Welcome to Sherpa, Daniel Reichelt on ip3-cpu3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Mar 7 21:22:55 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1268 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 9s elapsed / 26d 1h 41m 30s left ) -> ETA: Wed Apr 03 00:04 XS = 3.39727e+08 pb +- ( 3.39727e+08 pb = 100 % ) Event 2 ( 9s elapsed / 13d 2h 34m 50s left ) -> ETA: Wed Mar 20 23:58 XS = 2.74464e+08 pb +- ( 2.71123e+08 pb = 98 % ) Event 3 ( 9s elapsed / 8d 17h 57m 4s left ) -> ETA: Sat Mar 16 15:20 XS = 2.2879e+08 pb +- ( 2.26034e+08 pb = 98 % ) Event 4 ( 9s elapsed / 6d 13h 59m left ) -> ETA: Thu Mar 14 11:22 XS = 1.96106e+08 pb +- ( 1.93809e+08 pb = 98 % ) Event 5 ( 9s elapsed / 5d 6h 31m 30s left ) -> ETA: Wed Mar 13 03:54 XS = 1.6273e+10 pb +- ( 1.60778e+10 pb = 98 % ) Event 6 ( 9s elapsed / 4d 9h 54m left ) -> ETA: Tue Mar 12 07:17 XS = 1.44649e+10 pb +- ( 1.42941e+10 pb = 98 % ) Event 7 ( 9s elapsed / 3d 19h 45m 47s left ) -> ETA: Mon Mar 11 17:08 XS = 1.18349e+10 pb +- ( 1.16983e+10 pb = 98 % ) Event 8 ( 9s elapsed / 3d 8h 22m 45s left ) -> ETA: Mon Mar 11 05:45 XS = 1.10087e+10 pb +- ( 1.0711e+10 pb = 97 % ) Event 9 ( 9s elapsed / 2d 23h 40m 46s left ) -> ETA: Sun Mar 10 21:03 XS = 1.0229e+10 pb +- ( 9.88345e+09 pb = 96 % ) Event 10 ( 9s elapsed / 2d 17h 8m 10s left ) -> ETA: Sun Mar 10 14:31 XS = 8.86516e+09 pb +- ( 8.56901e+09 pb = 96 % ) Event 20 ( 9s elapsed / 1d 9h 44m 50s left ) -> ETA: Sat Mar 09 07:08 XS = 6.46282e+09 pb +- ( 3.83499e+09 pb = 59 % ) Event 30 ( 10s elapsed / 23h 51m 46s left ) -> ETA: Fri Mar 08 21:14 XS = 5.14179e+09 pb +- ( 2.72785e+09 pb = 53 % ) Event 40 ( 10s elapsed / 18h 44m 49s left ) -> ETA: Fri Mar 08 16:08 XS = 6.82552e+09 pb +- ( 2.87084e+09 pb = 42 % ) Event 50 ( 11s elapsed / 15h 54m 48s left ) -> ETA: Fri Mar 08 13:18 XS = 5.69815e+09 pb +- ( 2.30341e+09 pb = 40 % ) Event 60 ( 11s elapsed / 13h 48m 16s left ) -> ETA: Fri Mar 08 11:11 XS = 5.2821e+09 pb +- ( 2.02684e+09 pb = 38 % ) Event 70 ( 12s elapsed / 12h 10m 44s left ) -> ETA: Fri Mar 08 09:33 XS = 6.50258e+09 pb +- ( 2.11336e+09 pb = 32 % ) Event 80 ( 13s elapsed / 11h 18m 56s left ) -> ETA: Fri Mar 08 08:42 XS = 5.75799e+09 pb +- ( 1.87761e+09 pb = 32 % ) Event 90 ( 13s elapsed / 10h 30m 19s left ) -> ETA: Fri Mar 08 07:53 XS = 5.00015e+09 pb +- ( 1.55521e+09 pb = 31 % ) Event 100 ( 14s elapsed / 9h 55m 35s left ) -> ETA: Fri Mar 08 07:18 XS = 4.73834e+09 pb +- ( 1.42749e+09 pb = 30 % ) Event 200 ( 19s elapsed / 6h 53m left ) -> ETA: Fri Mar 08 04:16 XS = 7.26743e+09 pb +- ( 2.19119e+09 pb = 30 % ) Event 300 ( 25s elapsed / 5h 47m 38s left ) -> ETA: Fri Mar 08 03:11 XS = 5.91163e+09 pb +- ( 1.51985e+09 pb = 25 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 2.3630e+03,-0.0000e+00,-0.0000e+00, 2.3630e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 0 [I] 1 G 40 ( -> 4) [( 1.4140e+02,-0.0000e+00,-0.0000e+00, 1.4140e+02), p^2= 0.0000e+00, m= 0.0000e+00] (643,605) 0 and Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 3.4950e+03,-0.0000e+00,-0.0000e+00,-3.4950e+03), p^2= 0.0000e+00, m= 0.0000e+00] (608,606) 1 [I] 1 ub 41 ( -> 4) [( 3.6906e+00,-0.0000e+00,-0.0000e+00,-3.6906e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,608) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 53 ( -> ) [( 5.4987e+02, 0.0000e+00, 0.0000e+00, 5.4987e+02), p^2= 7.6385e-02, m= 5.7933e-01] ( 0,643) 0 [B] 1 u 52 ( -> ) [( 4.4577e+02, 0.0000e+00, 0.0000e+00, 4.4577e+02), p^2= 5.0201e-02, m= 0.0000e+00] (607, 0) 0 and Particle List with 3 elements [B] 1 uu_1 55 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,646) 1 [B] 1 u 49 ( -> ) [( 3.2263e-01, 0.0000e+00, 0.0000e+00,-3.2259e-01), p^2= 1.9947e-05, m= 0.0000e+00] (646, 0) 1 [B] 1 d 54 ( -> ) [( 9.8984e-01, 0.0000e+00, 0.0000e+00,-9.8974e-01), p^2= 1.8776e-04, m= 0.0000e+00] (606, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 400 ( 31s elapsed / 5h 26m 33s left ) -> ETA: Fri Mar 08 02:50 XS = 4.66088e+09 pb +- ( 1.09056e+09 pb = 23 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 u 5 ( -> 2) [( 1.6704e+03,-0.0000e+00,-0.0000e+00, 1.6704e+03), p^2= 0.0000e+00, m= 3.0000e-01] (636, 0) 0 [I] 1 d 56 ( -> 4) [( 9.3084e+00,-0.0000e+00,-0.0000e+00, 9.3084e+00), p^2= 0.0000e+00, m= 3.0000e-01] (649, 0) 0 [I] 1 G 73 ( -> 6) [( 1.9423e+02,-0.0000e+00,-0.0000e+00, 1.9423e+02), p^2= 0.0000e+00, m= 0.0000e+00] (660,649) 0 [I] 1 u 91 ( -> 8) [( 1.6232e+03,-0.0000e+00,-0.0000e+00, 1.6232e+03), p^2= 0.0000e+00, m= 3.0000e-01] (673, 0) 0 [I] 1 d 117 ( -> 10) [( 1.0446e+00,-0.0000e+00,-0.0000e+00, 1.0446e+00), p^2= 0.0000e+00, m= 3.0000e-01] (686, 0) 0 and Particle List with 5 elements [I] 1 G 6 ( -> 2) [( 5.0908e+02,-0.0000e+00,-0.0000e+00,-5.0908e+02), p^2= 0.0000e+00, m= 0.0000e+00] (639,618) 1 [I] 1 G 57 ( -> 4) [( 1.1418e+02,-0.0000e+00,-0.0000e+00,-1.1418e+02), p^2= 0.0000e+00, m= 0.0000e+00] (618,651) 1 [I] 1 u 74 ( -> 6) [( 8.8830e+01,-0.0000e+00,-0.0000e+00,-8.8830e+01), p^2= 0.0000e+00, m= 3.0000e-01] (651, 0) 1 [I] 1 u 92 ( -> 8) [( 5.0905e+02,-0.0000e+00,-0.0000e+00,-5.0905e+02), p^2= 0.0000e+00, m= 3.0000e-01] (676, 0) 1 [I] 1 G 118 ( -> 10) [( 4.9275e+02,-0.0000e+00,-0.0000e+00,-4.9275e+02), p^2= 0.0000e+00, m= 0.0000e+00] (683,676) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 128 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,686) 0 [B] 1 db 125 ( -> ) [( 9.2527e-01, 0.0000e+00, 0.0000e+00, 9.2521e-01), p^2= 1.1641e-04, m= 0.0000e+00] ( 0,673) 0 [B] 1 ub 111 ( -> ) [( 3.4971e-01, 0.0000e+00, 0.0000e+00, 3.4969e-01), p^2= 1.6629e-05, m= 0.0000e+00] ( 0,660) 0 [B] 1 db 68 ( -> ) [( 5.7478e-01, 0.0000e+00, 0.0000e+00, 5.7475e-01), p^2= 4.4923e-05, m= 0.0000e+00] ( 0,636) 0 and Particle List with 2 elements [B] 1 ud_0 129 ( -> ) [( 1.4360e+03, 0.0000e+00, 0.0000e+00,-1.4360e+03), p^2= 2.9042e-01, m= 5.7933e-01] ( 0,683) 1 [B] 1 ub 112 ( -> ) [( 3.5006e+02, 0.0000e+00, 0.0000e+00,-3.5006e+02), p^2= 1.7257e-02, m= 0.0000e+00] ( 0,639) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 37s elapsed / 5h 12m 7s left ) -> ETA: Fri Mar 08 02:35 XS = 5.07802e+09 pb +- ( 9.76968e+08 pb = 19 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 600 ( 43s elapsed / 4h 59m 37s left ) -> ETA: Fri Mar 08 02:23 XS = 5.01494e+09 pb +- ( 8.50338e+08 pb = 16 % ) Event 700 ( 50s elapsed / 4h 57m 1s left ) -> ETA: Fri Mar 08 02:20 XS = 4.66267e+09 pb +- ( 7.43654e+08 pb = 15 % ) Event 800 ( 56s elapsed / 4h 52m 8s left ) -> ETA: Fri Mar 08 02:16 XS = 4.76213e+09 pb +- ( 6.98529e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 9.4940e+02,-0.0000e+00,-0.0000e+00, 9.4940e+02), p^2= 0.0000e+00, m= 0.0000e+00] (636,637) 0 [I] 1 G 60 ( -> 4) [( 4.2770e+02,-0.0000e+00,-0.0000e+00, 4.2770e+02), p^2= 0.0000e+00, m= 0.0000e+00] (666,636) 0 [I] 1 u 84 ( -> 6) [( 2.2425e+02,-0.0000e+00,-0.0000e+00, 2.2425e+02), p^2= 0.0000e+00, m= 3.0000e-01] (637, 0) 0 [I] 1 G 107 ( -> 8) [( 3.3007e+02,-0.0000e+00,-0.0000e+00, 3.3007e+02), p^2= 0.0000e+00, m= 0.0000e+00] (689,666) 0 [I] 1 u 122 ( -> 10) [( 1.6187e+02,-0.0000e+00,-0.0000e+00, 1.6187e+02), p^2= 0.0000e+00, m= 3.0000e-01] (693, 0) 0 [I] 1 sb 137 ( -> 12) [( 1.0664e+02,-0.0000e+00,-0.0000e+00, 1.0664e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,693) 0 and Particle List with 6 elements [I] 1 u 6 ( -> 2) [( 1.9867e+03,-0.0000e+00,-0.0000e+00,-1.9867e+03), p^2= 0.0000e+00, m= 3.0000e-01] (640, 0) 1 [I] 1 u 61 ( -> 4) [( 1.3663e+03,-0.0000e+00,-0.0000e+00,-1.3663e+03), p^2= 0.0000e+00, m= 3.0000e-01] (662, 0) 1 [I] 1 G 85 ( -> 6) [( 