Welcome to Sherpa, Daniel Reichelt on ip3-cpu3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Mar 7 21:22:55 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1294 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 9s elapsed / 26d 3h 46m 30s left ) -> ETA: Wed Apr 03 02:09 XS = 1.33764e-09 pb +- ( 1.33764e-09 pb = 100 % ) Event 2 ( 9s elapsed / 13d 5h 42m 20s left ) -> ETA: Thu Mar 21 03:05 XS = 2.39242e-05 pb +- ( 2.39239e-05 pb = 99 % ) Event 3 ( 9s elapsed / 8d 20h 57m 37s left ) -> ETA: Sat Mar 16 18:20 XS = 34.2506 pb +- ( 34.2506 pb = 99 % ) Event 4 ( 9s elapsed / 6d 18h 29m 50s left ) -> ETA: Thu Mar 14 15:53 XS = 462210 pb +- ( 462182 pb = 99 % ) Event 5 ( 9s elapsed / 5d 10h 33m 10s left ) -> ETA: Wed Mar 13 07:56 XS = 1.15607e+09 pb +- ( 1.15565e+09 pb = 99 % ) Event 6 ( 9s elapsed / 4d 12h 54m 33s left ) -> ETA: Tue Mar 12 10:17 XS = 9.3931e+08 pb +- ( 9.38971e+08 pb = 99 % ) Event 7 ( 9s elapsed / 3d 22h 8m 39s left ) -> ETA: Mon Mar 11 19:31 XS = 7.51449e+08 pb +- ( 7.5118e+08 pb = 99 % ) Event 8 ( 9s elapsed / 3d 10h 48m 35s left ) -> ETA: Mon Mar 11 08:11 XS = 7.16129e+08 pb +- ( 7.15387e+08 pb = 99 % ) Event 9 ( 9s elapsed / 3d 2h 4m 17s left ) -> ETA: Sun Mar 10 23:27 XS = 7.02872e+08 pb +- ( 6.82224e+08 pb = 97 % ) Event 10 ( 9s elapsed / 2d 18h 48m 10s left ) -> ETA: Sun Mar 10 16:11 XS = 2.01779e+09 pb +- ( 1.52767e+09 pb = 75 % ) Event 20 ( 10s elapsed / 1d 11h 43m 34s left ) -> ETA: Sat Mar 09 09:06 XS = 1.57287e+09 pb +- ( 9.44169e+08 pb = 60 % ) Event 30 ( 10s elapsed / 1d 1h 16m 29s left ) -> ETA: Fri Mar 08 22:39 XS = 4.77422e+09 pb +- ( 2.48324e+09 pb = 52 % ) Event 40 ( 11s elapsed / 19h 55m 38s left ) -> ETA: Fri Mar 08 17:18 XS = 3.28781e+09 pb +- ( 1.71825e+09 pb = 52 % ) Event 50 ( 12s elapsed / 16h 45m 37s left ) -> ETA: Fri Mar 08 14:08 XS = 2.92461e+09 pb +- ( 1.39452e+09 pb = 47 % ) Event 60 ( 12s elapsed / 14h 22m 59s left ) -> ETA: Fri Mar 08 11:46 XS = 2.83006e+09 pb +- ( 1.21047e+09 pb = 42 % ) Event 70 ( 13s elapsed / 13h 9m 3s left ) -> ETA: Fri Mar 08 10:32 XS = 2.73994e+09 pb +- ( 1.07853e+09 pb = 39 % ) Event 80 ( 13s elapsed / 11h 57m 28s left ) -> ETA: Fri Mar 08 09:20 XS = 4.11083e+09 pb +- ( 1.42792e+09 pb = 34 % ) Event 90 ( 14s elapsed / 11h 2m 15s left ) -> ETA: Fri Mar 08 08:25 XS = 4.09008e+09 pb +- ( 1.33166e+09 pb = 32 % ) Event 100 ( 15s elapsed / 10h 28m 54s left ) -> ETA: Fri Mar 08 07:52 XS = 3.75893e+09 pb +- ( 1.21201e+09 pb = 32 % ) Event 200 ( 21s elapsed / 7h 18m 23s left ) -> ETA: Fri Mar 08 04:41 XS = 3.35516e+09 pb +- ( 7.86295e+08 pb = 23 % ) Event 300 ( 27s elapsed / 6h 21m 4s left ) -> ETA: Fri Mar 08 03:44 XS = 3.29057e+09 pb +- ( 7.49618e+08 pb = 22 % ) Event 400 ( 33s elapsed / 5h 46m left ) -> ETA: Fri Mar 08 03:09 XS = 4.232e+09 pb +- ( 8.17775e+08 pb = 19 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 ub 6 ( -> 2) [( 2.0703e+03,-0.0000e+00,-0.0000e+00, 2.0703e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,602) 0 [I] 1 G 21 ( -> 4) [( 6.8315e+02,-0.0000e+00,-0.0000e+00, 6.8315e+02), p^2= 0.0000e+00, m= 0.0000e+00] (614,610) 0 [I] 1 G 34 ( -> 6) [( 4.6393e+02,-0.0000e+00,-0.0000e+00, 4.6393e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,609) 0 [I] 1 u 44 ( -> 8) [( 6.7053e+01,-0.0000e+00,-0.0000e+00, 6.7053e+01), p^2= 0.0000e+00, m= 3.0000e-01] (609, 0) 0 [I] 1 d 53 ( -> 10) [( 1.7872e+02,-0.0000e+00,-0.0000e+00, 1.7872e+02), p^2= 0.0000e+00, m= 3.0000e-01] (633, 0) 0 and Particle List with 5 elements [I] 1 u 5 ( -> 2) [( 3.4592e+03,-0.0000e+00,-0.0000e+00,-3.4592e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 22 ( -> 4) [( 3.7966e+01,-0.0000e+00,-0.0000e+00,-3.7966e+01), p^2= 0.0000e+00, m= 0.0000e+00] (617,601) 1 [I] 1 d 35 ( -> 6) [( 1.2970e+00,-0.0000e+00,-0.0000e+00,-1.2970e+00), p^2= 0.0000e+00, m= 3.0000e-01] (609, 0) 1 [I] 1 G 45 ( -> 8) [( 2.1851e-01,-0.0000e+00,-0.0000e+00,-2.1851e-01), p^2= 0.0000e+00, m= 0.0000e+00] (630,617) 1 [I] 1 G 54 ( -> 10) [( 2.1238e-01,-0.0000e+00,-0.0000e+00,-2.1238e-01), p^2= 0.0000e+00, m= 0.0000e+00] (638,630) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 64 ( -> ) [( 1.7090e+01, 0.0000e+00, 0.0000e+00, 1.7090e+01), p^2= 1.9940e-03, m= 5.7933e-01] ( 0,633) 0 [B] 1 db 61 ( -> ) [( 3.1122e-01, 0.0000e+00, 0.0000e+00, 3.1122e-01), p^2= 6.6132e-07, m= 0.0000e+00] ( 0,614) 0 [B] 1 u 16 ( -> ) [( 1.9440e+01, 0.0000e+00, 0.0000e+00, 1.9440e+01), p^2= 2.5801e-03, m= 0.0000e+00] (610, 0) 0 and Particle List with 2 elements [B] 1 uu_1 65 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,638) 1 [B] 1 ub 15 ( -> ) [( 1.1351e+00, 0.0000e+00, 0.0000e+00,-1.1350e+00), p^2= 2.8549e-04, m= 0.0000e+00] ( 0,609) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 39s elapsed / 5h 26m 45s left ) -> ETA: Fri Mar 08 02:50 XS = 4.4303e+09 pb +- ( 7.10507e+08 pb = 16 % ) Event 600 ( 45s elapsed / 5h 12m 5s left ) -> ETA: Fri Mar 08 02:35 XS = 4.37875e+09 pb +- ( 6.32927e+08 pb = 14 % ) Event 700 ( 50s elapsed / 5h 1m 53s left ) -> ETA: Fri Mar 08 02:25 XS = 4.36366e+09 pb +- ( 6.05186e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 1.8812e+02,-0.0000e+00,-0.0000e+00, 1.8812e+02), p^2= 0.0000e+00, m= 0.0000e+00] (623,619) 0 [I] 1 d 36 ( -> 4) [( 3.6434e+02,-0.0000e+00,-0.0000e+00, 3.6434e+02), p^2= 0.0000e+00, m= 3.0000e-01] (630, 0) 0 [I] 1 G 48 ( -> 6) [( 1.4221e+02,-0.0000e+00,-0.0000e+00, 1.4221e+02), p^2= 0.0000e+00, m= 0.0000e+00] (649,630) 0 [I] 1 d 72 ( -> 8) [( 1.0990e+03,-0.0000e+00,-0.0000e+00, 1.0990e+03), p^2= 0.0000e+00, m= 3.0000e-01] (619, 0) 0 and Particle List with 4 elements [I] 1 u 5 ( -> 2) [( 2.0222e+03,-0.0000e+00,-0.0000e+00,-2.0222e+03), p^2= 0.0000e+00, m= 3.0000e-01] (627, 0) 1 [I] 1 u 37 ( -> 4) [( 1.3698e+03,-0.0000e+00,-0.0000e+00,-1.3698e+03), p^2= 0.0000e+00, m= 3.0000e-01] (632, 0) 1 [I] 1 s 49 ( -> 6) [( 1.0592e+02,-0.0000e+00,-0.0000e+00,-1.0592e+02), p^2= 0.0000e+00, m= 4.0000e-01] (630, 0) 1 [I] 1 d 73 ( -> 8) [( 8.0421e-01,-0.0000e+00,-0.0000e+00,-8.0421e-01), p^2= 0.0000e+00, m= 3.0000e-01] (660, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 86 ( -> ) [( 1.1868e+03, 0.0000e+00, 0.0000e+00, 1.1868e+03), p^2= 2.0761e-01, m= 7.7133e-01] ( 0,649) 0 [B] 1 db 42 ( -> ) [( 5.1958e+02, 0.0000e+00, 0.0000e+00, 5.1958e+02), p^2= 3.9795e-02, m= 0.0000e+00] ( 0,623) 0 and Particle List with 4 elements [B] 1 ud_0 87 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,660) 1 [B] 1 db 83 ( -> ) [( 4.1675e-01, 0.0000e+00, 0.0000e+00,-4.1671e-01), p^2= 3.2703e-05, m= 0.0000e+00] ( 0,630) 1 [B] 1 sb 67 ( -> ) [( 4.7982e-01, 0.0000e+00, 0.0000e+00,-4.7978e-01), p^2= 4.3352e-05, m= 0.0000e+00] ( 0,632) 1 [B] 1 ub 43 ( -> ) [( 4.3918e-01, 0.0000e+00, 0.0000e+00,-4.3914e-01), p^2= 3.6318e-05, m= 0.0000e+00] ( 0,627) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 800 ( 56s elapsed / 4h 55m 11s left ) -> ETA: Fri Mar 08 02:19 XS = 4.16433e+09 pb +- ( 5.34762e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.0194e+03,-0.0000e+00,-0.0000e+00, 3.0194e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 0 [I] 1 G 62 ( -> 4) [( 1.8239e+02,-0.0000e+00,-0.0000e+00, 1.8239e+02), p^2= 0.0000e+00, m= 0.0000e+00] (671,603) 0 [I] 1 db 94 ( -> 6) [( 9.8185e+01,-0.0000e+00,-0.0000e+00, 9.8185e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,679) 0 [I] 1 G 107 ( -> 8) [( 1.1676e+02,-0.0000e+00,-0.0000e+00, 1.1676e+02), p^2= 0.0000e+00, m= 0.0000e+00] (679,692) 0 and Particle List with 4 elements [I] 1 u 6 ( -> 2) [( 2.9650e+03,-0.0000e+00,-0.0000e+00,-2.9650e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 63 ( -> 4) [( 5.0970e+02,-0.0000e+00,-0.0000e+00,-5.0970e+02), p^2= 0.0000e+00, m= 0.0000e+00] (675,601) 1 [I] 1 G 95 ( -> 6) [( 2.3607e+01,-0.0000e+00,-0.0000e+00,-2.3607e+01), p^2= 0.0000e+00, m= 0.0000e+00] (683,675) 1 [I] 1 sb 108 ( -> 8) [( 7.4155e-01,-0.0000e+00,-0.0000e+00,-7.4155e-01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,683) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 