1 G 36 ( -> 4) [( 7.0721e+01,-0.0000e+00,-0.0000e+00, 7.0721e+01), p^2= 0.0000e+00, m= 0.0000e+00] (610,643) 0 [I] 1 G 65 ( -> 6) [( 5.5100e+02,-0.0000e+00,-0.0000e+00, 5.5100e+02), p^2= 0.0000e+00, m= 0.0000e+00] (643,667) 0 [I] 1 ub 92 ( -> 8) [( 5.3641e-01,-0.0000e+00,-0.0000e+00, 5.3641e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,675) 0 [I] 1 G 104 ( -> 10) [( 8.4748e+00,-0.0000e+00,-0.0000e+00, 8.4748e+00), p^2= 0.0000e+00, m= 0.0000e+00] (675,690) 0 [I] 1 db 118 ( -> 12) [( 2.3725e+00,-0.0000e+00,-0.0000e+00, 2.3725e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,608) 0 and Particle List with 6 elements [I] 1 u 6 ( -> 2) [( 2.0349e+03,-0.0000e+00,-0.0000e+00,-2.0349e+03), p^2= 0.0000e+00, m= 3.0000e-01] (624, 0) 1 [I] 1 u 37 ( -> 4) [( 4.4819e+02,-0.0000e+00,-0.0000e+00,-4.4819e+02), p^2= 0.0000e+00, m= 3.0000e-01] (638, 0) 1 [I] 1 db 66 ( -> 6) [( 1.6649e+02,-0.0000e+00,-0.0000e+00,-1.6649e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,638) 1 [I] 1 G 93 ( -> 8) [( 7.3168e+02,-0.0000e+00,-0.0000e+00,-7.3168e+02), p^2= 0.0000e+00, m= 0.0000e+00] (677,674) 1 [I] 1 G 105 ( -> 10) [( 3.6436e+01,-0.0000e+00,-0.0000e+00,-3.6436e+01), p^2= 0.0000e+00, m= 0.0000e+00] (686,677) 1 [I] 1 G 119 ( -> 12) [( 7.8766e+01,-0.0000e+00,-0.0000e+00,-7.8766e+01), p^2= 0.0000e+00, m= 0.0000e+00] (608,686) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 128 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,704) 0 [B] 1 d 124 ( -> ) [( 3.1938e-01, 0.0000e+00, 0.0000e+00, 3.1936e-01), p^2= 1.3154e-05, m= 0.0000e+00] (704, 0) 0 [B] 1 u 99 ( -> ) [( 4.7241e-01, 0.0000e+00, 0.0000e+00, 4.7238e-01), p^2= 2.8779e-05, m= 0.0000e+00] (667, 0) 0 [B] 1 d 127 ( -> ) [( 1.1587e+00, 0.0000e+00, 0.0000e+00, 1.1586e+00), p^2= 1.7312e-04, m= 0.0000e+00] (690, 0) 0 and Particle List with 3 elements [B] 1 ud_0 129 ( -> ) [( 1.7876e+00, 0.0000e+00, 0.0000e+00,-1.7875e+00), p^2= 2.2485e-04, m= 5.7933e-01] ( 0,608) 1 [B] 1 d 87 ( -> ) [( 3.3928e-01, 0.0000e+00, 0.0000e+00,-3.3927e-01), p^2= 8.0997e-06, m= 0.0000e+00] (674, 0) 1 [B] 1 ub 60 ( -> ) [( 1.4478e+00, 0.0000e+00, 0.0000e+00,-1.4478e+00), p^2= 1.4749e-04, m= 0.0000e+00] ( 0,624) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 800 ( 52s elapsed / 18h 18m 42s left ) -> ETA: Thu Apr 11 04:34 XS = 5.72657e+09 pb +- ( 9.56822e+08 pb = 16 % ) Event 900 ( 58s elapsed / 18h 8m 50s left ) -> ETA: Thu Apr 11 04:24 XS = 6.42966e+09 pb +- ( 9.82735e+08 pb = 15 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 1000 ( 1m 5s elapsed / 18h 15m 34s left ) -> ETA: Thu Apr 11 04:31 XS = 6.296e+09 pb +- ( 9.05976e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 cb 6 ( -> 2) [( 2.7145e+03,-0.0000e+00,-0.0000e+00, 2.7145e+03), p^2= 0.0000e+00, m= 1.8000e+00] ( 0,608) 0 [I] 1 G 47 ( -> 4) [( 8.6372e+01,-0.0000e+00,-0.0000e+00, 8.6372e+01), p^2= 0.0000e+00, m= 0.0000e+00] (608,642) 0 [I] 1 ub 62 ( -> 6) [( 2.6206e+02,-0.0000e+00,-0.0000e+00, 2.6206e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,652) 0 [I] 1 G 76 ( -> 8) [( 3.3454e+02,-0.0000e+00,-0.0000e+00, 3.3454e+02), p^2= 0.0000e+00, m= 