1.2912e+02,-0.0000e+00,-0.0000e+00,-1.2912e+02), p^2= 0.0000e+00, m= 0.0000e+00] (677,662) 1 [I] 1 s 108 ( -> 8) [( 4.9938e-01,-0.0000e+00,-0.0000e+00,-4.9938e-01), p^2= 0.0000e+00, m= 4.0000e-01] (684, 0) 1 [I] 1 d 123 ( -> 10) [( 1.5657e+01,-0.0000e+00,-0.0000e+00,-1.5657e+01), p^2= 0.0000e+00, m= 3.0000e-01] (694, 0) 1 [I] 1 G 138 ( -> 12) [( 2.0021e-01,-0.0000e+00,-0.0000e+00,-2.0021e-01), p^2= 0.0000e+00, m= 0.0000e+00] (706,694) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 145 ( -> ) [( 6.8103e+02, 0.0000e+00, 0.0000e+00, 6.8103e+02), p^2= 8.9733e-02, m= 5.7933e-01] ( 0,708) 0 [B] 1 s 142 ( -> ) [( 9.9768e-01, 0.0000e+00, 0.0000e+00, 9.9768e-01), p^2= 1.9258e-07, m= 0.0000e+00] (708, 0) 0 [B] 1 ub 131 ( -> ) [( 6.1805e+02, 0.0000e+00, 0.0000e+00, 6.1805e+02), p^2= 7.3903e-02, m= 0.0000e+00] ( 0,689) 0 and Particle List with 4 elements [B] 1 ud_0 146 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,706) 1 [B] 1 db 132 ( -> ) [( 3.2945e-01, 0.0000e+00, 0.0000e+00,-3.2942e-01), p^2= 1.7525e-05, m= 0.0000e+00] ( 0,684) 1 [B] 1 sb 117 ( -> ) [( 7.2159e-01, 0.0000e+00, 0.0000e+00,-7.2153e-01), p^2= 8.4075e-05, m= 0.0000e+00] ( 0,677) 1 [B] 1 ub 79 ( -> ) [( 5.0666e-01, 0.0000e+00, 0.0000e+00,-5.0662e-01), p^2= 4.1450e-05, m= 0.0000e+00] ( 0,640) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 2s elapsed / 4h 48m 49s left ) -> ETA: Fri Mar 08 02:12 XS = 4.78809e+09 pb +- ( 6.44257e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 d 6 ( -> 2) [( 2.7208e+02,-0.0000e+00,-0.0000e+00, 2.7208e+02), p^2= 0.0000e+00, m= 3.0000e-01] (634, 0) 0 [I] 1 G 40 ( -> 4) [( 9.2796e+01,-0.0000e+00,-0.0000e+00, 9.2796e+01), p^2= 0.0000e+00, m= 0.0000e+00] (640,634) 0 [I] 1 d 51 ( -> 6) [( 8.6314e+01,-0.0000e+00,-0.0000e+00, 8.6314e+01), p^2= 0.0000e+00, m= 3.0000e-01] (639, 0) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4896e+03,-0.0000e+00,-0.0000e+00,-3.4896e+03), p^2= 0.0000e+00, m= 0.0000e+00] (612,610) 1 [I] 1 G 41 ( -> 4) [( 8.2766e+00,-0.0000e+00,-0.0000e+00,-8.2766e+00), p^2= 0.0000e+00, m= 0.0000e+00] (610,642) 1 [I] 1 ub 52 ( -> 6) [( 8.2340e-01,-0.0000e+00,-0.0000e+00,-8.2340e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,651) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 61 ( -> ) [( 2.0427e+03, 0.0000e+00, 0.0000e+00, 2.0427e+03), p^2= 3.4426e-01, m= 5.7933e-01] ( 0,640) 0 [B] 1 db 56 ( -> ) [( 3.4074e-01, 0.0000e+00, 0.0000e+00, 3.4074e-01), p^2= 9.5789e-09, m= 0.0000e+00] ( 0,652) 0 [B] 1 db 35 ( -> ) [( 3.4928e-01, 0.0000e+00, 0.0000e+00, 3.4928e-01), p^2= 1.0065e-08, m= 0.0000e+00] ( 0,639) 0 [B] 1 u 60 ( -> ) [( 1.0054e+03, 0.0000e+00, 0.0000e+00, 1.0054e+03), p^2= 8.3391e-02, m= 0.0000e+00] (652, 0) 0 and Particle List with 3 elements [B] 1 uu_1 63 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,612) 1 [B] 1 u 57 ( -> ) [( 3.7959e-01, 0.0000e+00, 0.0000e+00,-3.7955e-01), p^2= 2.7194e-05, m= 0.0000e+00] (642, 0) 1 [B] 1 d 62 ( -> ) [( 9.5306e-01, 0.0000e+00, 0.0000e+00,-9.5297e-01), p^2= 1.7143e-04, m= 0.0000e+00] (651, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 1000 ( 1m 9s elapsed / 4h 49m 27s left ) -> ETA: Fri Mar 08 02:13 XS = 4.49536e+09 pb +- ( 5.8752e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4878e+03,-0.0000e+00,-0.0000e+00, 3.4878e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 G 43 ( -> 4) [( 8.5463e+00,-0.0000e+00,-0.0000e+00, 8.5463e+00), p^2= 0.0000e+00, m= 0.0000e+00] (633,601) 0 [I] 1 db 54 ( -> 6) [( 2.3636e+00,-0.0000e+00,-0.0000e+00, 2.3636e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,633) 0 and Particle List with 3 elements [I] 1 G 6 ( -> 2) [( 8.0006e+02,-0.0000e+00,-0.0000e+00,-8.0006e+02), p^2= 0.0000e+00, m= 0.0000e+00] (620,623) 1 [I] 1 G 44 ( -> 4) [( 8.0898e+01,-0.0000e+00,-0.0000e+00,-8.0898e+01), p^2= 0.0000e+00, m= 0.0000e+00] (637,620) 1 [I] 1 u 55 ( -> 6) [( 1.5199e+03,-0.0000e+00,-0.0000e+00,-1.5199e+03), p^2= 0.0000e+00, m= 3.0000e-01] (623, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 66 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,648) 0 [B] 1 d 62 ( -> ) [( 3.0379e-01, 0.0000e+00, 0.0000e+00, 3.0376e-01), p^2= 1.7671e-05, m= 0.0000e+00] (648, 0) 0 [B] 1 u 65 ( -> ) [( 1.0098e+00, 0.0000e+00, 0.0000e+00, 1.0097e+00), p^2= 1.9524e-04, m= 0.0000e+00] (603, 0) 0 and Particle List with 1 elements [B] 1 ud_0 67 ( -> ) [( 1.0991e+03, 0.0000e+00, 0.0000e+00,-1.0991e+03), p^2= 2.7647e-01, m= 5.7933e-01] ( 0,637) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 2m 19s elapsed / 4h 48m 37s left ) -> ETA: Fri Mar 08 02:13  Memory usage increased by 17 MB, now 145 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.80771e+09 pb +- ( 4.56286e+08 pb = 9 % ) Event 3000 ( 3m 25s elapsed / 4h 42m 28s left ) -> ETA: Fri Mar 08 02:08 XS = 4.95174e+09 pb +- ( 3.97232e+08 pb = 8 % ) Event 4000 ( 4m 30s elapsed / 4h 37m 35s left ) -> ETA: Fri Mar 08 02:05 XS = 4.98018e+09 pb +- ( 3.63466e+08 pb = 7 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 5000 ( 5m 40s elapsed / 4h 37m 57s left ) -> ETA: Fri Mar 08 02:06 XS = 4.60205e+09 pb +- ( 2.99895e+08 pb = 6 % ) Pythia8 hadronisation failed. Event 6000 ( 6m 45s elapsed / 4h 35m 8s left ) -> ETA: Fri Mar 08 02:04 XS = 4.59794e+09 pb +- ( 2.70723e+08 pb = 5 % ) Event 7000 ( 7m 54s elapsed / 4h 34m 32s left ) -> ETA: Fri Mar 08 02:05 XS = 4.57616e+09 pb +- ( 2.44682e+08 pb = 5 % ) Event 8000 ( 9m 2s elapsed / 4h 33m 26s left ) -> ETA: Fri Mar 08 02:05 XS = 4.55531e+09 pb +- ( 2.25672e+08 pb = 4 % ) Event 9000 ( 10m 9s elapsed / 4h 32m 12s left ) -> ETA: Fri Mar 08 02:05 XS = 4.53579e+09 pb +- ( 2.11224e+08 pb = 4 % ) Event 10000 ( 11m 15s elapsed / 4h 30m 23s left ) -> ETA: Fri Mar 08 02:04 XS = 4.59197e+09 pb +- ( 1.99307e+08 pb = 4 % ) Event 20000 ( 22m 28s elapsed / 4h 18m 28s left ) -> ETA: Fri Mar 08 02:03 XS = 4.62249e+09 pb +- ( 1.38299e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 30000 ( 33m 27s elapsed / 4h 5m 24s left ) -> ETA: Fri Mar 08 02:01 XS = 4.60752e+09 pb +- ( 1.09609e+08 pb = 2 % ) Event 40000 ( 44m 28s elapsed / 3h 53m 31s left ) -> ETA: Fri Mar 08 02:01 XS = 4.67886e+09 pb +- ( 9.71861e+07 pb = 2 % ) Event 50000 ( 55m 28s elapsed / 3h 41m 54s left ) -> ETA: Fri Mar 08 02:00 XS = 4.72441e+09 pb +- ( 8.73362e+07 pb = 1 % ) Event 60000 ( 1h 6m 42s elapsed / 3h 31m 14s left ) -> ETA: Fri Mar 08 02:00  Memory usage increased by 67 MB, now 212 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.74042e+09 pb +- ( 8.053e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 70000 ( 1h 17m 59s elapsed / 3h 20m 32s left ) -> ETA: Fri Mar 08 02:01 XS = 4.75549e+09 pb +- ( 7.52715e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 80000 ( 1h 29m 8s elapsed / 3h 9m 24s left ) -> ETA: Fri Mar 08 02:01 XS = 4.77455e+09 pb +- ( 7.01748e+07 pb = 1 % ) Event 90000 ( 1h 39m 17s elapsed / 2h 56m 30s left ) -> ETA: Fri Mar 08 01:58 XS = 4.74271e+09 pb +- ( 6.59082e+07 pb = 1 % ) Event 100000 ( 1h 49m 18s elapsed / 2h 43m 57s left ) -> ETA: Fri Mar 08 01:56 XS = 4.71971e+09 pb +- ( 6.22587e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 29m 38s elapsed / 52m 24s left ) -> ETA: Fri Mar 08 01:45 XS = 4.75819e+09 pb +- ( 4.43682e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 250000 ( 15584 s total ) = 1.38604e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_Final_noWeight/1268){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.74552e+09 0 % 3.97201e+07 0.83 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 250000 Errors { From "Hadronization:Pythia8": 14 (250014) -> 0 % } New events { From "Beam_Remnants:Parametrised": 787 (250801) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 787 fails in creating good beam breakups. Remnant Kinematics: 787 errors (no kinematics found) and 150 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 4h 19m 52s on Fri Mar 8 01:42:47 2024 (User: 4h 18m 58s, System: 2s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu1.