117 ( -> ) [( 8.0818e+01, 0.0000e+00, 0.0000e+00, 8.0818e+01), p^2= 1.9728e-02, m= 7.7133e-01] ( 0,671) 0 [B] 1 d 102 ( -> ) [( 4.7501e-01, 0.0000e+00, 0.0000e+00, 4.7501e-01), p^2= 6.8151e-07, m= 0.0000e+00] (601, 0) 0 [B] 1 d 116 ( -> ) [( 1.9833e+00, 0.0000e+00, 0.0000e+00, 1.9833e+00), p^2= 1.1881e-05, m= 0.0000e+00] (692, 0) 0 and Particle List with 2 elements [B] 1 ud_0 118 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,696) 1 [B] 1 s 113 ( -> ) [( 9.5429e-01, 0.0000e+00, 0.0000e+00,-9.5416e-01), p^2= 2.4002e-04, m= 0.0000e+00] (696, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 3s elapsed / 4h 54m 48s left ) -> ETA: Fri Mar 08 02:18 XS = 4.28654e+09 pb +- ( 5.45198e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.5656e+02,-0.0000e+00,-0.0000e+00, 3.5656e+02), p^2= 0.0000e+00, m= 0.0000e+00] (626,611) 0 [I] 1 G 40 ( -> 4) [( 5.0546e+02,-0.0000e+00,-0.0000e+00, 5.0546e+02), p^2= 0.0000e+00, m= 0.0000e+00] (611,646) 0 [I] 1 G 53 ( -> 6) [( 2.1469e+03,-0.0000e+00,-0.0000e+00, 2.1469e+03), p^2= 0.0000e+00, m= 0.0000e+00] (646,656) 0 and Particle List with 3 elements [I] 1 ub 6 ( -> 2) [( 3.4962e+03,-0.0000e+00,-0.0000e+00,-3.4962e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,605) 1 [I] 1 G 41 ( -> 4) [( 1.5242e+00,-0.0000e+00,-0.0000e+00,-1.5242e+00), p^2= 0.0000e+00, m= 0.0000e+00] (605,647) 1 [I] 1 G 54 ( -> 6) [( 7.6709e-01,-0.0000e+00,-0.0000e+00,-7.6709e-01), p^2= 0.0000e+00, m= 0.0000e+00] (647,655) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 64 ( -> ) [( 3.8213e+02, 0.0000e+00, 0.0000e+00, 3.8213e+02), p^2= 7.4790e-02, m= 7.7133e-01] ( 0,626) 0 [B] 1 d 63 ( -> ) [( 1.0897e+02, 0.0000e+00, 0.0000e+00, 1.0897e+02), p^2= 6.0816e-03, m= 0.0000e+00] (656, 0) 0 and Particle List with 3 elements [B] 1 uu_1 66 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,632) 1 [B] 1 u 35 ( -> ) [( 3.9285e-01, 0.0000e+00, 0.0000e+00,-3.9282e-01), p^2= 2.6607e-05, m= 0.0000e+00] (632, 0) 1 [B] 1 d 65 ( -> ) [( 1.0661e+00, 0.0000e+00, 0.0000e+00,-1.0660e+00), p^2= 1.9594e-04, m= 0.0000e+00] (655, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 1000 ( 1m 9s elapsed / 4h 48m 20s left ) -> ETA: Fri Mar 08 02:12 XS = 4.15477e+09 pb +- ( 5.03244e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 8.5283e+02,-0.0000e+00,-0.0000e+00, 8.5283e+02), p^2= 0.0000e+00, m= 0.0000e+00] (620,637) 0 [I] 1 d 52 ( -> 4) [( 6.4722e+02,-0.0000e+00,-0.0000e+00, 6.4722e+02), p^2= 0.0000e+00, m= 3.0000e-01] (637, 0) 0 [I] 1 d 69 ( -> 6) [( 3.0206e+02,-0.0000e+00,-0.0000e+00, 3.0206e+02), p^2= 0.0000e+00, m= 3.0000e-01] (651, 0) 0 [I] 1 G 82 ( -> 8) [( 3.4039e+02,-0.0000e+00,-0.0000e+00, 3.4039e+02), p^2= 0.0000e+00, m= 0.0000e+00] (670,651) 0 [I] 1 G 95 ( -> 10) [( 9.6168e+01,-0.0000e+00,-0.0000e+00, 9.6168e+01), p^2= 0.0000e+00, m= 0.0000e+00] (677,670) 0 and Particle List with 5 elements [I] 1 ub 6 ( -> 2) [( 3.4714e+03,-0.0000e+00,-0.0000e+00,-3.4714e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,605) 1 [I] 1 d 53 ( -> 4) [( 1.9372e+00,-0.0000e+00,-0.0000e+00,-1.9372e+00), p^2= 0.0000e+00, m= 3.0000e-01] (651, 0) 1 [I] 1 ub 70 ( -> 6) [( 1.6796e+01,-0.0000e+00,-0.0000e+00,-1.6796e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,651) 1 [I] 1 d 83 ( -> 8) [( 2.9675e+00,-0.0000e+00,-0.0000e+00,-2.9675e+00), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 1 [I] 1 G 96 ( -> 10) [( 4.8949e+00,-0.0000e+00,-0.0000e+00,-4.8949e+00), p^2= 0.0000e+00, m= 0.0000e+00] (684,666) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 107 ( -> ) [( 1.2117e+03, 0.0000e+00, 0.0000e+00, 1.2117e+03), p^2= 2.9278e-01, m= 7.7133e-01] ( 0,677) 0 [B] 1 db 76 ( -> ) [( 4.9642e+01, 0.0000e+00, 0.0000e+00, 4.9642e+01), p^2= 4.9143e-04, m= 0.0000e+00] ( 0,620) 0 and Particle List with 4 elements [B] 1 uu_1 108 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,684) 1 [B] 1 u 77 ( -> ) [( 4.6338e-01, 0.0000e+00, 0.0000e+00,-4.6335e-01), p^2= 2.6575e-05, m= 0.0000e+00] (666, 0) 1 [B] 1 db 64 ( -> ) [( 4.8400e-01, 0.0000e+00, 0.0000e+00,-4.8397e-01), p^2= 2.8993e-05, m= 0.0000e+00] ( 0,640) 1 [B] 1 u 47 ( -> ) [( 1.0849e+00, 0.0000e+00, 0.0000e+00,-1.0848e+00), p^2= 1.4566e-04, m= 0.0000e+00] (640, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 2m 16s elapsed / 4h 41m 22s left ) -> ETA: Fri Mar 08 02:06 XS = 4.23063e+09 pb +- ( 3.57667e+08 pb = 8 % ) Event 3000 ( 3m 21s elapsed / 4h 37m left ) -> ETA: Fri Mar 08 02:03  Memory usage increased by 57 MB, now 188 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.36687e+09 pb +- ( 3.43143e+08 pb = 7 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 4000 ( 4m 26s elapsed / 4h 32m 59s left ) -> ETA: Fri Mar 08 02:00 XS = 4.53393e+09 pb +- ( 3.12618e+08 pb = 6 % ) Event 5000 ( 5m 31s elapsed / 4h 30m 49s left ) -> ETA: Fri Mar 08 01:59 XS = 4.55134e+09 pb +- ( 2.75308e+08 pb = 6 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 6000 ( 6m 36s elapsed / 4h 28m 48s left ) -> ETA: Fri Mar 08 01:58 XS = 4.58356e+09 pb +- ( 2.48128e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 7000 ( 7m 40s elapsed / 4h 26m 30s left ) -> ETA: Fri Mar 08 01:57 XS = 4.54774e+09 pb +- ( 2.28482e+08 pb = 5 % ) Event 8000 ( 8m 47s elapsed / 4h 25m 43s left ) -> ETA: Fri Mar 08 01:57 XS = 4.71645e+09 pb +- ( 2.20722e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 9000 ( 9m 54s elapsed / 4h 25m 27s left ) -> ETA: Fri Mar 08 01:58 XS = 4.75312e+09 pb +- ( 2.14615e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 10000 ( 11m 1s elapsed / 4h 24m 35s left ) -> ETA: Fri Mar 08 01:58 XS = 4.725e+09 pb +- ( 2.00729e+08 pb = 4 % ) Event 20000 ( 22m 10s elapsed / 4h 15m 3s left ) -> ETA: Fri Mar 08 02:00  Memory usage increased by 16 MB, now 204 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.74648e+09 pb +- ( 1.48407e+08 pb = 3 % ) Pythia8 hadronisation failed. Event 30000 ( 33m 27s elapsed / 4h 5m 25s left ) -> ETA: Fri Mar 08 02:01 XS = 4.79068e+09 pb +- ( 1.21139e+08 pb = 2 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 40000 ( 44m 35s elapsed / 3h 54m 6s left ) -> ETA: Fri Mar 08 02:01 XS = 4.73304e+09 pb +- ( 1.02522e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 50000 ( 55m 48s elapsed / 3h 43m 12s left ) -> ETA: Fri Mar 08 02:02 XS = 4.77371e+09 pb +- ( 9.17469e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 60000 ( 1h 6m 51s elapsed / 3h 31m 43s left ) -> ETA: Fri Mar 08 02:01 XS = 4.77222e+09 pb +- ( 8.31874e+07 pb = 1 % ) Event 70000 ( 1h 22m 2s elapsed / 3h 30m 56s left ) -> ETA: Fri Mar 08 02:16 XS = 4.78118e+09 pb +- ( 7.63883e+07 pb = 1 % ) Event 80000 ( 1h 33m 23s elapsed / 3h 18m 28s left ) -> ETA: Fri Mar 08 02:14 XS = 4.75424e+09 pb +- ( 7.07841e+07 pb = 1 % ) Event 90000 ( 1h 45m 28s elapsed / 3h 7m 31s left ) -> ETA: Fri Mar 08 02:16 XS = 4.79618e+09 pb +- ( 6.83126e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 100000 ( 1h 56m 20s elapsed / 2h 54m 30s left ) -> ETA: Fri Mar 08 02:13 XS = 4.8061e+09 pb +- ( 6.46151e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 34m 2s elapsed / 53m 30s left ) -> ETA: Fri Mar 08 01:50  Memory usage increased by 18 MB, now 222 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.76262e+09 pb +- ( 4.55285e+07 pb = 0 % ) Event 250000 ( 15746 s total ) = 1.37178e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_Final_noWeight/1294){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.75482e+09 0 % 4.0635e+07 0.85 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 250000 Errors { From "Hadronization:Pythia8": 9 (250009) -> 0 % } New events { From "Beam_Remnants:Parametrised": 854 (250863) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 854 fails in creating good beam breakups. Remnant Kinematics: 854 errors (no kinematics found) and 164 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 4h 22m 34s on Fri Mar 8 01:45:29 2024 (User: 4h 19m 15s, System: 2m 19s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu1.