0.0000e+00] (662,640) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.3505e+03,-0.0000e+00,-0.0000e+00,-3.3505e+03), p^2= 0.0000e+00, m= 0.0000e+00] (608,610) 1 [I] 1 G 48 ( -> 4) [( 1.4219e+02,-0.0000e+00,-0.0000e+00,-1.4219e+02), p^2= 0.0000e+00, m= 0.0000e+00] (610,646) 1 [I] 1 sb 63 ( -> 6) [( 3.6140e+00,-0.0000e+00,-0.0000e+00,-3.6140e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,650) 1 [I] 1 G 77 ( -> 8) [( 1.8320e+00,-0.0000e+00,-0.0000e+00,-1.8320e+00), p^2= 0.0000e+00, m= 0.0000e+00] (650,660) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 87 ( -> ) [( 8.9685e+01, 0.0000e+00, 0.0000e+00, 8.9685e+01), p^2= 1.9736e-02, m= 5.7933e-01] ( 0,662) 0 [B] 1 u 70 ( -> ) [( 3.7711e-01, 0.0000e+00, 0.0000e+00, 3.7711e-01), p^2= 3.4893e-07, m= 0.0000e+00] (642, 0) 0 [B] 1 c 42 ( -> ) [( 4.6548e+00, 0.0000e+00, 0.0000e+00, 4.6548e+00), p^2= 5.3164e-05, m= 0.0000e+00] (640, 0) 0 [B] 1 u 86 ( -> ) [( 7.7961e+00, 0.0000e+00, 0.0000e+00, 7.7961e+00), p^2= 1.4913e-04, m= 0.0000e+00] (652, 0) 0 and Particle List with 3 elements [B] 1 uu_1 89 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,608) 1 [B] 1 s 71 ( -> ) [( 7.8304e-01, 0.0000e+00, 0.0000e+00,-7.8299e-01), p^2= 8.4381e-05, m= 0.0000e+00] (646, 0) 1 [B] 1 d 88 ( -> ) [( 1.0446e+00, 0.0000e+00, 0.0000e+00,-1.0446e+00), p^2= 1.5018e-04, m= 0.0000e+00] (660, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 2m 10s elapsed / 18h 2m 19s left ) -> ETA: Thu Apr 11 04:19 XS = 5.35892e+09 pb +- ( 5.27404e+08 pb = 9 % ) Event 3000 ( 3m 13s elapsed / 17h 51m 59s left ) -> ETA: Thu Apr 11 04:10 XS = 5.71846e+09 pb +- ( 5.20768e+08 pb = 9 % ) Event 4000 ( 4m 20s elapsed / 18h 19s left ) -> ETA: Thu Apr 11 04:19 XS = 5.55883e+09 pb +- ( 4.14316e+08 pb = 7 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 5000 ( 5m 27s elapsed / 18h 4m 58s left ) -> ETA: Thu Apr 11 04:25 XS = 5.33519e+09 pb +- ( 3.45716e+08 pb = 6 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 6000 ( 6m 33s elapsed / 18h 6m 36s left ) -> ETA: Thu Apr 11 04:28 XS = 5.12573e+09 pb +- ( 3.02027e+08 pb = 5 % ) Event 7000 ( 7m 39s elapsed / 18h 6m 7s left ) -> ETA: Thu Apr 11 04:28 XS = 5.06958e+09 pb +- ( 2.75493e+08 pb = 5 % ) Event 8000 ( 8m 41s elapsed / 17h 58m 46s left ) -> ETA: Thu Apr 11 04:22 XS = 5.05513e+09 pb +- ( 2.53216e+08 pb = 5 % ) Event 9000 ( 9m 44s elapsed / 17h 53m 22s left ) -> ETA: Thu Apr 11 04:18 XS = 5.04748e+09 pb +- ( 2.34885e+08 pb = 4 % ) Event 10000 ( 10m 51s elapsed / 17h 54m 58s left ) -> ETA: Thu Apr 11 04:20 XS = 5.03107e+09 pb +- ( 2.17864e+08 pb = 4 % ) Event 20000 ( 21m 58s elapsed / 17h 56m 25s left ) -> ETA: Thu Apr 11 04:33  Memory usage increased by 21 MB, now 153 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.75567e+09 pb +- ( 1.43857e+08 pb = 3 % ) Event 30000 ( 33m 10s elapsed / 17h 52m 54s left ) -> ETA: Thu Apr 11 04:41 XS = 4.8303e+09 pb +- ( 1.1934e+08 pb = 2 % ) Event 40000 ( 44m 21s elapsed / 17h 44m 37s left ) -> ETA: Thu Apr 11 04:44 XS = 4.84699e+09 pb +- ( 1.05703e+08 pb = 2 % ) Event 50000 ( 55m 42s elapsed / 17h 38m 33s left ) -> ETA: Thu Apr 11 04:49 XS = 4.83931e+09 pb +- ( 