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Mon Apr 8 13:57:19 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1268 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 23h 28m 16s left ) -> ETA: Tue Apr 09 13:25 XS = 3.39727e+08 pb +- ( 3.39727e+08 pb = 100 % ) Event 2 ( 3s elapsed / 11h 58m 41s left ) -> ETA: Tue Apr 09 01:56 XS = 2.74464e+08 pb +- ( 2.71123e+08 pb = 98 % ) Event 3 ( 3s elapsed / 8h 29s left ) -> ETA: Mon Apr 08 21:57 XS = 3.6351e+10 pb +- ( 3.60772e+10 pb = 99 % ) Event 4 ( 3s elapsed / 6h 4m 31s left ) -> ETA: Mon Apr 08 20:01 XS = 2.18323e+10 pb +- ( 2.16561e+10 pb = 99 % ) Event 5 ( 3s elapsed / 4h 58m 16s left ) -> ETA: Mon Apr 08 18:55 XS = 1.81936e+10 pb +- ( 1.80494e+10 pb = 99 % ) Event 6 ( 3s elapsed / 4h 15m 29s left ) -> ETA: Mon Apr 08 18:12 XS = 1.47619e+10 pb +- ( 1.44282e+10 pb = 97 % ) Event 7 ( 3s elapsed / 3h 43m 9s left ) -> ETA: Mon Apr 08 17:40 XS = 1.30252e+10 pb +- ( 1.27332e+10 pb = 97 % ) Event 8 ( 3s elapsed / 3h 20m 27s left ) -> ETA: Mon Apr 08 17:17 XS = 1.05442e+10 pb +- ( 1.03107e+10 pb = 97 % ) Event 9 ( 3s elapsed / 2h 59m 6s left ) -> ETA: Mon Apr 08 16:56 XS = 1.07877e+10 pb +- ( 9.83386e+09 pb = 91 % ) Event 10 ( 3s elapsed / 2h 45m 46s left ) -> ETA: Mon Apr 08 16:43 XS = 9.49314e+09 pb +- ( 8.6588e+09 pb = 91 % ) Event 20 ( 4s elapsed / 1h 33m 40s left ) -> ETA: Mon Apr 08 15:31 XS = 5.1468e+09 pb +- ( 4.51653e+09 pb = 87 % ) Event 30 ( 5s elapsed / 1h 11m 43s left ) -> ETA: Mon Apr 08 15:09 XS = 4.6612e+09 pb +- ( 3.27187e+09 pb = 70 % ) Event 40 ( 5s elapsed / 1h 19s left ) -> ETA: Mon Apr 08 14:57 XS = 4.56631e+09 pb +- ( 2.39278e+09 pb = 52 % ) Event 50 ( 6s elapsed / 52m 8s left ) -> ETA: Mon Apr 08 14:49 XS = 3.7313e+09 pb +- ( 1.8189e+09 pb = 48 % ) Event 60 ( 6s elapsed / 47m 27s left ) -> ETA: Mon Apr 08 14:44 XS = 3.18464e+09 pb +- ( 1.54421e+09 pb = 48 % ) Event 70 ( 7s elapsed / 46m 3s left ) -> ETA: Mon Apr 08 14:43 XS = 2.83426e+09 pb +- ( 1.34901e+09 pb = 47 % ) Event 80 ( 8s elapsed / 43m 11s left ) -> ETA: Mon Apr 08 14:40 XS = 2.64286e+09 pb +- ( 1.1711e+09 pb = 44 % ) Event 90 ( 8s elapsed / 41m 19s left ) -> ETA: Mon Apr 08 14:38 XS = 2.47005e+09 pb +- ( 1.07047e+09 pb = 43 % ) Event 100 ( 9s elapsed / 39m 45s left ) -> ETA: Mon Apr 08 14:37 XS = 2.96014e+09 pb +- ( 1.20291e+09 pb = 40 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4967e+03,-0.0000e+00,-0.0000e+00, 3.4967e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 s 48 ( -> 4) [( 1.3816e+00,-0.0000e+00,-0.0000e+00, 1.3816e+00), p^2= 0.0000e+00, m= 4.0000e-01] (603, 0) 0 and Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 2.1192e+03,-0.0000e+00,-0.0000e+00,-2.1192e+03), p^2= 0.0000e+00, m= 0.0000e+00] (621,638) 1 [I] 1 G 49 ( -> 4) [( 1.8254e+02,-0.0000e+00,-0.0000e+00,-1.8254e+02), p^2= 0.0000e+00, m= 0.0000e+00] (638,645) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 62 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,601) 0 [B] 1 sb 58 ( -> ) [( 8.5676e-01, 0.0000e+00, 0.0000e+00, 8.5670e-01), p^2= 9.6949e-05, m= 0.0000e+00] ( 0,646) 0 [B] 1 d 61 ( -> ) [( 1.0476e+00, 0.0000e+00, 0.0000e+00, 1.0475e+00), p^2= 1.4495e-04, m= 0.0000e+00] (646, 0) 0 and Particle List with 2 elements [B] 1 ud_0 64 ( -> ) [( 6.4378e+02, 0.0000e+00, 0.0000e+00,-6.4378e+02), p^2= 8.7000e-02, m= 5.7933e-01] ( 0,621) 1 [B] 1 u 63 ( -> ) [( 5.5445e+02, 0.0000e+00, 0.0000e+00,-5.5445e+02), p^2= 6.4533e-02, m= 0.0000e+00] (645, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 200 ( 16s elapsed / 34m 45s left ) -> ETA: Mon Apr 08 14:32 XS = 3.07804e+09 pb +- ( 8.27572e+08 pb = 26 % ) Event 300 ( 22s elapsed / 31m 12s left ) -> ETA: Mon Apr 08 14:28 XS = 3.13909e+09 pb +- ( 6.51204e+08 pb = 20 % ) Event 400 ( 28s elapsed / 29m 13s left ) -> ETA: Mon Apr 08 14:27 XS = 4.13124e+09 pb +- ( 8.01429e+08 pb = 19 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4974e+03,-0.0000e+00,-0.0000e+00, 3.4974e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 0 [I] 1 db 30 ( -> 4) [( 9.1203e-01,-0.0000e+00,-0.0000e+00, 9.1203e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,626) 0 and Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 4.7521e+01,-0.0000e+00,-0.0000e+00,-4.7521e+01), p^2= 0.0000e+00, m= 0.0000e+00] (619,613) 1 [I] 1 G 31 ( -> 4) [( 3.4438e+01,-0.0000e+00,-0.0000e+00,-3.4438e+01), p^2= 0.0000e+00, m= 0.0000e+00] (628,619) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 39 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,605) 0 [B] 1 d 35 ( -> ) [( 6.7246e-01, 0.0000e+00, 0.0000e+00, 6.7241e-01), p^2= 6.6783e-05, m= 0.0000e+00] (607, 0) 0 [B] 1 d 38 ( -> ) [( 1.0306e+00, 0.0000e+00, 0.0000e+00, 1.0306e+00), p^2= 1.5687e-04, m= 0.0000e+00] (626, 0) 0 and Particle List with 2 elements [B] 1 ud_0 41 ( -> ) [( 2.2129e+03, 0.0000e+00, 0.0000e+00,-2.2129e+03), p^2= 3.6035e-01, m= 5.7933e-01] ( 0,628) 1 [B] 1 u 40 ( -> ) [( 1.2052e+03, 0.0000e+00, 0.0000e+00,-1.2052e+03), p^2= 1.0688e-01, m= 0.0000e+00] (613, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 34s elapsed / 28m left ) -> ETA: Mon Apr 08 14:25 XS = 4.31338e+09 pb +- ( 7.14206e+08 pb = 16 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 u 6 ( -> 2) [( 7.2403e+02,-0.0000e+00,-0.0000e+00, 7.2403e+02), p^2= 0.0000e+00, m= 3.0000e-01] (610, 0) 0 [I] 1 G 42 ( -> 4) [( 1.6290e+03,-0.0000e+00,-0.0000e+00, 1.6290e+03), p^2= 0.0000e+00, m= 0.0000e+00] (634,610) 0 [I] 1 G 56 ( -> 6) [( 3.3101e+02,-0.0000e+00,-0.0000e+00, 3.3101e+02), p^2= 0.0000e+00, m= 0.0000e+00] (642,634) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4933e+03,-0.0000e+00,-0.0000e+00,-3.4933e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1 [I] 1 G 43 ( -> 4) [( 4.3640e+00,-0.0000e+00,-0.0000e+00,-4.3640e+00), p^2= 0.0000e+00, m= 0.0000e+00] (630,603) 1 [I] 1 db 57 ( -> 6) [( 1.1127e+00,-0.0000e+00,-0.0000e+00,-1.1127e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,641) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 67 ( -> ) [( 8.1593e+02, 0.0000e+00, 0.0000e+00, 8.1593e+02), p^2= 2.0523e-01, m= 5.7933e-01] ( 0,642) 0 and Particle List with 3 elements [B] 1 ud_0 69 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,630) 1 [B] 1 d 64 ( -> ) [( 8.3447e-01, 0.0000e+00, 0.0000e+00,-8.3439e-01), p^2= 1.3956e-04, m= 0.0000e+00] (601, 0) 1 [B] 1 u 68 ( -> ) [( 4.2048e-01, 0.0000e+00, 0.0000e+00,-4.2044e-01), p^2= 3.5435e-05, m= 0.0000e+00] (641, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 600 ( 40s elapsed / 27m 8s left ) -> ETA: Mon Apr 08 14:25  Memory usage increased by 16 MB, now 144 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.71915e+09 pb +- ( 6.76182e+08 pb = 14 % ) Event 700 ( 46s elapsed / 26m 39s left ) -> ETA: Mon Apr 08 14:24 XS = 4.63407e+09 pb +- ( 6.43876e+08 pb = 13 % ) Event 800 ( 52s elapsed / 26m 34s left ) -> ETA: Mon Apr 08 14:24 XS = 4.6419e+09 pb +- ( 5.9828e+08 pb = 12 % ) Event 900 ( 59s elapsed / 26m 22s left ) -> ETA: Mon Apr 08 14:24 XS = 4.73694e+09 pb +- ( 5.76853e+08 pb = 12 % ) Event 1000 ( 1m 5s elapsed / 26m 1s left ) -> ETA: Mon Apr 08 14:24 XS = 4.84137e+09 pb +- ( 5.60137e+08 