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Mon Apr 8 13:57:15 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1294 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 22h 34m 6s left ) -> ETA: Tue Apr 09 12:31 XS = 1.33764e-09 pb +- ( 1.33764e-09 pb = 100 % ) Event 2 ( 3s elapsed / 11h 39m 56s left ) -> ETA: Tue Apr 09 01:37 XS = 34097.7 pb +- ( 34097.7 pb = 99 % ) Event 3 ( 3s elapsed / 8h 3m 16s left ) -> ETA: Mon Apr 08 22:00 XS = 11771.6 pb +- ( 11291.7 pb = 95 % ) Event 4 ( 3s elapsed / 6h 8m 41s left ) -> ETA: Mon Apr 08 20:06 XS = 4414.35 pb +- ( 4254.77 pb = 96 % ) Event 5 ( 3s elapsed / 4h 55m 46s left ) -> ETA: Mon Apr 08 18:53 XS = 67122.7 pb +- ( 63300 pb = 94 % ) Event 6 ( 3s elapsed / 4h 9m 56s left ) -> ETA: Mon Apr 08 18:07 XS = 55857.5 pb +- ( 52304.4 pb = 93 % ) Event 7 ( 3s elapsed / 3h 36m 36s left ) -> ETA: Mon Apr 08 17:33 XS = 1.3486e+06 pb +- ( 1.29597e+06 pb = 96 % ) Event 8 ( 3s elapsed / 3h 11m 5s left ) -> ETA: Mon Apr 08 17:08 XS = 2.89163e+08 pb +- ( 2.87869e+08 pb = 99 % ) Event 9 ( 3s elapsed / 2h 51m 41s left ) -> ETA: Mon Apr 08 16:49 XS = 2.78836e+08 pb +- ( 2.7759e+08 pb = 99 % ) Event 10 ( 3s elapsed / 2h 35m 21s left ) -> ETA: Mon Apr 08 16:32 XS = 4.76794e+09 pb +- ( 4.52261e+09 pb = 94 % ) Event 20 ( 4s elapsed / 1h 29m 30s left ) -> ETA: Mon Apr 08 15:26 XS = 3.17152e+09 pb +- ( 2.78872e+09 pb = 87 % ) Event 30 ( 4s elapsed / 1h 6m 26s left ) -> ETA: Mon Apr 08 15:03 XS = 5.50628e+09 pb +- ( 3.02861e+09 pb = 55 % ) Event 40 ( 5s elapsed / 56m 34s left ) -> ETA: Mon Apr 08 14:53 XS = 4.39714e+09 pb +- ( 2.26955e+09 pb = 51 % ) Event 50 ( 5s elapsed / 49m 14s left ) -> ETA: Mon Apr 08 14:46 XS = 4.74591e+09 pb +- ( 2.15602e+09 pb = 45 % ) Event 60 ( 6s elapsed / 46m left ) -> ETA: Mon Apr 08 14:43 XS = 3.697e+09 pb +- ( 1.66153e+09 pb = 44 % ) Event 70 ( 7s elapsed / 42m 54s left ) -> ETA: Mon Apr 08 14:40 XS = 3.43429e+09 pb +- ( 1.53433e+09 pb = 44 % ) Event 80 ( 7s elapsed / 41m 10s left ) -> ETA: Mon Apr 08 14:38 XS = 3.47762e+09 pb +- ( 1.4185e+09 pb = 40 % ) Event 90 ( 8s elapsed / 39m 15s left ) -> ETA: Mon Apr 08 14:36 XS = 2.92662e+09 pb +- ( 1.17762e+09 pb = 40 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 100 ( 9s elapsed / 37m 53s left ) -> ETA: Mon Apr 08 14:35 XS = 2.91631e+09 pb +- ( 1.09243e+09 pb = 37 % ) Event 200 ( 15s elapsed / 31m 40s left ) -> ETA: Mon Apr 08 14:29 XS = 3.17713e+09 pb +- ( 9.01436e+08 pb = 28 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4895e+03,-0.0000e+00,-0.0000e+00, 3.4895e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 db 33 ( -> 4) [( 5.0033e+00,-0.0000e+00,-0.0000e+00, 5.0033e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 [I] 1 G 49 ( -> 6) [( 4.0812e+00,-0.0000e+00,-0.0000e+00, 4.0812e+00), p^2= 0.0000e+00, m= 0.0000e+00] (638,634) 0 and Particle List with 3 elements [I] 1 G 6 ( -> 2) [( 9.9647e+02,-0.0000e+00,-0.0000e+00,-9.9647e+02), p^2= 0.0000e+00, m= 0.0000e+00] (611,615) 1 [I] 1 u 34 ( -> 4) [( 3.9793e+02,-0.0000e+00,-0.0000e+00,-3.9793e+02), p^2= 0.0000e+00, m= 3.0000e-01] (615, 0) 1 [I] 1 u 50 ( -> 6) [( 1.4766e+03,-0.0000e+00,-0.0000e+00,-1.4766e+03), p^2= 0.0000e+00, m= 3.0000e-01] (639, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 66 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,638) 0 [B] 1 d 44 ( -> ) [( 3.0946e-01, 0.0000e+00, 0.0000e+00, 3.0943e-01), p^2= 1.6882e-05, m= 0.0000e+00] (634, 0) 0 [B] 1 d 65 ( -> ) [( 1.1172e+00, 0.0000e+00, 0.0000e+00, 1.1171e+00), p^2= 2.2006e-04, m= 0.0000e+00] (603, 0) 0 and Particle List with 2 elements [B] 1 ud_0 67 ( -> ) [( 4.5163e+02, 0.0000e+00, 0.0000e+00,-4.5163e+02), p^2= 8.1565e-02, m= 5.7933e-01] ( 0,639) 1 [B] 1 ub 62 ( -> ) [( 1.7737e+02, 0.0000e+00, 0.0000e+00,-1.7737e+02), p^2= 1.2581e-02, m= 0.0000e+00] ( 0,611) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 300 ( 21s elapsed / 29m 24s left ) -> ETA: Mon Apr 08 14:27 XS = 3.02986e+09 pb +- ( 7.15338e+08 pb = 23 % ) Event 400 ( 27s elapsed / 27m 54s left ) -> ETA: Mon Apr 08 14:25 XS = 3.78385e+09 pb +- ( 8.57592e+08 pb = 22 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 c 6 ( -> 2) [( 3.2265e+03,-0.0000e+00,-0.0000e+00, 3.2265e+03), p^2= 0.0000e+00, m= 1.8000e+00] (601, 0) 0 [I] 1 G 41 ( -> 4) [( 6.3662e+01,-0.0000e+00,-0.0000e+00, 6.3662e+01), p^2= 0.0000e+00, m= 0.0000e+00] (643,601) 0 [I] 1 G 53 ( -> 6) [( 1.2188e+02,-0.0000e+00,-0.0000e+00, 1.2188e+02), p^2= 0.0000e+00, m= 0.0000e+00] (630,656) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4955e+03,-0.0000e+00,-0.0000e+00,-3.4955e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1 [I] 1 db 42 ( -> 4) [( 2.7936e+00,-0.0000e+00,-0.0000e+00,-2.7936e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,603) 1 [I] 1 G 54 ( -> 6) [( 1.0132e-01,-0.0000e+00,-0.0000e+00,-1.0132e-01), p^2= 0.0000e+00, m= 0.0000e+00] (653,646) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 62 ( -> ) [( 5.8341e+01, 0.0000e+00, 0.0000e+00, 5.8341e+01), p^2= 9.7338e-03, m= 5.7933e-01] ( 0,643) 0 [B] 1 cb 36 ( -> ) [( 1.2215e+01, 0.0000e+00, 0.0000e+00, 1.2215e+01), p^2= 4.2672e-04, m= 0.0000e+00] ( 0,630) 0 [B] 1 u 61 ( -> ) [( 1.7397e+01, 0.0000e+00, 0.0000e+00, 1.7397e+01), p^2= 8.6554e-04, m= 0.0000e+00] (656, 0) 0 and Particle List with 3 elements [B] 1 uu_1 64 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,653) 1 [B] 1 d 48 ( -> ) [( 4.6005e-01, 0.0000e+00, 0.0000e+00,-4.6002e-01), p^2= 3.3587e-05, m= 0.0000e+00] (646, 0) 1 [B] 1 d 63 ( -> ) [( 1.1249e+00, 0.0000e+00, 0.0000e+00,-1.1248e+00), p^2= 2.0081e-04, m= 0.0000e+00] (601, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 32s elapsed / 26m 55s left ) -> ETA: Mon Apr 08 14:24 XS = 3.958e+09 pb +- ( 7.88023e+08 pb = 19 % ) Event 600 ( 39s elapsed / 26m 28s left ) -> ETA: Mon Apr 08 14:24 XS = 3.84247e+09 pb +- ( 6.80886e+08 pb = 17 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 3.4156e+03,-0.0000e+00,-0.0000e+00, 3.4156e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 0 [I] 1 G 60 ( -> 4) [( 2.5974e+01,-0.0000e+00,-0.0000e+00, 2.5974e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,649) 0 [I] 1 G 73 ( -> 6) [( 5.6508e+01,-0.0000e+00,-0.0000e+00, 5.6508e+01), p^2= 0.0000e+00, m= 0.0000e+00] (613,604) 0 [I] 1 sb 85 ( -> 8) [( 5.1544e-01,-0.0000e+00,-0.0000e+00, 5.1544e-01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,646) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 2.5876e+03,-0.0000e+00,-0.0000e+00,-2.5876e+03), p^2= 0.0000e+00, m= 0.0000e+00] (613,603) 1 [I] 1 db 61 ( -> 4) [( 1.4785e+01,-0.0000e+00,-0.0000e+00,-1.4785e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,646) 1 [I] 1 db 74 ( -> 6) [( 6.8705e+01,-0.0000e+00,-0.0000e+00,-6.8705e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,613) 1 [I] 1 s 86 ( -> 8) [( 1.0271e+02,-0.0000e+00,-0.0000e+00,-1.0271e+02), p^2= 0.0000e+00, m= 4.0000e-01] (646, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 97 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,613) 0 [B] 1 s 92 ( -> ) [( 5.0080e-01, 0.0000e+00, 0.0000e+00, 5.0075e-01), p^2= 4.5766e-05, m= 0.0000e+00] (649, 0) 0 [B] 1 d 96 ( -> ) [( 8.7751e-01, 0.0000e+00, 0.0000e+00, 8.7743e-01), p^2= 1.4052e-04, m= 0.0000e+00] (646, 0) 0 and Particle List with 5 elements [B] 1 uu_1 99 ( -> ) [( 5.9716e+02, 0.0000e+00, 0.0000e+00,-5.9716e+02), p^2= 1.2352e-01, m= 7.7133e-01] ( 0,659) 1 [B] 1 sb 93 ( -> ) [( 2.8861e+01, 0.0000e+00, 0.0000e+00,-2.8861e+01), p^2= 2.8853e-04, m= 0.0000e+00] ( 0,669) 1 [B] 1 d 80 ( -> ) [( 6.4430e+00, 0.0000e+00, 0.0000e+00,-6.4430e+00), p^2= 1.4379e-05, m= 0.0000e+00] (659, 0) 1 [B] 1 d 68 ( -> ) [( 2.0745e+00, 0.0000e+00, 0.0000e+00,-2.0745e+00), p^2= 1.4907e-06, m= 0.0000e+00] (603, 0) 1 [B] 1 d 98 ( -> ) [( 9.1611e+01, 0.0000e+00, 0.0000e+00,-9.1611e+01), p^2= 2.9071e-03, m= 