9.90453e+07 pb = 2 % ) Event 60000 ( 1h 6m 12s elapsed / 17h 17m 11s left ) -> ETA: Thu Apr 11 04:38  Memory usage increased by 60 MB, now 213 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.84493e+09 pb +- ( 8.91175e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 70000 ( 1h 16m 17s elapsed / 16h 53m 35s left ) -> ETA: Thu Apr 11 04:25 XS = 4.7879e+09 pb +- ( 8.10949e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 80000 ( 1h 26m 46s elapsed / 16h 37m 59s left ) -> ETA: Thu Apr 11 04:19 XS = 4.7965e+09 pb +- ( 7.66161e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 90000 ( 1h 36m 46s elapsed / 16h 18m 26s left ) -> ETA: Thu Apr 11 04:10 XS = 4.85668e+09 pb +- ( 7.3714e+07 pb = 1 % ) Event 100000 ( 1h 46m 54s elapsed / 16h 2m 10s left ) -> ETA: Thu Apr 11 04:04 XS = 4.86479e+09 pb +- ( 6.93133e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 28m 6s elapsed / 13h 52m 27s left ) -> ETA: Thu Apr 11 03:35 XS = 4.81291e+09 pb +- ( 4.74311e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 300000 ( 5h 25m 7s elapsed / 12h 38m 37s left ) -> ETA: Thu Apr 11 04:18  Memory usage increased by 17 MB, now 230 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.81384e+09 pb +- ( 3.88114e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. WARNING: last allowed error message from 'Hadronize' Pythia8 hadronisation failed. Event 400000 ( 7h 13m 3s elapsed / 10h 49m 35s left ) -> ETA: Thu Apr 11 04:17 XS = 4.81715e+09 pb +- ( 3.33769e+07 pb = 0 % ) Event 500000 ( 8h 56m 14s elapsed / 8h 56m 14s left ) -> ETA: Thu Apr 11 04:07  Memory usage increased by 25 MB, now 255 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.82554e+09 pb +- ( 3.0058e+07 pb = 0 % ) Event 600000 ( 10h 39m 8s elapsed / 7h 6m 5s left ) -> ETA: Thu Apr 11 04:00 XS = 4.82513e+09 pb +- ( 2.71952e+07 pb = 0 % ) Event 700000 ( 12h 20m 16s elapsed / 5h 17m 15s left ) -> ETA: Thu Apr 11 03:52 XS = 4.81764e+09 pb +- ( 2.50632e+07 pb = 0 % ) Event 800000 ( 14h 3m 14s elapsed / 3h 30m 48s left ) -> ETA: Thu Apr 11 03:49  Memory usage increased by 21 MB, now 277 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.81763e+09 pb +- ( 2.33814e+07 pb = 0 % ) Event 900000 ( 15h 46m 20s elapsed / 1h 45m 8s left ) -> ETA: Thu Apr 11 03:46 XS = 4.82123e+09 pb +- ( 2.20273e+07 pb = 0 % ) Event 1000000 ( 63053 s total ) = 1.37027e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_noWeight/1321){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.83067e+09 0 % 2.09034e+07 0.43 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 1000000 Errors { From "Hadronization:Pythia8": 57 (1000057) -> 0 % } New events { From "Beam_Remnants:Parametrised": 3454 (1003511) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Error messages from 'Hadronize' exceeded frequency limit: 57/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 3454 fails in creating good beam breakups. Remnant Kinematics: 3454 errors (no kinematics found) and 638 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 17h 30m 58s on Thu Apr 11 03:46:04 2024 (User: 17h 18m 32s, System: 8m, Children User: 0s, Children System: 0s)