pb = 11 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 u 5 ( -> 2) [( 1.9793e+03,-0.0000e+00,-0.0000e+00, 1.9793e+03), p^2= 0.0000e+00, m= 3.0000e-01] (615, 0) 0 [I] 1 u 33 ( -> 4) [( 4.0161e+02,-0.0000e+00,-0.0000e+00, 4.0161e+02), p^2= 0.0000e+00, m= 3.0000e-01] (633, 0) 0 [I] 1 u 54 ( -> 6) [( 6.4140e+02,-0.0000e+00,-0.0000e+00, 6.4140e+02), p^2= 0.0000e+00, m= 3.0000e-01] (647, 0) 0 [I] 1 G 74 ( -> 8) [( 4.5410e+02,-0.0000e+00,-0.0000e+00, 4.5410e+02), p^2= 0.0000e+00, m= 0.0000e+00] (653,647) 0 [I] 1 G 91 ( -> 10) [( 2.1104e+01,-0.0000e+00,-0.0000e+00, 2.1104e+01), p^2= 0.0000e+00, m= 0.0000e+00] (664,653) 0 [I] 1 d 109 ( -> 12) [( 1.0645e+00,-0.0000e+00,-0.0000e+00, 1.0645e+00), p^2= 0.0000e+00, m= 3.0000e-01] (680, 0) 0 and Particle List with 6 elements [I] 1 ub 6 ( -> 2) [( 4.6345e+02,-0.0000e+00,-0.0000e+00,-4.6345e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,614) 1 [I] 1 G 34 ( -> 4) [( 8.5343e+02,-0.0000e+00,-0.0000e+00,-8.5343e+02), p^2= 0.0000e+00, m= 0.0000e+00] (614,630) 1 [I] 1 G 55 ( -> 6) [( 1.0503e+02,-0.0000e+00,-0.0000e+00,-1.0503e+02), p^2= 0.0000e+00, m= 0.0000e+00] (630,639) 1 [I] 1 s 75 ( -> 8) [( 8.6097e+01,-0.0000e+00,-0.0000e+00,-8.6097e+01), p^2= 0.0000e+00, m= 4.0000e-01] (639, 0) 1 [I] 1 G 92 ( -> 10) [( 1.8416e+02,-0.0000e+00,-0.0000e+00,-1.8416e+02), p^2= 0.0000e+00, m= 0.0000e+00] (669,622) 1 [I] 1 G 110 ( -> 12) [( 6.8526e+02,-0.0000e+00,-0.0000e+00,-6.8526e+02), p^2= 0.0000e+00, m= 0.0000e+00] (663,685) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 122 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,680) 0 [B] 1 db 119 ( -> ) [( 4.1929e-01, 0.0000e+00, 0.0000e+00, 4.1926e-01), p^2= 3.0408e-05, m= 0.0000e+00] ( 0,664) 0 [B] 1 ub 69 ( -> ) [( 5.9427e-01, 0.0000e+00, 0.0000e+00, 5.9422e-01), p^2= 6.1084e-05, m= 0.0000e+00] ( 0,633) 0 [B] 1 ub 49 ( -> ) [( 4.4060e-01, 0.0000e+00, 0.0000e+00, 4.4056e-01), p^2= 3.3577e-05, m= 0.0000e+00] ( 0,615) 0 and Particle List with 4 elements [B] 1 uu_1 124 ( -> ) [( 8.8124e+02, 0.0000e+00, 0.0000e+00,-8.8124e+02), p^2= 1.7401e-01, m= 7.7133e-01] ( 0,669) 1 [B] 1 sb 86 ( -> ) [( 2.3164e+00, 0.0000e+00, 0.0000e+00,-2.3164e+00), p^2= 1.2023e-06, m= 0.0000e+00] ( 0,663) 1 [B] 1 u 28 ( -> ) [( 1.0561e+00, 0.0000e+00, 0.0000e+00,-1.0561e+00), p^2= 2.4993e-07, m= 0.0000e+00] (622, 0) 1 [B] 1 d 123 ( -> ) [( 2.3796e+02, 0.0000e+00, 0.0000e+00,-2.3796e+02), p^2= 1.2687e-02, m= 0.0000e+00] (685, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.4835e+03,-0.0000e+00,-0.0000e+00, 3.4835e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 sb 48 ( -> 4) [( 1.4228e+01,-0.0000e+00,-0.0000e+00, 1.4228e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,601) 0 [I] 1 ub 61 ( -> 6) [( 4.0396e-01,-0.0000e+00,-0.0000e+00, 4.0396e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,647) 0 and Particle List with 3 elements [I] 1 u 6 ( -> 2) [( 2.1998e+03,-0.0000e+00,-0.0000e+00,-2.1998e+03), p^2= 0.0000e+00, m= 3.0000e-01] (619, 0) 1 [I] 1 G 49 ( -> 4) [( 3.0380e+02,-0.0000e+00,-0.0000e+00,-3.0380e+02), p^2= 0.0000e+00, m= 0.0000e+00] (640,619) 1 [I] 1 u 62 ( -> 6) [( 8.1036e+02,-0.0000e+00,-0.0000e+00,-8.1036e+02), p^2= 0.0000e+00, m= 3.0000e-01] (648, 0) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 78 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,643) 0 [B] 1 u 73 ( -> ) [( 7.2300e-01, 0.0000e+00, 0.0000e+00, 7.2295e-01), p^2= 7.2007e-05, m= 0.0000e+00] (603, 0) 0 [B] 1 s 56 ( -> ) [( 4.7007e-01, 0.0000e+00, 0.0000e+00, 4.7004e-01), p^2= 3.0439e-05, m= 0.0000e+00] (643, 0) 0 [B] 1 u 77 ( -> ) [( 6.3282e-01, 0.0000e+00, 0.0000e+00, 6.3277e-01), p^2= 5.5164e-05, m= 0.0000e+00] (647, 0) 0 and Particle List with 2 elements [B] 1 ud_0 79 ( -> ) [( 1.5663e+02, 0.0000e+00, 0.0000e+00,-1.5663e+02), p^2= 3.3167e-02, m= 5.7933e-01] ( 0,648) 1 [B] 1 ub 74 ( -> ) [( 2.9422e+01, 0.0000e+00, 0.0000e+00,-2.9422e+01), p^2= 1.1703e-03, m= 0.0000e+00] ( 0,640) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 2m 9s elapsed / 24m 50s left ) -> ETA: Mon Apr 08 14:24 XS = 4.90535e+09 pb +- ( 4.18811e+08 pb = 8 % ) Event 3000 ( 3m 14s elapsed / 23m 49s left ) -> ETA: Mon Apr 08 14:24 XS = 4.58079e+09 pb +- ( 3.22966e+08 pb = 7 % ) Event 4000 ( 4m 21s elapsed / 22m 53s left ) -> ETA: Mon Apr 08 14:24 XS = 4.51583e+09 pb +- ( 2.80015e+08 pb = 6 % ) Event 5000 ( 5m 23s elapsed / 21m 33s left ) -> ETA: Mon Apr 08 14:24 XS = 4.5404e+09 pb +- ( 2.61962e+08 pb = 5 % ) Event 6000 ( 6m 29s elapsed / 20m 34s left ) -> ETA: Mon Apr 08 14:24 XS = 4.5327e+09 pb +- ( 2.38121e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 7000 ( 7m 35s elapsed / 19m 30s left ) -> ETA: Mon Apr 08 14:24 XS = 4.65317e+09 pb +- ( 2.2498e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Event 8000 ( 8m 40s elapsed / 18m 26s left ) -> ETA: Mon Apr 08 14:24 XS = 4.62527e+09 pb +- ( 2.06496e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 9000 ( 9m 48s elapsed / 17m 26s left ) -> ETA: Mon Apr 08 14:24 XS = 4.57956e+09 pb +- ( 1.98742e+08 pb = 4 % ) Event 10000 ( 10m 55s elapsed / 16m 22s left ) -> ETA: Mon Apr 08 14:24 XS = 4.55229e+09 pb +- ( 1.84682e+08 pb = 4 % ) Event 20000 ( 21m 53s elapsed / 5m 28s left ) -> ETA: Mon Apr 08 14:24  Memory usage increased by 31 MB, now 175 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.6232e+09 pb +- ( 1.30845e+08 pb = 2 % ) Event 25000 ( 1646 s total ) = 1.31198e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmod_noWeight/1268){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.59201e+09 0 % 1.18464e+08 2.57 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 25000 New events { From "Beam_Remnants:Parametrised": 94 (25094) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 94 fails in creating good beam breakups. Remnant Kinematics: 94 errors (no kinematics found) and 12 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 27m 30s on Mon Apr 8 14:24:50 2024 (User: 27m 21s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Apr 9 21:39:43 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1268 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 3d 18h 33m 16s left ) -> ETA: Sat Apr 13 16:13 XS = 3.39727e+08 pb +- ( 3.39727e+08 pb = 100 % ) Event 2 ( 3s elapsed / 1d 21h 49m 56s left ) -> ETA: Thu Apr 11 19:29 XS = 4.10223e+08 pb +- ( 2.61552e+08 pb = 63 % ) Event 3 ( 3s elapsed / 1d 6h 49m 56s left ) -> ETA: Thu Apr 11 04:29 XS = 3.07667e+08 pb +- ( 2.02868e+08 pb = 65 % ) Event 4 ( 3s elapsed / 23h 49m 6s left ) -> ETA: Wed Apr 10 21:28 XS = 2.73486e+08 pb +- ( 1.82149e+08 pb = 66 % ) Event 5 ( 3s elapsed / 19h 29m 56s left ) -> ETA: Wed Apr 10 17:09 XS = 2.05771e+08 pb +- ( 1.39097e+08 pb = 67 % ) Event 6 ( 3s elapsed / 16h 20m 29s left ) -> ETA: Wed Apr 10 14:00 XS = 8.81646e+08 pb +- ( 7.24704e+08 pb = 82 % ) Event 7 ( 3s elapsed / 14h 21m 50s left ) -> ETA: Wed Apr 10 12:01 XS = 7.84956e+08 pb +- ( 6.45227e+08 pb = 82 % ) Event 8 ( 3s elapsed / 12h 42m 26s left ) -> ETA: Wed Apr 10 10:22 XS = 7.15468e+08 pb +- ( 5.81013e+08 pb = 81 % ) Event 9 ( 3s elapsed / 11h 23m 16s left ) -> ETA: Wed Apr 10 09:03 XS = 1.12322e+09 pb +- ( 7.03111e+08 pb = 62 % ) Event 10 ( 3s elapsed / 10h 26m 36s left ) -> ETA: Wed Apr 10 08:06 XS = 1.08002e+09 pb +- ( 6.76907e+08 pb = 62 % ) Event 20 ( 4s elapsed / 5h 55m 45s left ) -> ETA: Wed Apr 10 03:35 XS = 3.22314e+09 pb +- ( 2.08502e+09 pb = 64 % ) Event 30 ( 4s elapsed / 4h 17m 42s left ) -> ETA: Wed Apr 10 01:57 XS = 5.74872e+09 pb +- ( 2.43041e+09 pb = 42 % ) Event 40 ( 5s elapsed / 3h 49m 4s left ) -> ETA: Wed Apr 10 01:28 XS = 6.53283e+09 pb +- ( 2.62303e+09 pb = 40 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 5 ( -> 2) [( 6.3547e+02,-0.0000e+00,-0.0000e+00, 6.3547e+02), p^2= 0.0000e+00, m= 0.0000e+00] (619,617) 0 [I] 1 G 36 ( -> 4) [( 1.3782e+02,-0.0000e+00,-0.0000e+00, 1.3782e+02), p^2= 0.0000e+00, m= 0.0000e+00] (634,619) 0 [I] 1 G 54 ( -> 6) [( 2.8771e+01,-0.0000e+00,-0.0000e+00, 2.8771e+01), p^2= 0.0000e+00, m= 0.0000e+00] (617,644) 0 [I] 1 G 71 ( -> 8) [( 4.9344e+02,-0.0000e+00,-0.0000e+00, 4.9344e+02), p^2= 0.0000e+00, m= 0.0000e+00] (655,634) 0 [I] 1 G 95 ( -> 10) [( 2.6430e+02,-0.0000e+00,-0.0000e+00, 2.6430e+02), p^2= 0.0000e+00, m= 0.0000e+00] (672,655) 0 [I] 1 G 119 ( -> 12) [( 1.2723e+03,-0.0000e+00,-0.0000e+00, 1.2723e+03), p^2= 0.0000e+00, m= 0.0000e+00] (685,672) 0 [I] 1 G 142 ( -> 14) [( 3.8989e+02,-0.0000e+00,-0.0000e+00, 3.8989e+02), p^2= 0.0000e+00, m= 0.0000e+00] (707,685) 0 and Particle List with 7 elements [I] 1 G 6 ( -> 2) [( 3.1047e+03,-0.0000e+00,-0.0000e+00,-3.1047e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 1 [I] 1 G 37 ( -> 4) [( 6.2757e+01,-0.0000e+00,-0.0000e+00,-6.2757e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,625) 1 [I] 1 db 55 ( -> 6) [( 2.0172e+01,-0.0000e+00,-0.0000e+00,-2.0172e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,640) 1 [I] 1 s 72 ( -> 8) [( 4.5597e+01,-0.0000e+00,-0.0000e+00,-4.5597e+01), p^2= 0.0000e+00, m= 4.0000e-01] (640, 0) 1 [I] 1 G 96 ( -> 10) [( 1.9239e+02,-0.0000e+00,-0.0000e+00,-1.9239e+02), p^2= 0.0000e+00, m= 0.0000e+00] (675,604) 1 [I] 1 ub 120 ( -> 12) [( 1.4906e+00,-0.0000e+00,-0.0000e+00,-1.4906e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,697) 1 [I] 1 G 143 ( -> 14) [( 7.0603e+01,-0.0000e+00,-0.0000e+00,-7.0603e+01), p^2= 0.0000e+00, m= 0.0000e+00] (697,708) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 154 ( -> ) [( 2.2048e+02, 0.0000e+00, 0.0000e+00, 2.2048e+02), p^2= 4.3982e-02, m= 5.7933e-01] ( 0,707) 0 [B] 1 u 153 ( -> ) [( 5.7522e+01, 0.0000e+00, 0.0000e+00, 5.7522e+01), p^2= 2.9938e-03, m= 0.0000e+00] (644, 0) 0 and Particle List with 5 elements [B] 1 uu_1 156 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,675) 1 [B] 1 u 137 ( -> ) [( 3.0641e-01, 0.0000e+00, 0.0000e+00,-3.0639e-01), p^2= 1.0494e-05, m= 0.0000e+00] (665, 0) 1 [B] 1 sb 90 ( -> ) [( 7.4578e-01, 0.0000e+00, 0.0000e+00,-7.4574e-01), p^2= 6.2165e-05, m= 0.0000e+00] ( 0,665) 1 [B] 1 d 66 ( -> ) [( 3.0153e-01, 0.0000e+00, 0.0000e+00,-3.0151e-01), p^2= 1.0162e-05, m= 0.0000e+00] (625, 0) 1 [B] 1 d 155 ( -> ) [( 8.9664e-01, 0.0000e+00, 0.0000e+00,-8.9659e-01), p^2= 8.9859e-05, m= 0.0000e+00] (708, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 50 ( 6s elapsed / 3h 33m 13s left ) -> ETA: Wed Apr 10 01:13 XS = 5.348e+09 pb +- ( 2.07462e+09 pb = 38 % ) Event 60 ( 7s elapsed / 3h 17m 22s left ) -> ETA: Wed Apr 10 00:57 XS = 4.62684e+09 pb +- ( 1.7559e+09 pb = 37 % ) Event 70 ( 7s elapsed / 3h 8m 40s left ) -> ETA: Wed Apr 10 00:48 XS = 4.32889e+09 pb +- ( 1.53588e+09 pb = 35 % ) Event 80 ( 8s elapsed / 2h 58m 23s left ) -> ETA: Wed Apr 10 00:38 XS = 4.23191e+09 pb +- ( 1.41226e+09 pb = 33 % ) Event 90 ( 9s elapsed / 2h 51m 8s left ) -> ETA: Wed Apr 10 00:31 XS = 4.7147e+09 pb +- ( 1.45168e+09 pb = 30 % ) Event 100 ( 9s elapsed / 2h 40m 50s left ) -> ETA: Wed Apr 10 00:20 XS = 4.70267e+09 pb +- ( 1.32767e+09 pb = 28 % ) Event 200 ( 15s elapsed / 2h 11m 39s left ) -> ETA: Tue Apr 09 23:51 XS = 4.86003e+09 pb +- ( 1.21713e+09 pb = 25 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 2.7565e+03,-0.0000e+00,-0.0000e+00, 2.7565e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 0 [I] 1 db 61 ( -> 4) [( 2.0758e+02,-0.0000e+00,-0.0000e+00, 2.0758e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,657) 0 [I] 1 G 86 ( -> 6) [( 3.4308e+01,-0.0000e+00,-0.0000e+00, 3.4308e+01), p^2= 0.0000e+00, m= 0.0000e+00] (657,672) 0 [I] 1 G 111 ( -> 8) [( 3.7359e+02,-0.0000e+00,-0.0000e+00, 3.7359e+02), p^2= 0.0000e+00, m= 0.0000e+00] (672,690) 0 [I] 1 G 126 ( -> 10) [( 4.0850e+01,-0.0000e+00,-0.0000e+00, 4.0850e+01), p^2= 0.0000e+00, m= 0.0000e+00] (690,705) 0 [I] 1 G 143 ( -> 12) [( 4.2460e+01,-0.0000e+00,-0.0000e+00, 4.2460e+01), p^2= 0.0000e+00, m= 0.0000e+00] (718,603) 0 and Particle List with 6 elements [I] 1 d 6 ( -> 2) [( 9.9655e+02,-0.0000e+00,-0.0000e+00,-9.9655e+02), p^2= 0.0000e+00, m= 3.0000e-01] (644, 0) 1 [I] 1 G 62 ( -> 4) [( 5.6380e+01,-0.0000e+00,-0.0000e+00,-5.6380e+01), p^2= 0.0000e+00, m= 0.0000e+00] (653,644) 1 [I] 1 u 87 ( -> 6) [( 2.4178e+03,-0.0000e+00,-0.0000e+00,-2.4178e+03), p^2= 0.0000e+00, m= 3.0000e-01] (673, 0) 1 [I] 1 G 112 ( -> 8) [( 2.7265e+00,-0.0000e+00,-0.0000e+00,-2.7265e+00), p^2= 0.0000e+00, m= 0.0000e+00] (692,673) 1 [I] 1 s 127 ( -> 10) [( 1.9486e+01,-0.0000e+00,-0.0000e+00,-1.9486e+01), p^2= 0.0000e+00, m= 4.0000e-01] (710, 0) 1 [I] 1 G 144 ( -> 12) [( 5.2669e+00,-0.0000e+00,-0.0000e+00,-5.2669e+00), p^2= 0.0000e+00, m= 0.0000e+00] (716,710) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 157 ( -> ) [( 1.4745e+01, 0.0000e+00, 0.0000e+00, 1.4744e+01), p^2= 1.2228e-03, m= 5.7933e-01] ( 0,718) 0 [B] 1 d 81 ( -> ) [( 6.5544e+00, 0.0000e+00, 0.0000e+00, 6.5544e+00), p^2= 2.4164e-04, m= 0.0000e+00] (601, 0) 0 [B] 1 u 156 ( -> ) [( 2.3420e+01, 0.0000e+00, 0.0000e+00, 2.3420e+01), p^2= 3.0852e-03, m= 0.0000e+00] (705, 0) 0 and Particle List with 3 elements [B] 1 uu_1 158 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,716) 1 [B] 1 sb 138 ( -> ) [( 7.6215e-01, 0.0000e+00, 0.0000e+00,-7.6209e-01), p^2= 8.1329e-05, m= 0.0000e+00] ( 0,692) 1 [B] 1 ub 106 ( -> ) [( 1.0343e+00, 0.0000e+00, 0.0000e+00,-1.0342e+00), p^2= 1.4977e-04, m= 0.0000e+00] ( 0,653) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 300 ( 23s elapsed / 2h 9m 49s left ) -> ETA: Tue Apr 09 23:49 XS = 4.54338e+09 pb +- ( 9.27063e+08 pb = 20 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 400 ( 30s elapsed / 2h 5m 57s left ) -> ETA: Tue Apr 09 23:46 XS = 5.04408e+09 pb +- ( 9.72586e+08 pb = 19 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 d 6 ( -> 2) [( 1.3094e+03,-0.0000e+00,-0.0000e+00, 1.3094e+03), p^2= 0.0000e+00, m= 3.0000e-01] (644, 0) 0 [I] 1 d 66 ( -> 4) [( 1.5857e+01, 0.0000e+00, 0.0000e+00, 1.5857e+01), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4981e+03,-0.0000e+00,-0.0000e+00,-3.4981e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 1 [I] 1 sb 67 ( -> 4) [( 5.9766e-01, 0.0000e+00, 0.0000e+00,-5.9766e-01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,605) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 75 ( -> ) [( 1.7211e+03, 0.0000e+00, 0.0000e+00, 1.7211e+03), p^2= 3.4259e-01, m= 5.7933e-01] ( 0,605) 0 [B] 1 db 70 ( -> ) [( 6.0814e-01, 0.0000e+00, 0.0000e+00, 6.0814e-01), p^2= 4.2774e-08, m= 0.0000e+00] ( 0,644) 0 [B] 1 db 61 ( -> ) [( 6.6963e-01, 0.0000e+00, 0.0000e+00, 6.6963e-01), p^2= 5.1861e-08, m= 0.0000e+00] ( 0,653) 0 [B] 1 u 74 ( -> ) [( 4.5244e+02, 0.0000e+00, 0.0000e+00, 4.5244e+02), p^2= 2.3675e-02, m= 0.0000e+00] (653, 0) 0 and Particle List with 3 elements [B] 1 uu_1 77 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,660) 1 [B] 1 s 71 ( -> ) [( 5.4185e-01, 0.0000e+00, 0.0000e+00,-5.4180e-01), p^2= 5.8897e-05, m= 0.0000e+00] (660, 0) 1 [B] 1 d 76 ( -> ) [( 7.1197e-01, 0.0000e+00, 0.0000e+00,-7.1190e-01), p^2= 1.0168e-04, m= 0.0000e+00] (607, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 37s elapsed / 2h 5m 14s left ) -> ETA: Tue Apr 09 23:45  Memory usage increased by 16 MB, now 144 