0.0000e+00] (669, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 700 ( 45s elapsed / 26m 21s left ) -> ETA: Mon Apr 08 14:24 XS = 3.67777e+09 pb +- ( 6.02171e+08 pb = 16 % ) Event 800 ( 51s elapsed / 26m 1s left ) -> ETA: Mon Apr 08 14:24 XS = 3.76358e+09 pb +- ( 5.66854e+08 pb = 15 % ) Event 900 ( 57s elapsed / 25m 42s left ) -> ETA: Mon Apr 08 14:23 XS = 3.67737e+09 pb +- ( 5.15701e+08 pb = 14 % ) Event 1000 ( 1m 4s elapsed / 25m 46s left ) -> ETA: Mon Apr 08 14:24 XS = 3.57384e+09 pb +- ( 4.7419e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 G 6 ( -> 2) [( 3.4795e+03,-0.0000e+00,-0.0000e+00, 3.4795e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 0 [I] 1 G 60 ( -> 4) [( 8.8117e+00,-0.0000e+00,-0.0000e+00, 8.8117e+00), p^2= 0.0000e+00, m= 0.0000e+00] (661,604) 0 [I] 1 db 77 ( -> 6) [( 3.4495e+00,-0.0000e+00,-0.0000e+00, 3.4495e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,661) 0 [I] 1 G 91 ( -> 8) [( 1.3899e+00, 0.0000e+00, 0.0000e+00, 1.3899e+00), p^2= 0.0000e+00, m= 0.0000e+00] (675,673) 0 [I] 1 u 100 ( -> 10) [( 4.9639e+00,-0.0000e+00,-0.0000e+00, 4.9639e+00), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 s 112 ( -> 12) [( 4.8974e-01,-0.0000e+00,-0.0000e+00, 4.8974e-01), p^2= 0.0000e+00, m= 4.0000e-01] (685, 0) 0 and Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 1.1215e+03,-0.0000e+00,-0.0000e+00,-1.1215e+03), p^2= 0.0000e+00, m= 0.0000e+00] (642,646) 1 [I] 1 G 61 ( -> 4) [( 4.0521e+02,-0.0000e+00,-0.0000e+00,-4.0521e+02), p^2= 0.0000e+00, m= 0.0000e+00] (646,656) 1 [I] 1 u 78 ( -> 6) [( 5.1138e+02,-0.0000e+00,-0.0000e+00,-5.1138e+02), p^2= 0.0000e+00, m= 3.0000e-01] (656, 0) 1 [I] 1 d 92 ( -> 8) [( 1.1389e+01, 0.0000e+00, 0.0000e+00,-1.1389e+01), p^2= 0.0000e+00, m= 3.0000e-01] (674, 0) 1 [I] 1 G 101 ( -> 10) [( 2.8551e+02,-0.0000e+00,-0.0000e+00,-2.8551e+02), p^2= 0.0000e+00, m= 0.0000e+00] (681,602) 1 [I] 1 G 113 ( -> 12) [( 4.5155e+02,-0.0000e+00,-0.0000e+00,-4.5155e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,674) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 125 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,685) 0 [B] 1 sb 122 ( -> ) [( 4.7643e-01, 0.0000e+00, 0.0000e+00, 4.7639e-01), p^2= 4.0390e-05, m= 0.0000e+00] ( 0,675) 0 [B] 1 d 86 ( -> ) [( 9.3708e-01, 0.0000e+00, 0.0000e+00, 9.3699e-01), p^2= 1.5625e-04, m= 0.0000e+00] (673, 0) 0 and Particle List with 2 elements [B] 1 ud_0 126 ( -> ) [( 2.8463e+02, 0.0000e+00, 0.0000e+00,-2.8463e+02), p^2= 2.8562e-02, m= 5.7933e-01] ( 0,681) 1 [B] 1 db 95 ( -> ) [( 4.2881e+02, 0.0000e+00, 0.0000e+00,-4.2881e+02), p^2= 6.4829e-02, m= 0.0000e+00] ( 0,642) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.4760e+03,-0.0000e+00,-0.0000e+00, 3.4760e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 0 [I] 1 ub 44 ( -> 4) [( 1.6049e+01,-0.0000e+00,-0.0000e+00, 1.6049e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,603) 0 [I] 1 G 62 ( -> 6) [( 4.1892e+00,-0.0000e+00,-0.0000e+00, 4.1892e+00), p^2= 0.0000e+00, m= 0.0000e+00] (644,643) 0 [I] 1 G 75 ( -> 8) [( 2.1544e+00,-0.0000e+00,-0.0000e+00, 2.1544e+00), p^2= 0.0000e+00, m= 0.0000e+00] (601,655) 0 and Particle List with 4 elements [I] 1 u 6 ( -> 2) [( 3.1376e+03,-0.0000e+00,-0.0000e+00,-3.1376e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 45 ( -> 4) [( 1.9705e+02,-0.0000e+00,-0.0000e+00,-1.9705e+02), p^2= 0.0000e+00, m= 0.0000e+00] (640,601) 1 [I] 1 G 63 ( -> 6) [( 9.4481e+01,-0.0000e+00,-0.0000e+00,-9.4481e+01), p^2= 0.0000e+00, m= 0.0000e+00] (645,640) 1 [I] 1 G 76 ( -> 8) [( 4.8491e+01,-0.0000e+00,-0.0000e+00,-4.8491e+01), p^2= 0.0000e+00, m= 0.0000e+00] (653,645) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 86 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,644) 0 [B] 1 u 57 ( -> ) [( 9.6962e-01, 0.0000e+00, 0.0000e+00, 9.6955e-01), p^2= 1.5033e-04, m= 0.0000e+00] (643, 0) 0 [B] 1 u 85 ( -> ) [( 6.0341e-01, 0.0000e+00, 0.0000e+00, 6.0336e-01), p^2= 5.8218e-05, m= 0.0000e+00] (655, 0) 0 and Particle List with 1 elements [B] 1 ud_0 87 ( -> ) [( 2.2350e+01, 0.0000e+00, 0.0000e+00,-2.2350e+01), p^2= 5.6217e-03, m= 5.7933e-01] ( 0,653) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 2m 7s elapsed / 24m 29s left ) -> ETA: Mon Apr 08 14:23  Memory usage increased by 16 MB, now 147 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.09705e+09 pb +- ( 3.6665e+08 pb = 8 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 3m 11s elapsed / 23m 23s left ) -> ETA: Mon Apr 08 14:23 XS = 4.27738e+09 pb +- ( 3.20547e+08 pb = 7 % ) Event 4000 ( 4m 15s elapsed / 22m 22s left ) -> ETA: Mon Apr 08 14:23  Memory usage increased by 47 MB, now 195 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.29937e+09 pb +- ( 2.87565e+08 pb = 6 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 5000 ( 5m 21s elapsed / 21m 27s left ) -> ETA: Mon Apr 08 14:24 XS = 4.51527e+09 pb +- ( 2.70773e+08 pb = 5 % ) Event 6000 ( 6m 26s elapsed / 20m 24s left ) -> ETA: Mon Apr 08 14:24 XS = 4.38695e+09 pb +- ( 2.3924e+08 pb = 5 % ) Event 7000 ( 7m 30s elapsed / 19m 18s left ) -> ETA: Mon Apr 08 14:24 XS = 4.43002e+09 pb +- ( 2.19034e+08 pb = 4 % ) Event 8000 ( 8m 35s elapsed / 18m 14s left ) -> ETA: Mon Apr 08 14:24 XS = 4.31742e+09 pb +- ( 1.99329e+08 pb = 4 % ) Event 9000 ( 9m 43s elapsed / 17m 17s left ) -> ETA: Mon Apr 08 14:24 XS = 4.3343e+09 pb +- ( 1.87432e+08 pb = 4 % ) Event 10000 ( 10m 50s elapsed / 16m 15s left ) -> ETA: Mon Apr 08 14:24 XS = 4.31631e+09 pb +- ( 1.77126e+08 pb = 4 % ) Event 20000 ( 21m 43s elapsed / 5m 25s left ) -> ETA: Mon Apr 08 14:24 XS = 4.56653e+09 pb +- ( 1.27147e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 25000 ( 1632 s total ) = 1.324e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmod_noWeight/1294){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.58933e+09 0 % 1.18667e+08 2.58 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 25000 Errors { From "Hadronization:Pythia8": 1 (25001) -> 0 % } New events { From "Beam_Remnants:Parametrised": 95 (25096) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 95 fails in creating good beam breakups. Remnant Kinematics: 95 errors (no kinematics found) and 19 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 27m 16s on Mon Apr 8 14:24:31 2024 (User: 27m 9s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Apr 9 21:39:45 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1294 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 3d 22h 43m 16s left ) -> ETA: Sat Apr 13 20:23 XS = 1.33764e-09 pb +- ( 1.33764e-09 pb = 100 % ) Event 2 ( 3s elapsed / 1d 23h 46m 36s left ) -> ETA: Thu Apr 11 21:26 XS = 7064.57 pb +- ( 7064.57 pb = 99 % ) Event 3 ( 3s elapsed / 1d 8h 18m 49s left ) -> ETA: Thu Apr 11 05:58 XS = 3532.29 pb +- ( 3532.29 pb = 99 % ) Event 4 ( 3s elapsed / 1d 1h 20m 46s left ) -> ETA: Wed Apr 10 23:00 XS = 1412.91 pb +- ( 1412.91 pb = 99 % ) Event 5 ( 3s elapsed / 20h 23m 16s left ) -> ETA: Wed Apr 10 18:03 XS = 3.1516e+09 pb +- ( 3.1516e+09 pb = 99 % ) Event 6 ( 3s elapsed / 17h 2m 9s left ) -> ETA: Wed Apr 10 14:42 XS = 2.59544e+09 pb +- ( 2.59544e+09 pb = 99 % ) Event 7 ( 3s elapsed / 14h 48m 1s left ) -> ETA: Wed Apr 10 12:27 XS = 2.67841e+09 pb +- ( 2.44841e+09 pb = 91 % ) Event 8 ( 3s elapsed / 13h 19m 56s left ) -> ETA: Wed Apr 10 10:59 XS = 2.41057e+09 pb +- ( 2.20483e+09 pb = 91 % ) Event 9 ( 3s elapsed / 12h 7m 42s left ) -> ETA: Wed Apr 10 09:47 XS = 2.09615e+09 pb +- ( 1.91852e+09 pb = 91 % ) Event 10 ( 3s elapsed / 10h 58m 16s left ) -> ETA: Wed Apr 10 08:38 XS = 1.93059e+09 pb +- ( 1.76556e+09 pb = 91 % ) Event 20 ( 4s elapsed / 6h 23m 15s left ) -> ETA: Wed Apr 10 04:03 XS = 2.89788e+09 pb +- ( 1.52997e+09 pb = 52 % ) Event 30 ( 5s elapsed / 4h 57m 7s left ) -> ETA: Wed Apr 10 02:37 XS = 3.80449e+09 pb +- ( 1.78427e+09 pb = 46 % ) Event 40 ( 5s elapsed / 4h 7m 49s left ) -> ETA: Wed Apr 10 01:47 XS = 4.08445e+09 pb +- ( 1.53613e+09 pb = 37 % ) Event 50 ( 6s elapsed / 3h 45m 13s left ) -> ETA: Wed Apr 10 01:25 XS = 3.29218e+09 pb +- ( 1.23409e+09 pb = 37 % ) Event 60 ( 7s elapsed / 3h 18m 12s left ) -> ETA: Wed Apr 10 00:58 XS = 7.08483e+09 pb +- ( 2.74426e+09 pb = 38 % ) Event 70 ( 7s elapsed / 3h 6m 3s left ) -> ETA: Wed Apr 10 00:46 XS = 6.25499e+09 pb +- ( 2.4047e+09 pb = 38 % ) Event 80 ( 8s elapsed / 2h 53m 11s left ) -> ETA: Wed Apr 10 00:33 XS = 6.20626e+09 pb +- ( 2.15305e+09 pb = 34 % ) Event 90 ( 9s elapsed / 2h 47m 15s left ) -> ETA: Wed Apr 10 00:27 XS = 5.98468e+09 pb +- ( 1.96405e+09 pb = 32 % ) Event 100 ( 9s elapsed / 2h 39m 30s left ) -> ETA: Wed Apr 10 00:19 XS = 5.83163e+09 pb +- ( 1.81555e+09 pb = 31 % ) Event 200 ( 16s elapsed / 2h 18m 28s left ) -> ETA: Tue Apr 09 23:58 XS = 5.38083e+09 pb +- ( 1.20759e+09 pb = 22 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 300 ( 23s elapsed / 2h 11m 6s left ) -> ETA: Tue Apr 09 23:51 XS = 6.52226e+09 pb +- ( 1.57993e+09 pb = 24 % ) Pythia8 hadronisation failed. Event 400 ( 30s elapsed / 2h 5m 9s left ) -> ETA: Tue Apr 09 23:45 XS = 6.0576e+09 pb +- ( 1.30644e+09 pb = 21 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4963e+03,-0.0000e+00,-0.0000e+00, 3.4963e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 u 39 ( -> 4) [( 1.9520e+00,-0.0000e+00,-0.0000e+00, 1.9520e+00), p^2= 0.0000e+00, m= 3.0000e-01] (603, 0) 0 [I] 1 G 49 ( -> 6) [( 7.2905e-01,-0.0000e+00,-0.0000e+00, 7.2905e-01), p^2= 0.0000e+00, m= 0.0000e+00] (645,629) 0 and Particle List with 3 elements [I] 1 G 6 ( -> 2) [( 6.5587e+02,-0.0000e+00,-0.0000e+00,-6.5587e+02), p^2= 0.0000e+00, m= 0.0000e+00] (620,629) 1 [I] 1 G 40 ( -> 4) [( 2.3857e+02,-0.0000e+00,-0.0000e+00,-2.3857e+02), p^2= 0.0000e+00, m= 0.0000e+00] (637,620) 1 [I] 1 u 50 ( -> 6) [( 4.7501e+02,-0.0000e+00,-0.0000e+00,-4.7501e+02), p^2= 0.0000e+00, m= 3.0000e-01] (629, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 59 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,601) 0 [B] 1 G 60 ( -> ) [( 9.8915e-01, 0.0000e+00, 0.0000e+00, 9.8902e-01), p^2= 2.4878e-04, m= 0.0000e+00] (629,645) 0 and Particle List with 1 elements [B] 1 ud_0 61 ( -> ) [( 2.1305e+03, 0.0000e+00, 0.0000e+00,-2.1305e+03), p^2= 5.3590e-01, m= 5.7933e-01] ( 0,637) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 38s elapsed / 2h 6m 43s left ) -> ETA: Tue Apr 09 23:47 XS = 5.13394e+09 pb +- ( 1.04285e+09 pb = 20 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 2.8296e+03,-0.0000e+00,-0.0000e+00, 2.8296e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,606) 0 [I] 1 G 63 ( -> 4) [( 3.5627e+02,-0.0000e+00,-0.0000e+00, 3.5627e+02), p^2= 0.0000e+00, m= 0.0000e+00] (606,665) 0 [I] 1 G 86 ( -> 6) [( 2.8655e+02,-0.0000e+00,-0.0000e+00, 2.8655e+02), p^2= 0.0000e+00, m= 0.0000e+00] (665,681) 0 [I] 1 db 106 ( -> 8) [( 8.4379e-01,-0.0000e+00,-0.0000e+00, 8.4379e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,604) 0 [I] 1 u 122 ( -> 10) [( 2.5313e+01,-0.0000e+00,-0.0000e+00, 2.5313e+01), p^2= 0.0000e+00, m= 3.0000e-01] (681, 0) 0 and Particle List with 5 elements [I] 1 u 6 ( -> 2) [( 1.2735e+03,-0.0000e+00,-0.0000e+00,-1.2735e+03), p^2= 0.0000e+00, m= 3.0000e-01] (636, 0) 1 [I] 1 G 64 ( -> 4) [( 6.2849e+02,-0.0000e+00,-0.0000e+00,-6.2849e+02), p^2= 0.0000e+00, m= 0.0000e+00] (657,636) 1 [I] 1 G 87 ( -> 6) [( 3.0527e+02,-0.0000e+00,-0.0000e+00,-3.0527e+02), p^2= 0.0000e+00, m= 0.0000e+00] (677,657) 1 [I] 1 ub 107 ( -> 8) [( 3.1546e+02,-0.0000e+00,-0.0000e+00,-3.1546e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,677) 1 [I] 1 G 123 ( -> 10) [( 8.0368e+02,-0.0000e+00,-0.0000e+00,-8.0368e+02), p^2= 0.0000e+00, m= 0.0000e+00] (705,692) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 139 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,691) 0 [B] 1 ub 135 ( -> ) [( 5.2329e-01, 0.0000e+00, 0.0000e+00, 5.2324e-01), p^2= 4.7031e-05, m= 0.0000e+00] ( 0,706) 0 [B] 1 d 116 ( -> ) [( 6.0513e-01, 0.0000e+00, 0.0000e+00, 6.0508e-01), p^2= 6.2893e-05, m= 0.0000e+00] (691, 0) 0 [B] 1 d 138 ( -> ) [( 3.3600e-01, 0.0000e+00, 0.0000e+00, 3.3597e-01), p^2= 1.9390e-05, m= 0.0000e+00] (706, 0) 0 and Particle List with 2 elements [B] 1 ud_0 140 ( -> ) [( 1.2150e+02, 0.0000e+00, 0.0000e+00,-1.2150e+02), p^2= 2.1391e-02, m= 5.7933e-01] ( 0,705) 1 [B] 1 u 117 ( -> ) [( 5.2087e+01, 0.0000e+00, 0.0000e+00,-5.2087e+01), p^2= 3.9312e-03, m= 0.0000e+00] (692, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 600 ( 45s elapsed / 2h 5m 42s left ) -> ETA: Tue Apr 09 23:46 XS = 4.84442e+09 pb +- ( 9.08281e+08 pb = 18 % ) Event 700 ( 52s elapsed / 2h 3m 10s left ) -> ETA: Tue Apr 09 23:43 XS = 4.61312e+09 pb +- ( 7.98347e+08 pb = 17 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 6 ( -> 2) [( 4.1975e+02,-0.0000e+00,-0.0000e+00, 4.1975e+02), p^2= 0.0000e+00, m= 0.0000e+00] (627,626) 0 [I] 1 G 52 ( -> 4) [( 1.8797e+02,-0.0000e+00,-0.0000e+00, 1.8797e+02), p^2= 0.0000e+00, m= 0.0000e+00] (641,627) 0 [I] 1 G 80 ( -> 6) [( 2.4556e+02,-0.0000e+00,-0.0000e+00, 2.4556e+02), p^2= 0.0000e+00, m= 0.0000e+00] (679,641) 0 [I] 1 db 108 ( -> 8) [( 4.6151e+02,-0.0000e+00,-0.0000e+00, 4.6151e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,685) 0 [I] 1 G 122 ( -> 10) [( 5.2010e+02,-0.0000e+00,-0.0000e+00, 5.2010e+02), p^2= 0.0000e+00, m= 0.0000e+00] (685,697) 0 [I] 1 G 151 ( -> 12) [( 1.1141e+03,-0.0000e+00,-0.0000e+00, 1.1141e+03), p^2= 0.0000e+00, m= 0.0000e+00] (712,679) 0 [I] 1 G 163 ( -> 14) [( 2.4493e+02,-0.0000e+00,-0.0000e+00, 2.4493e+02), p^2= 0.0000e+00, m= 0.0000e+00] (726,712) 0 and Particle List with 7 elements [I] 1 u 5 ( -> 2) [( 1.4548e+03,-0.0000e+00,-0.0000e+00,-1.4548e+03), p^2= 0.0000e+00, m= 3.0000e-01] (634, 0) 1 [I] 1 u 53 ( -> 4) [( 1.1247e+03,-0.0000e+00,-0.0000e+00,-1.1247e+03), p^2= 0.0000e+00, m= 3.0000e-01] (645, 0) 1 [I] 1 G 81 ( -> 6) [( 3.8639e+02,-0.0000e+00,-0.0000e+00,-3.8639e+02), p^2= 0.0000e+00, m= 0.0000e+00] (667,645) 1 [I] 1 d 109 ( -> 8) [( 2.0499e+00,-0.0000e+00,-0.0000e+00,-2.0499e+00), p^2= 0.0000e+00, m= 3.0000e-01] (684, 0) 1 [I] 1 G 123 ( -> 10) [( 5.1734e+02,-0.0000e+00,-0.0000e+00,-5.1734e+02), p^2= 0.0000e+00, m= 0.0000e+00] (704,684) 1 [I] 1 G 152 ( -> 12) [( 1.0242e+01,-0.0000e+00,-0.0000e+00,-1.0242e+01), p^2= 0.0000e+00, m= 0.0000e+00] (713,704) 1 [I] 1 G 164 ( -> 14) [( 3.1968e+00,-0.0000e+00,-0.0000e+00,-3.1968e+00), p^2= 0.0000e+00, m= 0.0000e+00] (725,713) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 173 ( -> ) [( 2.5634e+02, 0.0000e+00, 0.0000e+00, 2.5634e+02), p^2= 5.3995e-02, m= 5.7933e-01] ( 0,726) 0 [B] 1 d 116 ( -> ) [( 5.9260e-01, 0.0000e+00, 0.0000e+00, 5.9260e-01), p^2= 2.8857e-07, m= 0.0000e+00] (626, 0) 0 [B] 1 u 172 ( -> ) [( 4.9171e+01, 0.0000e+00, 0.0000e+00, 4.9171e+01), p^2= 1.9868e-03, m= 0.0000e+00] (697, 0) 0 and Particle List with 3 elements [B] 1 ud_0 174 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,725) 1 [B] 1 db 117 ( -> ) [( 8.2166e-01, 0.0000e+00, 0.0000e+00,-8.2158e-01), p^2= 1.3288e-04, m= 0.0000e+00] ( 0,667) 1 [B] 1 ub 75 ( -> ) [( 4.5621e-01, 0.0000e+00, 0.0000e+00,-4.5616e-01), p^2= 4.0964e-05, m= 0.0000e+00] ( 0,634) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 800 ( 58s elapsed / 2h 52s left ) -> ETA: Tue Apr 09 23:41 XS = 4.80814e+09 pb +- ( 7.37739e+08 pb = 15 % ) Event 900 ( 1m 5s elapsed / 2h 12s left ) -> ETA: Tue Apr 09 23:41 XS = 4.89303e+09 pb +- ( 6.81577e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 u 6 ( -> 2) [( 4.3647e+02,-0.0000e+00,-0.0000e+00, 4.3647e+02), p^2= 0.0000e+00, m= 3.0000e-01] (610, 0) 0 [I] 1 G 37 ( -> 4) [( 1.2519e+03,-0.0000e+00,-0.0000e+00, 1.2519e+03), p^2= 0.0000e+00, m= 0.0000e+00] (629,610) 0 [I] 1 u 58 ( -> 6) [( 1.1775e+03,-0.0000e+00,-0.0000e+00, 1.1775e+03), p^2= 0.0000e+00, m= 3.0000e-01] (652, 0) 0 [I] 1 u 79 ( -> 8) [( 1.2932e+02,-0.0000e+00,-0.0000e+00, 1.2932e+02), p^2= 0.0000e+00, m= 3.0000e-01] (669, 0) 0 [I] 1 db 92 ( -> 