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.754e+09 pb +- ( 8.39234e+08 pb = 17 % ) Event 600 ( 44s elapsed / 2h 3m 41s left ) -> ETA: Tue Apr 09 23:44 XS = 4.97544e+09 pb +- ( 7.72424e+08 pb = 15 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 u 6 ( -> 2) [( 3.4019e+03,-0.0000e+00,-0.0000e+00, 3.4019e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 53 ( -> 4) [( 9.5384e+01,-0.0000e+00,-0.0000e+00, 9.5384e+01), p^2= 0.0000e+00, m= 0.0000e+00] (647,601) 0 [I] 1 d 74 ( -> 6) [( 9.4340e-01,-0.0000e+00,-0.0000e+00, 9.4340e-01), p^2= 0.0000e+00, m= 3.0000e-01] (639, 0) 0 [I] 1 G 85 ( -> 8) [( 9.5471e-01,-0.0000e+00,-0.0000e+00, 9.5471e-01), p^2= 0.0000e+00, m= 0.0000e+00] (669,647) 0 and Particle List with 4 elements [I] 1 d 5 ( -> 2) [( 1.1897e+03,-0.0000e+00,-0.0000e+00,-1.1897e+03), p^2= 0.0000e+00, m= 3.0000e-01] (614, 0) 1 [I] 1 s 54 ( -> 4) [( 5.1226e+01,-0.0000e+00,-0.0000e+00,-5.1226e+01), p^2= 0.0000e+00, m= 4.0000e-01] (653, 0) 1 [I] 1 G 75 ( -> 6) [( 2.0473e+02,-0.0000e+00,-0.0000e+00,-2.0473e+02), p^2= 0.0000e+00, m= 0.0000e+00] (659,653) 1 [I] 1 G 86 ( -> 8) [( 4.8761e+02,-0.0000e+00,-0.0000e+00,-4.8761e+02), p^2= 0.0000e+00, m= 0.0000e+00] (673,659) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 94 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,669) 0 [B] 1 ub 48 ( -> ) [( 8.6758e-01, 0.0000e+00, 0.0000e+00, 8.6746e-01), p^2= 2.1821e-04, m= 0.0000e+00] ( 0,639) 0 and Particle List with 4 elements [B] 1 ud_0 96 ( -> ) [( 1.3024e+03, 0.0000e+00, 0.0000e+00,-1.3024e+03), p^2= 2.7233e-01, m= 5.7933e-01] ( 0,673) 1 [B] 1 sb 69 ( -> ) [( 1.2394e+00, 0.0000e+00, 0.0000e+00,-1.2394e+00), p^2= 2.4662e-07, m= 0.0000e+00] ( 0,614) 1 [B] 1 db 47 ( -> ) [( 3.7890e+00, 0.0000e+00, 0.0000e+00,-3.7890e+00), p^2= 2.3048e-06, m= 0.0000e+00] ( 0,638) 1 [B] 1 u 95 ( -> ) [( 2.5928e+02, 0.0000e+00, 0.0000e+00,-2.5928e+02), p^2= 1.0793e-02, m= 0.0000e+00] (638, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 700 ( 51s elapsed / 2h 2m 40s left ) -> ETA: Tue Apr 09 23:43 XS = 4.68568e+09 pb +- ( 6.73238e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 u 6 ( -> 2) [( 1.8970e+02,-0.0000e+00,-0.0000e+00, 1.8970e+02), p^2= 0.0000e+00, m= 3.0000e-01] (625, 0) 0 [I] 1 G 41 ( -> 4) [( 1.4479e+03,-0.0000e+00,-0.0000e+00, 1.4479e+03), p^2= 0.0000e+00, m= 0.0000e+00] (639,625) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4982e+03,-0.0000e+00,-0.0000e+00,-3.4982e+03), p^2= 0.0000e+00, m= 0.0000e+00] (606,604) 1 [I] 1 s 42 ( -> 4) [( 5.4268e-01,-0.0000e+00,-0.0000e+00,-5.4268e-01), p^2= 0.0000e+00, m= 4.0000e-01] (637, 0) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 52 ( -> ) [( 1.8624e+03, 0.0000e+00, 0.0000e+00, 1.8624e+03), p^2= 4.6845e-01, m= 5.7933e-01] ( 0,639) 0 and Particle List with 3 elements [B] 1 ud_0 54 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,637) 1 [B] 1 sb 49 ( -> ) [( 6.9965e-01, 0.0000e+00, 0.0000e+00,-6.9958e-01), p^2= 9.7852e-05, m= 0.0000e+00] ( 0,606) 1 [B] 1 u 53 ( -> ) [( 5.5858e-01, 0.0000e+00, 0.0000e+00,-5.5852e-01), p^2= 6.2370e-05, m= 0.0000e+00] (604, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 800 ( 59s elapsed / 2h 3m 17s left ) -> ETA: Tue Apr 09 23:44 XS = 4.59205e+09 pb +- ( 6.11151e+08 pb = 13 % ) Event 900 ( 1m 6s elapsed / 2h 2m 14s left ) -> ETA: Tue Apr 09 23:43 XS = 4.75805e+09 pb +- ( 5.9125e+08 pb = 12 % ) Event 1000 ( 1m 13s elapsed / 2h 1m 49s left ) -> ETA: Tue Apr 09 23:42 XS = 4.77628e+09 pb +- ( 5.57267e+08 pb = 11 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Pythia8 hadronisation failed. Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 2m 25s elapsed / 1h 58m 57s left ) -> ETA: Tue Apr 09 23:41 XS = 4.58971e+09 pb +- ( 3.69853e+08 pb = 8 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 3m 36s elapsed / 1h 56m 32s left ) -> ETA: Tue Apr 09 23:39 XS = 4.91616e+09 pb +- ( 3.31578e+08 pb = 6 % ) Event 4000 ( 4m 48s elapsed / 1h 55m 24s left ) -> ETA: Tue Apr 09 23:39 XS = 4.90534e+09 pb +- ( 2.91116e+08 pb = 5 % ) Event 5000 ( 5m 59s elapsed / 1h 53m 45s left ) -> ETA: Tue Apr 09 23:39 XS = 4.90873e+09 pb +- ( 2.57115e+08 pb = 5 % ) Event 6000 ( 7m 9s elapsed / 1h 52m 11s left ) -> ETA: Tue Apr 09 23:39 XS = 4.83795e+09 pb +- ( 2.30339e+08 pb = 4 % ) Pythia8 hadronisation failed. Event 7000 ( 8m 21s elapsed / 1h 51m 1s left ) -> ETA: Tue Apr 09 23:39 XS = 4.80584e+09 pb +- ( 2.11852e+08 pb = 4 % ) Event 8000 ( 9m 31s elapsed / 1h 49m 33s left ) -> ETA: Tue Apr 09 23:38 XS = 4.86357e+09 pb +- ( 2.03516e+08 pb = 4 % ) Event 9000 ( 10m 40s elapsed / 1h 47m 57s left ) -> ETA: Tue Apr 09 23:38 XS = 4.77361e+09 pb +- ( 1.88461e+08 pb = 3 % ) Event 10000 ( 11m 51s elapsed / 1h 46m 41s left ) -> ETA: Tue Apr 09 23:38 XS = 4.79671e+09 pb +- ( 1.83525e+08 pb = 3 % ) Event 20000 ( 23m 51s elapsed / 1h 35m 25s left ) -> ETA: Tue Apr 09 23:39 XS = 4.73959e+09 pb +- ( 1.31957e+08 pb = 2 % ) Event 30000 ( 36m elapsed / 1h 24m 1s left ) -> ETA: Tue Apr 09 23:39 XS = 4.69692e+09 pb +- ( 1.09876e+08 pb = 2 % ) Event 40000 ( 47m 59s elapsed / 1h 11m 59s left ) -> ETA: Tue Apr 09 23:39 XS = 4.70168e+09 pb +- ( 9.51411e+07 pb = 2 % ) Pythia8 hadronisation failed. Event 50000 ( 59m 55s elapsed / 59m 55s left ) -> ETA: Tue Apr 09 23:39 XS = 4.72588e+09 pb +- ( 8.69449e+07 pb = 1 % ) Event 60000 ( 1h 11m 46s elapsed / 47m 51s left ) -> ETA: Tue Apr 09 23:39 XS = 4.71934e+09 pb +- ( 7.83884e+07 pb = 1 % ) Event 70000 ( 1h 23m 47s elapsed / 35m 54s left ) -> ETA: Tue Apr 09 23:39 XS = 4.75277e+09 pb +- ( 7.37426e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 80000 ( 1h 36m 7s elapsed / 24m 1s left ) -> ETA: Tue Apr 09 23:39  Memory usage increased by 18 MB, now 163 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.74454e+09 pb +- ( 6.91904e+07 pb = 1 % ) Event 90000 ( 1h 48m 4s elapsed / 12m left ) -> ETA: Tue Apr 09 23:39 XS = 4.75419e+09 pb +- ( 6.53404e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 100000 ( 7213 s total ) = 1.19778e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1268){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.76908e+09 0 % 6.19954e+07 1.29 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100000 Errors { From "Hadronization:Pythia8": 6 (100006) -> 0 % } New events { From "Beam_Remnants:Parametrised": 441 (100447) -> 0.4 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 441 fails in creating good beam breakups. Remnant Kinematics: 441 errors (no kinematics found) and 97 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 2h 17s on Tue Apr 9 23:40:01 2024 (User: 1h 59m 39s, System: 1s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Apr 10 10:14:43 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1268 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 38d 15h 46m 36s left ) -> ETA: Sun May 19 02:01 XS = 3.39727e+08 pb +- ( 3.39727e+08 pb = 100 % ) Event 2 ( 3s elapsed / 19d 13h 26m 36s left ) -> ETA: Mon Apr 29 23:41 XS = 2.74464e+08 pb +- ( 2.71123e+08 pb = 98 % ) Event 3 ( 3s elapsed / 13d 4h 39m 56s left ) -> ETA: Tue Apr 23 14:54 XS = 2.01355e+08 pb +- ( 1.92995e+08 pb = 95 % ) Event 4 ( 3s elapsed / 9d 23h 34m 56s left ) -> ETA: Sat Apr 20 09:49 XS = 1.56609e+08 pb +- ( 1.50344e+08 pb = 95 % ) Event 5 ( 3s elapsed / 8d 5h 13m 16s left ) -> ETA: Thu Apr 18 15:28 XS = 1.40948e+08 pb +- ( 1.35381e+08 pb = 96 % ) Event 6 ( 3s elapsed / 6d 23h 7m 43s left ) -> ETA: Wed Apr 17 09:22 XS = 1.28135e+08 pb +- ( 1.23125e+08 pb = 96 % ) Event 7 ( 3s elapsed / 6d 50m 24s left ) -> ETA: Tue Apr 16 11:05 