10) [( 2.5074e+02,-0.0000e+00,-0.0000e+00, 2.5074e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,669) 0 [I] 1 db 109 ( -> 12) [( 1.6533e+02,-0.0000e+00,-0.0000e+00, 1.6533e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,683) 0 and Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 3.4691e+03,-0.0000e+00,-0.0000e+00,-3.4691e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 db 38 ( -> 4) [( 9.8747e+00,-0.0000e+00,-0.0000e+00,-9.8747e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 1 [I] 1 G 59 ( -> 6) [( 7.3821e+00,-0.0000e+00,-0.0000e+00,-7.3821e+00), p^2= 0.0000e+00, m= 0.0000e+00] (603,644) 1 [I] 1 G 80 ( -> 8) [( 4.5534e+00,-0.0000e+00,-0.0000e+00,-4.5534e+00), p^2= 0.0000e+00, m= 0.0000e+00] (644,670) 1 [I] 1 G 93 ( -> 10) [( 6.3650e+00,-0.0000e+00,-0.0000e+00,-6.3650e+00), p^2= 0.0000e+00, m= 0.0000e+00] (676,640) 1 [I] 1 G 110 ( -> 12) [( 1.2804e+00,-0.0000e+00,-0.0000e+00,-1.2804e+00), p^2= 0.0000e+00, m= 0.0000e+00] (670,689) 1 and the corresponding remnants are Particle List with 5 elements [B] 1 ud_0 122 ( -> ) [( 5.8757e+01, 0.0000e+00, 0.0000e+00, 5.8757e+01), p^2= 9.7850e-03, m= 5.7933e-01] ( 0,695) 0 [B] 1 d 119 ( -> ) [( 3.1897e-01, 0.0000e+00, 0.0000e+00, 3.1897e-01), p^2= 2.8836e-07, m= 0.0000e+00] (695, 0) 0 [B] 1 d 104 ( -> ) [( 1.0120e+00, 0.0000e+00, 0.0000e+00, 1.0120e+00), p^2= 2.9027e-06, m= 0.0000e+00] (683, 0) 0 [B] 1 ub 87 ( -> ) [( 2.0191e+00, 0.0000e+00, 0.0000e+00, 2.0191e+00), p^2= 1.1554e-05, m= 0.0000e+00] ( 0,652) 0 [B] 1 ub 74 ( -> ) [( 2.6639e+01, 0.0000e+00, 0.0000e+00, 2.6639e+01), p^2= 2.0113e-03, m= 0.0000e+00] ( 0,629) 0 and Particle List with 3 elements [B] 1 ud_0 124 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,676) 1 [B] 1 d 53 ( -> ) [( 4.7503e-01, 0.0000e+00, 0.0000e+00,-4.7499e-01), p^2= 3.7992e-05, m= 0.0000e+00] (640, 0) 1 [B] 1 u 123 ( -> ) [( 1.0189e+00, 0.0000e+00, 0.0000e+00,-1.0188e+00), p^2= 1.7478e-04, m= 0.0000e+00] (689, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 1000 ( 1m 12s elapsed / 1h 59m 26s left ) -> ETA: Tue Apr 09 23:40 XS = 5.13169e+09 pb +- ( 6.50527e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 s 6 ( -> 2) [( 3.3822e+03,-0.0000e+00,-0.0000e+00, 3.3822e+03), p^2= 0.0000e+00, m= 4.0000e-01] (601, 0) 0 [I] 1 G 65 ( -> 4) [( 2.6728e+01,-0.0000e+00,-0.0000e+00, 2.6728e+01), p^2= 0.0000e+00, m= 0.0000e+00] (651,652) 0 [I] 1 G 86 ( -> 6) [( 8.7750e+01,-0.0000e+00,-0.0000e+00, 8.7750e+01), p^2= 0.0000e+00, m= 0.0000e+00] (673,601) 0 [I] 1 G 104 ( -> 8) [( 1.5730e+00,-0.0000e+00,-0.0000e+00, 1.5730e+00), p^2= 0.0000e+00, m= 0.0000e+00] (687,673) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 8.7123e+02,-0.0000e+00,-0.0000e+00,-8.7123e+02), p^2= 0.0000e+00, m= 0.0000e+00] (636,623) 1 [I] 1 G 66 ( -> 4) [( 7.1785e+02,-0.0000e+00,-0.0000e+00,-7.1785e+02), p^2= 0.0000e+00, m= 0.0000e+00] (660,636) 1 [I] 1 G 87 ( -> 6) [( 4.7875e+02,-0.0000e+00,-0.0000e+00,-4.7875e+02), p^2= 0.0000e+00, m= 0.0000e+00] (671,660) 1 [I] 1 G 105 ( -> 8) [( 1.0653e+03,-0.0000e+00,-0.0000e+00,-1.0653e+03), p^2= 0.0000e+00, m= 0.0000e+00] (623,688) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 119 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,687) 0 [B] 1 sb 60 ( -> ) [( 4.1581e-01, 0.0000e+00, 0.0000e+00, 4.1578e-01), p^2= 2.4345e-05, m= 0.0000e+00] ( 0,651) 0 [B] 1 d 118 ( -> ) [( 1.3704e+00, 0.0000e+00, 0.0000e+00, 1.3703e+00), p^2= 2.6445e-04, m= 0.0000e+00] (652, 0) 0 and Particle List with 2 elements [B] 1 uu_1 121 ( -> ) [( 2.0704e+02, 0.0000e+00, 0.0000e+00,-2.0704e+02), p^2= 2.9391e-02, m= 7.7133e-01] ( 0,671) 1 [B] 1 d 120 ( -> ) [( 1.5979e+02, 0.0000e+00, 0.0000e+00,-1.5979e+02), p^2= 1.7508e-02, m= 0.0000e+00] (688, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Pythia8 hadronisation failed. Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 2m 25s elapsed / 1h 58m 25s left ) -> ETA: Tue Apr 09 23:40  Memory usage increased by 16 MB, now 145 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.67935e+09 pb +- ( 4.45167e+08 pb = 9 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 3m 35s elapsed / 1h 55m 59s left ) -> ETA: Tue Apr 09 23:39 XS = 4.3782e+09 pb +- ( 3.30468e+08 pb = 7 % ) Event 4000 ( 4m 47s elapsed / 1h 54m 58s left ) -> ETA: Tue Apr 09 23:39 XS = 4.63453e+09 pb +- ( 2.94894e+08 pb = 6 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 5000 ( 6m 1s elapsed / 1h 54m 24s left ) -> ETA: Tue Apr 09 23:40 XS = 4.50699e+09 pb +- ( 2.57147e+08 pb = 5 % ) Event 6000 ( 7m 12s elapsed / 1h 52m 58s left ) -> ETA: Tue Apr 09 23:40 XS = 4.59371e+09 pb +- ( 2.39978e+08 pb = 5 % ) Event 7000 ( 8m 22s elapsed / 1h 51m 19s left ) -> ETA: Tue Apr 09 23:39 XS = 4.59805e+09 pb +- ( 2.3309e+08 pb = 5 % ) Event 8000 ( 9m 37s elapsed / 1h 50m 37s left ) -> ETA: Tue Apr 09 23:40 XS = 4.50883e+09 pb +- ( 2.11626e+08 pb = 4 % ) Event 9000 ( 10m 50s elapsed / 1h 49m 33s left ) -> ETA: Tue Apr 09 23:40 XS = 4.39609e+09 pb +- ( 1.96248e+08 pb = 4 % ) Event 10000 ( 12m 4s elapsed / 1h 48m 40s left ) -> ETA: Tue Apr 09 23:40 XS = 4.44629e+09 pb +- ( 1.88717e+08 pb = 4 % ) Event 20000 ( 24m 15s elapsed / 1h 37m 3s left ) -> ETA: Tue Apr 09 23:41 XS = 4.62844e+09 pb +- ( 1.43128e+08 pb = 3 % ) Event 30000 ( 36m 39s elapsed / 1h 25m 31s left ) -> ETA: Tue Apr 09 23:41 XS = 4.61685e+09 pb +- ( 1.12035e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 40000 ( 48m 43s elapsed / 1h 13m 5s left ) -> ETA: Tue Apr 09 23:41 XS = 4.66016e+09 pb +- ( 9.99377e+07 pb = 2 % ) Pythia8 hadronisation failed. Event 50000 ( 1h 53s elapsed / 1h 53s left ) -> ETA: Tue Apr 09 23:41  Memory usage increased by 61 MB, now 206 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.65027e+09 pb +- ( 8.94355e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 60000 ( 1h 13m 2s elapsed / 48m 41s left ) -> ETA: Tue Apr 09 23:41 XS = 4.74281e+09 pb +- ( 8.49921e+07 pb = 1 % ) Event 70000 ( 1h 25m 17s elapsed / 36m 33s left ) -> ETA: Tue Apr 09 23:41 XS = 4.7953e+09 pb +- ( 8.01212e+07 pb = 1 % ) Event 80000 ( 1h 37m 41s elapsed / 24m 25s left ) -> ETA: Tue Apr 09 23:41 XS = 4.78623e+09 pb +- ( 7.40577e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 90000 ( 1h 49m 53s elapsed / 12m 12s left ) -> ETA: Tue Apr 09 23:41 XS = 4.76688e+09 pb +- ( 6.88129e+07 pb = 1 % ) Event 100000 ( 7332 s total ) = 1.17834e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1294){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.7686e+09 0 % 6.49923e+07 1.36 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100000 Errors { From "Hadronization:Pythia8": 9 (100009) -> 0 % } New events { From "Beam_Remnants:Parametrised": 487 (100496) -> 0.4 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 487 fails in creating good beam breakups. Remnant Kinematics: 487 errors (no kinematics found) and 127 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 2h 2m 16s on Tue Apr 9 23:42:02 2024 (User: 2h 1m 36s, System: 1s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Apr 10 10:14:46 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1294 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 40d 12h 13m 16s left ) -> ETA: Mon May 20 22:28 XS = 1.33764e-09 pb +- ( 1.33764e-09 pb = 100 % ) Event 2 ( 3s elapsed / 20d 18h 36m 36s left ) -> ETA: Wed May 01 04:51 XS = 0.983544 pb +- ( 0.983544 pb = 99 % ) Event 3 ( 3s elapsed / 13d 23h 11m 3s left ) -> ETA: Wed Apr 24 09:25 XS = 1.34521e+06 pb +- ( 1.34521e+06 pb = 99 % ) Event 4 ( 3s elapsed / 10d 16h 14m 56s left ) -> ETA: Sun Apr 21 02:29 XS = 1.15143e+07 pb +- ( 1.024e+07 pb = 88 % ) Event 5 ( 3s elapsed / 8d 14h 39m 56s left ) -> ETA: Fri Apr 19 00:54 XS = 1.60665e+08 pb +- ( 1.49438e+08 pb = 93 % ) Event 6 ( 3s elapsed / 7d 8h 51m 2s left ) -> ETA: Wed Apr 17 19:05 XS = 1.35947e+08 pb +- ( 1.26597e+08 pb = 93 % ) Event 7 ( 3s elapsed / 6d 11h 57m 4s left ) -> ETA: Tue Apr 16 22:11 XS = 1.17821e+08 pb +- ( 1.0981e+08 pb = 93 % ) Event 8 ( 4s elapsed / 5d 19h 34m 55s left ) -> ETA: Tue Apr 16 05:49 XS = 1.10457e+08 pb +- ( 1.02981e+08 pb = 93 % ) Event 9 ( 4s elapsed / 5d 5h 55m 29s left ) -> ETA: Mon Apr 15 16:10 XS = 1.0396e+08 pb +- ( 9.6952e+07 pb = 93 % ) Event 10 ( 4s elapsed / 4d 18h 59m 55s left ) -> ETA: Mon Apr 15 05:14 XS = 9.81844e+07 pb +- ( 9.15895e+07 pb = 93 % ) Event 20 ( 4s elapsed / 2d 17h 58m 15s left ) -> ETA: Sat Apr 13 04:13 XS = 1.40174e+09 pb +- ( 1.25356e+09 pb = 89 % ) Event 30 ( 5s elapsed / 2d 1h 26m 34s left ) -> ETA: Fri Apr 12 11:41 XS = 3.18075e+09 pb +- ( 1.52633e+09 pb = 47 % ) Event 40 ( 5s elapsed / 1d 16h 29m 4s left ) -> ETA: Fri Apr 12 02:44 XS = 3.83715e+09 pb +- ( 1.7726e+09 pb = 46 % ) Event 50 ( 6s elapsed / 1d 10h 59m 53s left ) -> ETA: Thu Apr 11 21:14 XS = 3.16451e+09 pb +- ( 1.37721e+09 pb = 43 % ) Event 60 ( 7s elapsed / 1d 9h 17m 6s left ) -> ETA: Thu Apr 11 19:32 XS = 2.61074e+09 pb +- ( 1.14053e+09 pb = 43 % ) Event 70 ( 7s elapsed / 1d 6h 45m 6s left ) -> ETA: Thu Apr 11 17:00 XS = 3.32276e+09 pb +- ( 1.37383e+09 pb = 41 % ) Event 80 ( 8s elapsed / 1d 4h 46m 56s left ) -> ETA: Thu Apr 11 15:01 XS = 2.69946e+09 pb +- ( 1.09954e+09 pb = 40 % ) Event 90 ( 9s elapsed / 1d 3h 46m 31s left ) -> ETA: Thu Apr 11 14:01 XS = 3.43388e+09 pb +- ( 1.35302e+09 pb = 39 % ) Event 100 ( 9s elapsed / 1d 2h 21m 30s left ) -> ETA: Thu Apr 11 12:36 XS = 3.62356e+09 pb +- ( 1.28357e+09 pb = 35 % ) Event 200 ( 16s elapsed / 23h 11m 23s left ) -> ETA: Thu Apr 11 09:26 XS = 4.38999e+09 pb +- ( 1.25648e+09 pb = 28 % ) Event 300 ( 23s elapsed / 21h 51m 49s left ) -> ETA: Thu Apr 11 08:07 XS = 4.67143e+09 pb +- ( 1.11897e+09 pb = 23 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.4550e+03,-0.0000e+00,-0.0000e+00, 3.4550e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,603) 0 [I] 1 ub 78 ( -> 4) [( 4.9263e+00,-0.0000e+00,-0.0000e+00, 4.9263e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,671) 0 [I] 1 s 94 ( -> 6) [( 1.6729e+01,-0.0000e+00,-0.0000e+00, 1.6729e+01), p^2= 0.0000e+00, m= 4.0000e-01] (671, 0) 0 [I] 1 G 117 ( -> 8) [( 2.1423e+01,-0.0000e+00,-0.0000e+00, 2.1423e+01), p^2= 0.0000e+00, m= 0.0000e+00] (691,701) 0 and Particle List with 4 elements [I] 1 u 6 ( -> 2) [( 2.7524e+03,-0.0000e+00,-0.0000e+00,-2.7524e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 79 ( -> 4) [( 9.2939e+01,-0.0000e+00,-0.0000e+00,-9.2939e+01), p^2= 0.0000e+00, m= 0.0000e+00] (670,601) 1 [I] 1 G 95 ( -> 6) [( 2.2638e+02,-0.0000e+00,-0.0000e+00,-2.2638e+02), p^2= 0.0000e+00, m= 0.0000e+00] (689,670) 1 [I] 1 G 118 ( -> 8) [( 1.2971e+02,-0.0000e+00,-0.0000e+00,-1.2971e+02), p^2= 0.0000e+00, m= 0.0000e+00] (698,689) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 132 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,602) 0 [B] 1 sb 112 ( -> ) [( 6.6527e-01, 0.0000e+00, 0.0000e+00, 6.6523e-01), p^2= 5.8445e-05, m= 0.0000e+00] ( 0,691) 0 [B] 1 u 89 ( -> ) [( 8.0873e-01, 0.0000e+00, 0.0000e+00, 8.0867e-01), p^2= 8.6367e-05, m= 0.0000e+00] (603, 0) 0 [B] 1 d 131 ( -> ) [( 4.3071e-01, 0.0000e+00, 0.0000e+00, 4.3068e-01), p^2= 2.4497e-05, m= 0.0000e+00] (701, 0) 0 and Particle List with 1 elements [B] 1 ud_0 133 ( -> ) [( 2.9854e+02, 0.0000e+00, 0.0000e+00,-2.9854e+02), p^2= 7.5092e-02, m= 5.7933e-01] ( 0,698) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 400 ( 30s elapsed / 21h 1m 34s left ) -> ETA: Thu Apr 11 07:16 XS = 5.12095e+09 pb +- ( 9.75564e+08 pb = 19 % ) Event 500 ( 36s elapsed / 20h 32m 23s left ) -> ETA: Thu Apr 11 06:47 XS = 5.00194e+09 pb +- ( 8.18333e+08 pb = 16 % ) Event 600 ( 43s elapsed / 20h 15m 22s left ) -> ETA: Thu Apr 11 06:30 XS = 5.08278e+09 pb +- ( 7.70669e+08 pb = 15 % ) Event 700 ( 51s elapsed / 20h 20m 20s left ) -> ETA: Thu Apr 11 06:36 XS = 4.76196e+09 pb +- ( 6.77995e+08 pb = 14 % ) Event 800 ( 57s elapsed / 19h 57m 47s left ) -> ETA: Thu Apr 11 06:13 XS = 4.84622e+09 pb +- ( 6.49612e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 5 ( -> 2) [( 3.4635e+03,-0.0000e+00,-0.0000e+00, 3.4635e+03), p^2= 0.0000e+00, m= 0.0000e+00] (609,611) 0 [I] 1 G 40 ( -> 4) [( 3.0840e+01,-0.0000e+00,-0.0000e+00, 3.0840e+01), p^2= 0.0000e+00, m= 0.0000e+00] (611,643) 0 [I] 1 G 51 ( -> 6) [( 3.3622e+00,-0.0000e+00,-0.0000e+00, 3.3622e+00), p^2= 0.0000e+00, m= 0.0000e+00] (657,609) 0 [I] 1 sb 69 ( -> 8) [( 5.7375e-01,-0.0000e+00,-0.0000e+00, 5.7375e-01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,615) 0 [I] 1 G 82 ( -> 10) [( 1.0572e-01,-0.0000e+00,-0.0000e+00, 1.0572e-01), p^2= 0.0000e+00, m= 0.0000e+00] (615,666) 0 and Particle List with 5 elements [I] 1 G 6 ( -> 2) [( 4.3735e+02,-0.0000e+00,-0.0000e+00,-4.3735e+02), p^2= 0.0000e+00, m= 0.0000e+00] (634,615) 1 [I] 1 u 41 ( -> 4) [( 7.8909e+00,-0.0000e+00,-0.0000e+00,-7.8909e+00), p^2= 0.0000e+00, m= 3.0000e-01] (640, 0) 1 [I] 1 db 52 ( -> 6) [( 1.4596e+03,-0.0000e+00,-0.0000e+00,-1.4596e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,640) 1 [I] 1 d 70 ( -> 8) [( 5.0282e+02,-0.0000e+00,-0.0000e+00,-5.0282e+02), p^2= 0.0000e+00, m= 3.0000e-01] (615, 0) 1 [I] 1 u 83 ( -> 10) [( 1.0888e+03,-0.0000e+00,-0.0000e+00,-1.0888e+03), p^2= 0.0000e+00, m= 3.0000e-01] (666, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 91 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,657) 0 [B] 1 s 76 ( -> ) [( 8.1805e-01, 0.0000e+00, 0.0000e+00, 8.1798e-01), p^2= 1.0549e-04, m= 0.0000e+00] (643, 0) 0 [B] 1 u 90 ( -> ) [( 7.7758e-01, 0.0000e+00, 0.0000e+00, 7.7752e-01), p^2= 9.5309e-05, m= 0.0000e+00] (666, 0) 0 and Particle List with 4 elements [B] 1 uu_1 93 ( -> ) [( 1.4819e+00, 0.0000e+00, 0.0000e+00,-1.4819e+00), p^2= 1.5690e-04, m= 7.7133e-01] ( 0,666) 1 [B] 1 ub 87 ( -> ) [( 5.6541e-01, 0.0000e+00, 0.0000e+00,-5.6539e-01), p^2= 2.2841e-05, m= 0.0000e+00] ( 0,677) 1 [B] 1 ub 46 ( -> ) [( 9.7380e-01, 0.0000e+00, 0.0000e+00,-9.7377e-01), p^2= 6.7754e-05, m= 0.0000e+00] ( 0,634) 1 [B] 1 d 92 ( -> ) [( 4.9926e-01, 0.0000e+00, 0.0000e+00,-4.9924e-01), p^2= 1.7809e-05, m= 0.0000e+00] (677, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 4s elapsed / 19h 52m 37s left ) -> ETA: Thu Apr 11 06:08 XS = 4.8487e+09 pb +- ( 6.01317e+08 pb = 12 % ) Event 1000 ( 1m 10s elapsed / 19h 38m 59s left ) -> ETA: Thu Apr 11 05:55 XS = 4.57106e+09 pb +- ( 5.48232e+08 pb = 11 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 d 6 ( -> 2) [( 2.3637e+03,-0.0000e+00,-0.0000e+00, 2.3637e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 57 ( -> 4) [( 1.1279e+03,-0.0000e+00,-0.0000e+00, 1.1279e+03), p^2= 0.0000e+00, m= 0.0000e+00] (645,601) 0 [I] 1 G 75 ( -> 6) [( 6.3611e+00,-0.0000e+00,-0.0000e+00, 6.3611e+00), p^2= 0.0000e+00, m= 0.0000e+00] (663,645) 0 [I] 1 db 88 ( -> 8) [( 6.9890e-01,-0.0000e+00,-0.0000e+00, 6.9890e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,663) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 2.1927e+03,-0.0000e+00,-0.0000e+00,-2.1927e+03), p^2= 0.0000e+00, m= 0.0000e+00] (606,631) 1 [I] 1 G 58 ( -> 4) [( 6.8222e+01,-0.0000e+00,-0.0000e+00,-6.8222e+01), p^2= 0.0000e+00, m= 0.0000e+00] (631,654) 1 [I] 1 db 76 ( -> 6) [( 3.4101e+02,-0.0000e+00,-0.0000e+00,-3.4101e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,666) 1 [I] 1 G 89 ( -> 8) [( 6.2456e+02,-0.0000e+00,-0.0000e+00,-6.2456e+02), p^2= 0.0000e+00, m= 0.0000e+00] (681,606) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 98 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,687) 0 [B] 1 d 95 ( -> ) [( 1.3286e+00, 0.0000e+00, 0.0000e+00, 1.3284e+00), p^2= 3.3416e-04, m= 0.0000e+00] (687, 0) 0 and Particle List with 3 elements [B] 1 uu_1 100 ( -> ) [( 2.6903e+02, 0.0000e+00, 0.0000e+00,-2.6903e+02), p^2= 6.6552e-02, m= 7.7133e-01] ( 0,681) 1 [B] 1 d 83 ( -> ) [( 1.4786e+00, 0.0000e+00, 0.0000e+00,-1.4786e+00), p^2= 2.0104e-06, m= 0.0000e+00] (654, 0) 1 [B] 1 d 99 ( -> ) [( 3.0381e+00, 0.0000e+00, 0.0000e+00,-3.0381e+00), p^2= 8.4873e-06, m= 