XS = 1.17457e+08 pb +- ( 1.12904e+08 pb = 96 % ) Event 8 ( 3s elapsed / 5d 8h 28m 16s left ) -> ETA: Mon Apr 15 18:43 XS = 1.08449e+08 pb +- ( 1.04246e+08 pb = 96 % ) Event 9 ( 3s elapsed / 4d 21h 35m 29s left ) -> ETA: Mon Apr 15 07:50 XS = 8.29315e+07 pb +- ( 7.97807e+07 pb = 96 % ) Event 10 ( 3s elapsed / 4d 10h 23m 16s left ) -> ETA: Sun Apr 14 20:38 XS = 1.58085e+09 pb +- ( 1.49981e+09 pb = 94 % ) Event 20 ( 4s elapsed / 2d 13h 6m 35s left ) -> ETA: Fri Apr 12 23:21 XS = 8.32869e+09 pb +- ( 5.52648e+09 pb = 66 % ) Event 30 ( 5s elapsed / 1d 23h 2m 8s left ) -> ETA: Fri Apr 12 09:17 XS = 8.49618e+09 pb +- ( 4.61876e+09 pb = 54 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 40 ( 5s elapsed / 1d 15h 34m 54s left ) -> ETA: Fri Apr 12 01:49 XS = 6.97606e+09 pb +- ( 3.35599e+09 pb = 48 % ) Event 50 ( 6s elapsed / 1d 12h 59m 53s left ) -> ETA: Thu Apr 11 23:14 XS = 5.56154e+09 pb +- ( 2.6194e+09 pb = 47 % ) Event 60 ( 7s elapsed / 1d 9h 11m 32s left ) -> ETA: Thu Apr 11 19:26 XS = 6.0765e+09 pb +- ( 2.56243e+09 pb = 42 % ) Event 70 ( 7s elapsed / 1d 6h 35m 35s left ) -> ETA: Thu Apr 11 16:50 XS = 5.28984e+09 pb +- ( 2.12371e+09 pb = 40 % ) Event 80 ( 8s elapsed / 1d 4h 53m 11s left ) -> ETA: Thu Apr 11 15:08 XS = 6.69474e+09 pb +- ( 2.47223e+09 pb = 36 % ) Event 90 ( 8s elapsed / 1d 3h 15m 2s left ) -> ETA: Thu Apr 11 13:29 XS = 6.78406e+09 pb +- ( 2.31135e+09 pb = 34 % ) Event 100 ( 9s elapsed / 1d 1h 54m 50s left ) -> ETA: Thu Apr 11 12:09 XS = 5.90322e+09 pb +- ( 2.0071e+09 pb = 34 % ) Event 200 ( 15s elapsed / 20h 55m 34s left ) -> ETA: Thu Apr 11 07:10 XS = 5.33744e+09 pb +- ( 1.22714e+09 pb = 22 % ) Event 300 ( 21s elapsed / 19h 36m 52s left ) -> ETA: Thu Apr 11 05:52 XS = 4.71296e+09 pb +- ( 9.49782e+08 pb = 20 % ) Event 400 ( 27s elapsed / 19h 8m 17s left ) -> ETA: Thu Apr 11 05:23 XS = 5.66463e+09 pb +- ( 1.29904e+09 pb = 22 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 1 elements [I] 1 G 6 ( -> 2) [( 3.4987e+03,-0.0000e+00,-0.0000e+00, 3.4987e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 0 and Particle List with 1 elements [I] 1 G 5 ( -> 2) [( 3.4988e+03,-0.0000e+00,-0.0000e+00,-3.4988e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 46 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,603) 0 [B] 1 d 45 ( -> ) [( 1.2959e+00, 0.0000e+00, 0.0000e+00, 1.2957e+00), p^2= 3.2593e-04, m= 0.0000e+00] (602, 0) 0 and Particle List with 2 elements [B] 1 uu_1 48 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,601) 1 [B] 1 d 47 ( -> ) [( 1.2186e+00, 0.0000e+00, 0.0000e+00,-1.2185e+00), p^2= 3.0650e-04, m= 0.0000e+00] (603, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 34s elapsed / 19h 21m 5s left ) -> ETA: Thu Apr 11 05:36 XS = 6.1163e+09 pb +- ( 1.32834e+09 pb = 21 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 s 6 ( -> 2) [( 3.4806e+03,-0.0000e+00,-0.0000e+00, 3.4806e+03), p^2= 0.0000e+00, m= 4.0000e-01] (601, 0) 0 [I] 1 G 35 ( -> 4) [( 1.2956e+01,-0.0000e+00,-0.0000e+00, 1.2956e+01), p^2= 0.0000e+00, m= 0.0000e+00] (624,629) 0 [I] 1 db 48 ( -> 6) [( 4.3651e+00,-0.0000e+00,-0.0000e+00, 4.3651e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,635) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 1.0757e+03,-0.0000e+00,-0.0000e+00,-1.0757e+03), p^2= 0.0000e+00, m= 0.0000e+00] (610,612) 1 [I] 1 d 36 ( -> 4) [( 4.4923e+02,-0.0000e+00,-0.0000e+00,-4.4923e+02), p^2= 0.0000e+00, m= 3.0000e-01] (612, 0) 1 [I] 1 G 49 ( -> 6) [( 1.1144e+02,-0.0000e+00,-0.0000e+00,-1.1144e+02), p^2= 0.0000e+00, m= 0.0000e+00] (637,610) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 59 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,601) 0 [B] 1 d 55 ( -> ) [( 9.6127e-01, 0.0000e+00, 0.0000e+00, 9.6121e-01), p^2= 1.1407e-04, m= 0.0000e+00] (629, 0) 0 [B] 1 sb 30 ( -> ) [( 5.1919e-01, 0.0000e+00, 0.0000e+00, 5.1916e-01), p^2= 3.3275e-05, m= 0.0000e+00] ( 0,624) 0 [B] 1 d 58 ( -> ) [( 5.5707e-01, 0.0000e+00, 0.0000e+00, 5.5704e-01), p^2= 3.8309e-05, m= 0.0000e+00] (635, 0) 0 and Particle List with 1 elements [B] 1 uu_1 60 ( -> ) [( 1.8636e+03, 0.0000e+00, 0.0000e+00,-1.8636e+03), p^2= 4.6876e-01, m= 7.7133e-01] ( 0,637) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 600 ( 41s elapsed / 19h 1m 32s left ) -> ETA: Thu Apr 11 05:17 XS = 6.00403e+09 pb +- ( 1.15406e+09 pb = 19 % ) Event 700 ( 47s elapsed / 18h 47m 46s left ) -> ETA: Thu Apr 11 05:03 XS = 6.1082e+09 pb +- ( 1.04362e+09 pb = 17 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 800 ( 53s elapsed / 18h 40m 33s left ) -> ETA: Thu Apr 11 04:56 XS = 5.78883e+09 pb +- ( 9.3925e+08 pb = 16 % ) Event 900 ( 1m elapsed / 18h 40m 6s left ) -> ETA: Thu Apr 11 04:55 XS = 5.41503e+09 pb +- ( 8.44959e+08 pb = 15 % ) Event 1000 ( 1m 6s elapsed / 18h 30m 33s left ) -> ETA: Thu Apr 11 04:46 XS = 5.63056e+09 pb +- ( 7.99207e+08 pb = 14 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 cb 6 ( -> 2) [( 3.1983e+03,-0.0000e+00,-0.0000e+00, 3.1983e+03), p^2= 0.0000e+00, m= 1.8000e+00] ( 0,605) 0 [I] 1 db 39 ( -> 4) [( 2.7922e+02,-0.0000e+00,-0.0000e+00, 2.7922e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,632) 0 [I] 1 u 65 ( -> 6) [( 4.6791e+00,-0.0000e+00,-0.0000e+00, 4.6791e+00), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 0 [I] 1 db 82 ( -> 8) [( 3.4686e+00,-0.0000e+00,-0.0000e+00, 3.4686e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,650) 0 [I] 1 G 95 ( -> 10) [( 5.4325e+00,-0.0000e+00,-0.0000e+00, 5.4325e+00), p^2= 0.0000e+00, m= 0.0000e+00] (672,668) 0 [I] 1 s 112 ( -> 12) [( 5.3507e+00,-0.0000e+00,-0.0000e+00, 5.3507e+00), p^2= 0.0000e+00, m= 4.0000e-01] (687, 0) 0 and Particle List with 6 elements [I] 1 c 5 ( -> 2) [( 2.7677e+03,-0.0000e+00,-0.0000e+00,-2.7677e+03), p^2= 0.0000e+00, m= 1.8000e+00] (605, 0) 1 [I] 1 G 40 ( -> 4) [( 2.3673e+02,-0.0000e+00,-0.0000e+00,-2.3673e+02), p^2= 0.0000e+00, m= 0.0000e+00] (686,605) 1 [I] 1 u 66 ( -> 6) [( 7.7080e+01,-0.0000e+00,-0.0000e+00,-7.7080e+01), p^2= 0.0000e+00, m= 3.0000e-01] (653, 0) 1 [I] 1 G 83 ( -> 8) [( 9.1855e+01,-0.0000e+00,-0.0000e+00,-9.1855e+01), p^2= 0.0000e+00, m= 0.0000e+00] (631,662) 1 [I] 1 G 96 ( -> 10) [( 1.6490e+02,-0.0000e+00,-0.0000e+00,-1.6490e+02), p^2= 0.0000e+00, m= 0.0000e+00] (675,653) 1 [I] 1 G 113 ( -> 12) [( 1.3433e+02,-0.0000e+00,-0.0000e+00,-1.3433e+02), p^2= 0.0000e+00, m= 0.0000e+00] (662,686) 1 and the corresponding remnants are Particle List with 5 elements [B] 1 ud_0 124 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,687) 0 [B] 1 sb 121 ( -> ) [( 4.0607e-01, 0.0000e+00, 0.0000e+00, 4.0606e-01), p^2= 1.1679e-05, m= 0.0000e+00] ( 0,672) 0 [B] 1 d 90 ( -> ) [( 6.2894e-01, 0.0000e+00, 0.0000e+00, 6.2892e-01), p^2= 2.8017e-05, m= 0.0000e+00] (668, 0) 0 [B] 1 d 60 ( -> ) [( 3.1306e-01, 0.0000e+00, 0.0000e+00, 3.1305e-01), p^2= 6.9414e-06, m= 0.0000e+00] (650, 0) 0 [B] 1 c 34 ( -> ) [( 2.2032e+00, 0.0000e+00, 0.0000e+00, 2.2031e+00), p^2= 3.4380e-04, m= 0.0000e+00] (632, 0) 0 and Particle List with 2 elements [B] 1 ud_0 126 ( -> ) [( 1.7161e+01, 0.0000e+00, 0.0000e+00,-1.7161e+01), p^2= 2.7026e-03, m= 5.7933e-01] ( 0,675) 1 [B] 1 cb 33 ( -> ) [( 1.0248e+01, 0.0000e+00, 0.0000e+00,-1.0248e+01), p^2= 9.6375e-04, m= 0.0000e+00] ( 0,631) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 4.3398e+02,-0.0000e+00,-0.0000e+00, 4.3398e+02), p^2= 0.0000e+00, m= 0.0000e+00] (614,619) 0 [I] 1 G 37 ( -> 4) [( 1.7604e+02,-0.0000e+00,-0.0000e+00, 1.7604e+02), p^2= 0.0000e+00, m= 0.0000e+00] (619,638) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4977e+03,-0.0000e+00,-0.0000e+00,-3.4977e+03), p^2= 