0.0000e+00] (666, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 7.8646e+02,-0.0000e+00,-0.0000e+00, 7.8646e+02), p^2= 0.0000e+00, m= 0.0000e+00] (639,637) 0 [I] 1 G 55 ( -> 4) [( 9.0367e+02,-0.0000e+00,-0.0000e+00, 9.0367e+02), p^2= 0.0000e+00, m= 0.0000e+00] (637,651) 0 [I] 1 u 73 ( -> 6) [( 1.3252e+03,-0.0000e+00,-0.0000e+00, 1.3252e+03), p^2= 0.0000e+00, m= 3.0000e-01] (651, 0) 0 [I] 1 G 88 ( -> 8) [( 2.9958e+02,-0.0000e+00,-0.0000e+00, 2.9958e+02), p^2= 0.0000e+00, m= 0.0000e+00] (668,639) 0 and Particle List with 4 elements [I] 1 sb 6 ( -> 2) [( 3.4567e+03,-0.0000e+00,-0.0000e+00,-3.4567e+03), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,601) 1 [I] 1 db 56 ( -> 4) [( 1.1997e+00,-0.0000e+00,-0.0000e+00,-1.1997e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,642) 1 [I] 1 G 74 ( -> 6) [( 1.3399e+01,-0.0000e+00,-0.0000e+00,-1.3399e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,659) 1 [I] 1 G 89 ( -> 8) [( 2.6577e+01,-0.0000e+00,-0.0000e+00,-2.6577e+01), p^2= 0.0000e+00, m= 0.0000e+00] (639,658) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 95 ( -> ) [( 1.8505e+02, 0.0000e+00, 0.0000e+00, 1.8505e+02), p^2= 4.6546e-02, m= 5.7933e-01] ( 0,668) 0 and Particle List with 4 elements [B] 1 uu_1 97 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,639) 1 [B] 1 d 68 ( -> ) [( 3.4301e-01, 0.0000e+00, 0.0000e+00,-3.4299e-01), p^2= 1.3817e-05, m= 0.0000e+00] (658, 0) 1 [B] 1 s 50 ( -> ) [( 9.0202e-01, 0.0000e+00, 0.0000e+00,-9.0197e-01), p^2= 9.5553e-05, m= 0.0000e+00] (642, 0) 1 [B] 1 d 96 ( -> ) [( 8.9672e-01, 0.0000e+00, 0.0000e+00,-8.9667e-01), p^2= 9.4433e-05, m= 0.0000e+00] (659, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 u 6 ( -> 2) [( 2.8304e+03,-0.0000e+00,-0.0000e+00, 2.8304e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 77 ( -> 4) [( 2.3608e+02,-0.0000e+00,-0.0000e+00, 2.3608e+02), p^2= 0.0000e+00, m= 0.0000e+00] (669,601) 0 [I] 1 sb 89 ( -> 6) [( 3.0841e+02,-0.0000e+00,-0.0000e+00, 3.0841e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,669) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4928e+03,-0.0000e+00,-0.0000e+00,-3.4928e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1 [I] 1 G 78 ( -> 4) [( 5.4565e+00,-0.0000e+00,-0.0000e+00,-5.4565e+00), p^2= 0.0000e+00, m= 0.0000e+00] (670,603) 1 [I] 1 s 90 ( -> 6) [( 4.4305e-01,-0.0000e+00,-0.0000e+00,-4.4305e-01), p^2= 0.0000e+00, m= 4.0000e-01] (676, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 99 ( -> ) [( 9.0714e+01, 0.0000e+00, 0.0000e+00, 9.0714e+01), p^2= 1.6548e-02, m= 5.7933e-01] ( 0,680) 0 [B] 1 s 95 ( -> ) [( 3.4368e+01, 0.0000e+00, 0.0000e+00, 3.4368e+01), p^2= 2.3752e-03, m= 0.0000e+00] (680, 0) 0 and Particle List with 3 elements [B] 1 uu_1 101 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,676) 1 [B] 1 sb 96 ( -> ) [( 4.9142e-01, 0.0000e+00, 0.0000e+00,-4.9137e-01), p^2= 4.7649e-05, m= 0.0000e+00] ( 0,670) 1 [B] 1 d 100 ( -> ) [( 7.8332e-01, 0.0000e+00, 0.0000e+00,-7.8324e-01), p^2= 1.2107e-04, m= 0.0000e+00] (601, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 2m 17s elapsed / 19h 27s left ) -> ETA: Thu Apr 11 05:17 XS = 4.52164e+09 pb +- ( 4.08663e+08 pb = 9 % ) Event 3000 ( 3m 21s elapsed / 18h 37m 44s left ) -> ETA: Thu Apr 11 04:55 XS = 4.54819e+09 pb +- ( 3.27805e+08 pb = 7 % ) Pythia8 hadronisation failed. Event 4000 ( 4m 26s elapsed / 18h 26m left ) -> ETA: Thu Apr 11 04:45 XS = 4.43952e+09 pb +- ( 2.83204e+08 pb = 6 % ) Event 5000 ( 5m 31s elapsed / 18h 19m 38s left ) -> ETA: Thu Apr 11 04:39 XS = 4.54207e+09 pb +- ( 2.5846e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 6000 ( 6m 38s elapsed / 18h 19m 30s left ) -> ETA: Thu Apr 11 04:40 XS = 4.66478e+09 pb +- ( 2.35555e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 7000 ( 7m 45s elapsed / 18h 21m 1s left ) -> ETA: Thu Apr 11 04:43 XS = 4.73317e+09 pb +- ( 2.25496e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Event 8000 ( 9m 19s elapsed / 19h 16m 24s left ) -> ETA: Thu Apr 11 05:40  Memory usage increased by 76 MB, now 207 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.68195e+09 pb +- ( 2.09806e+08 pb = 4 % ) Event 9000 ( 10m 25s elapsed / 19h 7m 48s left ) -> ETA: Thu Apr 11 05:33 XS = 4.55534e+09 pb +- ( 1.93827e+08 pb = 4 % ) Event 10000 ( 11m 31s elapsed / 19h 37s left ) -> ETA: Thu Apr 11 05:26 XS = 4.65229e+09 pb +- ( 1.9375e+08 pb = 4 % ) Event 20000 ( 22m 41s elapsed / 18h 32m 3s left ) -> ETA: Thu Apr 11 05:09 XS = 4.66788e+09 pb +- ( 1.39252e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 30000 ( 33m 49s elapsed / 18h 13m 34s left ) -> ETA: Thu Apr 11 05:02 XS = 4.64885e+09 pb +- ( 1.14513e+08 pb = 2 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 40000 ( 45m 6s elapsed / 18h 2m 46s left ) -> ETA: Thu Apr 11 05:02 XS = 4.69724e+09 pb +- ( 9.88996e+07 pb = 2 % ) Event 50000 ( 56m 14s elapsed / 17h 48m 44s left ) -> ETA: Thu Apr 11 04:59 XS = 4.70164e+09 pb +- ( 8.7942e+07 pb = 1 % ) Event 60000 ( 1h 7m 43s elapsed / 17h 41m 4s left ) -> ETA: Thu Apr 11 05:03 XS = 4.71492e+09 pb +- ( 8.07794e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 70000 ( 1h 18m 52s elapsed / 17h 27m 51s left ) -> ETA: Thu Apr 11 05:01 XS = 4.79297e+09 pb +- ( 7.77131e+07 pb = 1 % ) Event 80000 ( 1h 30m 9s elapsed / 17h 16m 51s left ) -> ETA: Thu Apr 11 05:01 XS = 4.78703e+09 pb +- ( 7.23573e+07 pb = 1 % ) Event 90000 ( 1h 41m 20s elapsed / 17h 4m 36s left ) -> ETA: Thu Apr 11 05:00 XS = 4.80087e+09 pb +- ( 6.82814e+07 pb = 1 % ) Event 100000 ( 1h 52m 35s elapsed / 16h 53m 17s left ) -> ETA: Thu Apr 11 05:00 XS = 4.8114e+09 pb +- ( 6.56064e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 40m 17s elapsed / 14h 41m 11s left ) -> ETA: Thu Apr 11 04:36 XS = 4.83994e+09 pb +- ( 4.71633e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 300000 ( 5h 25m 26s elapsed / 12h 39m 22s left ) -> ETA: Thu Apr 11 04:19  Memory usage increased by 28 MB, now 236 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.81814e+09 pb +- ( 3.80399e+07 pb = 0 % ) Pythia8 hadronisation failed. WARNING: last allowed error message from 'Hadronize' Pythia8 hadronisation failed. Event 400000 ( 7h 11m 20s elapsed / 10h 47m 1s left ) -> ETA: Thu Apr 11 04:13 XS = 4.83038e+09 pb +- ( 3.28072e+07 pb = 0 % ) Event 500000 ( 8h 59m elapsed / 8h 59m left ) -> ETA: Thu Apr 11 04:12  Memory usage increased by 18 MB, now 254 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.83874e+09 pb +- ( 2.95113e+07 pb = 0 % ) Event 600000 ( 10h 47m 7s elapsed / 7h 11m 25s left ) -> ETA: Thu Apr 11 04:13 XS = 4.8384e+09 pb +- ( 2.68624e+07 pb = 0 % ) Event 700000 ( 12h 30m 59s elapsed / 5h 21m 51s left ) -> ETA: Thu Apr 11 04:07  Memory usage increased by 19 MB, now 274 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.84735e+09 pb +- ( 2.49984e+07 pb = 0 % ) Event 800000 ( 14h 13m 40s elapsed / 3h 33m 25s left ) -> ETA: Thu Apr 11 04:01 XS = 4.84563e+09 pb +- ( 2.33473e+07 pb = 0 % ) Event 900000 ( 15h 55m 32s elapsed / 1h 46m 10s left ) -> ETA: Thu Apr 11 03:56 XS = 4.84413e+09 pb +- ( 2.19519e+07 pb = 0 % ) Event 1000000 ( 63751 s total ) = 1.35527e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_noWeight/1294){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.83661e+09 0 % 2.08563e+07 0.43 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 1000000 Errors { From "Hadronization:Pythia8": 64 (1000064) -> 0 % } New events { From "Beam_Remnants:Parametrised": 3611 (1003675) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Error messages from 'Hadronize' exceeded frequency limit: 64/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 3611 fails in creating good beam breakups. Remnant Kinematics: 3611 errors (no kinematics found) and 641 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 17h 42m 36s on Thu Apr 11 03:57:23 2024 (User: 17h 33m 48s, System: 2m 47s, Children User: 0s, Children System: 0s)