0.0000e+00, m= 0.0000e+00] (610,608) 1 [I] 1 db 38 ( -> 4) [( 9.9318e-01,-0.0000e+00,-0.0000e+00,-9.9318e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,610) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 51 ( -> ) [( 2.6910e+03, 0.0000e+00, 0.0000e+00, 2.6910e+03), p^2= 6.3026e-01, m= 5.7933e-01] ( 0,614) 0 [B] 1 u 50 ( -> ) [( 1.9898e+02, 0.0000e+00, 0.0000e+00, 1.9898e+02), p^2= 3.4460e-03, m= 0.0000e+00] (638, 0) 0 and Particle List with 3 elements [B] 1 uu_1 53 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,642) 1 [B] 1 d 47 ( -> ) [( 3.5098e-01, 0.0000e+00, 0.0000e+00,-3.5094e-01), p^2= 2.3824e-05, m= 0.0000e+00] (642, 0) 1 [B] 1 d 52 ( -> ) [( 9.4956e-01, 0.0000e+00, 0.0000e+00,-9.4946e-01), p^2= 1.7438e-04, m= 0.0000e+00] (608, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 2m 8s elapsed / 17h 46m 26s left ) -> ETA: Thu Apr 11 04:03 XS = 5.69608e+09 pb +- ( 6.20379e+08 pb = 10 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 3.4953e+03,-0.0000e+00,-0.0000e+00, 3.4953e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 db 55 ( -> 4) [( 1.4964e+00,-0.0000e+00,-0.0000e+00, 1.4964e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 [I] 1 G 71 ( -> 6) [( 1.0265e+00,-0.0000e+00,-0.0000e+00, 1.0265e+00), p^2= 0.0000e+00, m= 0.0000e+00] (655,653) 0 [I] 1 G 84 ( -> 8) [( 7.1871e-01,-0.0000e+00,-0.0000e+00, 7.1871e-01), p^2= 0.0000e+00, m= 0.0000e+00] (603,668) 0 and Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 7.4647e+02,-0.0000e+00,-0.0000e+00,-7.4647e+02), p^2= 0.0000e+00, m= 0.0000e+00] (608,642) 1 [I] 1 d 56 ( -> 4) [( 5.4794e+02,-0.0000e+00,-0.0000e+00,-5.4794e+02), p^2= 0.0000e+00, m= 3.0000e-01] (642, 0) 1 [I] 1 d 72 ( -> 6) [( 9.2130e+02,-0.0000e+00,-0.0000e+00,-9.2130e+02), p^2= 0.0000e+00, m= 3.0000e-01] (654, 0) 1 [I] 1 G 85 ( -> 8) [( 3.5551e+01,-0.0000e+00,-0.0000e+00,-3.5551e+01), p^2= 0.0000e+00, m= 0.0000e+00] (670,654) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 93 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,655) 0 [B] 1 d 66 ( -> ) [( 4.3409e-01, 0.0000e+00, 0.0000e+00, 4.3405e-01), p^2= 3.3098e-05, m= 0.0000e+00] (653, 0) 0 [B] 1 u 92 ( -> ) [( 9.9785e-01, 0.0000e+00, 0.0000e+00, 9.9776e-01), p^2= 1.7489e-04, m= 0.0000e+00] (668, 0) 0 and Particle List with 2 elements [B] 1 uu_1 94 ( -> ) [( 8.2326e+02, 0.0000e+00, 0.0000e+00,-8.2326e+02), p^2= 1.3652e-01, m= 7.7133e-01] ( 0,670) 1 [B] 1 db 79 ( -> ) [( 4.2548e+02, 0.0000e+00, 0.0000e+00,-4.2548e+02), p^2= 3.6465e-02, m= 0.0000e+00] ( 0,608) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Pythia8 hadronisation failed. Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.001 Event 3000 ( 3m 15s elapsed / 18h 4m 37s left ) -> ETA: Thu Apr 11 04:22  Memory usage increased by 17 MB, now 145 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 5.31752e+09 pb +- ( 4.5982e+08 pb = 8 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Event 4000 ( 4m 19s elapsed / 17h 56m 18s left ) -> ETA: Thu Apr 11 04:15 XS = 5.54998e+09 pb +- ( 3.90453e+08 pb = 7 % ) Event 5000 ( 5m 24s elapsed / 17h 57m 7s left ) -> ETA: Thu Apr 11 04:17 XS = 5.33097e+09 pb +- ( 3.31137e+08 pb = 6 % ) Event 6000 ( 6m 32s elapsed / 18h 4m 32s left ) -> ETA: Thu Apr 11 04:25 XS = 5.18347e+09 pb +- ( 2.94244e+08 pb = 5 % ) Event 7000 ( 7m 39s elapsed / 18h 7m 20s left ) -> ETA: Thu Apr 11 04:29 XS = 5.07687e+09 pb +- ( 2.63527e+08 pb = 5 % ) Event 8000 ( 8m 42s elapsed / 17h 59m 45s left ) -> ETA: Thu Apr 11 04:23 XS = 4.942e+09 pb +- ( 2.37747e+08 pb = 4 % ) Event 9000 ( 9m 49s elapsed / 18h 2m 29s left ) -> ETA: Thu Apr 11 04:27 XS = 4.92484e+09 pb +- ( 2.21165e+08 pb = 4 % ) Event 10000 ( 10m 57s elapsed / 18h 4m 9s left ) -> ETA: Thu Apr 11 04:29 XS = 4.95329e+09 pb +- ( 2.11765e+08 pb = 4 % ) Event 20000 ( 22m 4s elapsed / 18h 1m 52s left ) -> ETA: Thu Apr 11 04:38 XS = 4.93242e+09 pb +- ( 1.5296e+08 pb = 3 % ) Event 30000 ( 33m 19s elapsed / 17h 57m 39s left ) -> ETA: Thu Apr 11 04:45 XS = 4.89799e+09 pb +- ( 1.23967e+08 pb = 2 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 40000 ( 44m 31s elapsed / 17h 48m 32s left ) -> ETA: Thu Apr 11 04:47 XS = 4.81238e+09 pb +- ( 1.02958e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 50000 ( 55m 33s elapsed / 17h 35m 43s left ) -> ETA: Thu Apr 11 04:46 XS = 4.87697e+09 pb +- ( 9.38856e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 60000 ( 1h 6m 47s elapsed / 17h 26m 26s left ) -> ETA: Thu Apr 11 04:48 XS = 4.84565e+09 pb +- ( 8.4918e+07 pb = 1 % ) Event 70000 ( 1h 18m 1s elapsed / 17h 16m 36s left ) -> ETA: Thu Apr 11 04:49 XS = 4.84336e+09 pb +- ( 7.78089e+07 pb = 1 % ) Event 80000 ( 1h 29m 11s elapsed / 17h 5m 44s left ) -> ETA: Thu Apr 11 04:49 XS = 4.88342e+09 pb +- ( 7.33046e+07 pb = 1 % ) Event 90000 ( 1h 40m 24s elapsed / 16h 55m 13s left ) -> ETA: Thu Apr 11 04:50  Memory usage increased by 41 MB, now 186 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.85191e+09 pb +- ( 6.86239e+07 pb = 1 % ) Event 100000 ( 1h 51m 32s elapsed / 16h 43m 49s left ) -> ETA: Thu Apr 11 04:50 XS = 4.86124e+09 pb +- ( 6.52448e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 36m 20s elapsed / 14h 25m 20s left ) -> ETA: Thu Apr 11 04:16  Memory usage increased by 18 MB, now 204 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.86941e+09 pb +- ( 4.60201e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 300000 ( 5h 20m 2s elapsed / 12h 26m 45s left ) -> ETA: Thu Apr 11 04:01  Memory usage increased by 31 MB, now 235 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.83035e+09 pb +- ( 3.74854e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. WARNING: last allowed error message from 'Hadronize' Pythia8 hadronisation failed. Event 400000 ( 7h 10m 22s elapsed / 10h 45m 33s left ) -> ETA: Thu Apr 11 04:10 XS = 4.84661e+09 pb +- ( 3.26067e+07 pb = 0 % ) Event 500000 ( 8h 58m 57s elapsed / 8h 58m 57s left ) -> ETA: Thu Apr 11 04:12  Memory usage increased by 18 MB, now 254 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.83746e+09 pb +- ( 2.90224e+07 pb = 0 % ) Event 600000 ( 10h 47m 24s elapsed / 7h 11m 36s left ) -> ETA: Thu Apr 11 04:13 XS = 4.85012e+09 pb +- ( 2.71091e+07 pb = 0 % ) Event 700000 ( 12h 33m 49s elapsed / 5h 23m 4s left ) -> ETA: Thu Apr 11 04:11 XS = 4.83257e+09 pb +- ( 2.49347e+07 pb = 0 % ) Event 800000 ( 14h 18m elapsed / 3h 34m 30s left ) -> ETA: Thu Apr 11 04:07 XS = 4.83438e+09 pb +- ( 2.3309e+07 pb = 0 % ) Event 900000 ( 16h 34s elapsed / 1h 46m 43s left ) -> ETA: Thu Apr 11 04:02  Memory usage increased by 24 MB, now 279 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 4.83368e+09 pb +- ( 2.19618e+07 pb = 0 % ) Event 1000000 ( 63874 s total ) = 1.35266e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_noWeight/1268){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  4.82616e+09 0 % 2.0749e+07 0.42 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 1000000 Errors { From "Hadronization:Pythia8": 47 (1000047) -> 0 % } New events { From "Beam_Remnants:Parametrised": 3435 (1003482) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Error messages from 'Hadronize' exceeded frequency limit: 47/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 3435 fails in creating good beam breakups. Remnant Kinematics: 3435 errors (no kinematics found) and 712 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 17h 44m 38s on Thu Apr 11 03:59:22 2024 (User: 17h 37m 46s, System: 1m 10s, Children User: 0s, Children System: 0s)