Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Thu Mar 7 21:22:55 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1247 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... <S /()))))~~~~~~~~## + /\ + ............................ (!H (~~)))))~~~~~~#/ + + | + ................ ........... (!E (~~~))))) /|/ + + ............................ (!R (~~~))))) ||| + + + ..... ...................... (!P (~~~~))) /| + + + ............................ (!A> (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mMM[0m [34mMM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m [34mM[0m I [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. [34mPythia8_Hadronisation::Pythia8_Hadronisation[0m:([32m"Initialising Pythia8 hadronisation interface"[0m) [34mPythia8_Hadronisation::ApplyPythiaSettings[0m:([32m"Applying Pythia8 settings"[0m) [34mPythia8_Hadronisation::HarmonizeMasses[0m:([32m"Harmonizing particle masses and widths!"[0m) [34mPythia8_Hadronisation::ModifyPythiaValues[0m:([32m"Changing Pythia Values"[0m) Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) [1m2_2__j__j__j__j[0m : [34m[1m4.95201e+09 pb[0m +- ( [31m2.57792e+07 pb = 0.52058 %[0m ) [1m exp. eff: [31m0.320522 %[0m reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 10d 6h 31m 36s left ) -> ETA: Mon Mar 18 03:54 XS = 25296.5 pb +- ( 25296.5 pb = 100 % ) Event 2 ( 3s elapsed / 5d 5h 20m 46s left ) -> ETA: Wed Mar 13 02:43 XS = 24878.9 pb +- ( 14610.9 pb = 58 % ) Event 3 ( 3s elapsed / 3d 14h 6m 36s left ) -> ETA: Mon Mar 11 11:29 XS = 18661.2 pb +- ( 12058.1 pb = 64 % ) Event 4 ( 3s elapsed / 2d 17h 47m 51s left ) -> ETA: Sun Mar 10 15:10 XS = 14929 pb +- ( 10058.3 pb = 67 % ) Event 5 ( 3s elapsed / 2d 4h 54m 56s left ) -> ETA: Sun Mar 10 02:18 XS = 2.42639e+08 pb +- ( 2.42624e+08 pb = 99 % ) Event 6 ( 3s elapsed / 1d 20h 47m 26s left ) -> ETA: Sat Mar 09 18:10 XS = 2.12086e+08 pb +- ( 2.07319e+08 pb = 97 % ) Event 7 ( 3s elapsed / 1d 15h 28m 58s left ) -> ETA: Sat Mar 09 12:52 XS = 1.4846e+08 pb +- ( 1.45284e+08 pb = 97 % ) Event 8 ( 4s elapsed / 1d 11h 9m 18s left ) -> ETA: Sat Mar 09 08:32 XS = 1.142e+08 pb +- ( 1.11818e+08 pb = 97 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 2.2199e+02,-0.0000e+00,-0.0000e+00, 2.2199e+02), p^2= 0.0000e+00, m= 0.0000e+00] (627,608) 0 [I] 1 G 43 ( -> 4) [( 1.3348e+02,-0.0000e+00,-0.0000e+00, 1.3348e+02), p^2= 0.0000e+00, m= 0.0000e+00] (637,627) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4968e+03,-0.0000e+00,-0.0000e+00,-3.4968e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 1 [I] 1 sb 44 ( -> 4) [( 1.8735e+00,-0.0000e+00,-0.0000e+00,-1.8735e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,603) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 55 ( -> ) [( 2.9051e+03, 0.0000e+00, 0.0000e+00, 2.9051e+03), p^2= 6.7507e-01, m= 5.7933e-01] ( 0,637) 0 [B] 1 u 54 ( -> ) [( 2.3946e+02, 0.0000e+00, 0.0000e+00, 2.3946e+02), p^2= 4.5866e-03, m= 0.0000e+00] (608, 0) 0 and Particle List with 3 elements [B] 1 uu_1 57 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,644) 1 [B] 1 s 51 ( -> ) [( 4.9703e-01, 0.0000e+00, 0.0000e+00,-4.9698e-01), p^2= 4.7339e-05, m= 0.0000e+00] (644, 0) 1 [B] 1 d 56 ( -> ) [( 8.1552e-01, 0.0000e+00, 0.0000e+00,-8.1544e-01), p^2= 1.2744e-04, m= 0.0000e+00] (602, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 9 ( 4s elapsed / 1d 8h 10m 29s left ) -> ETA: Sat Mar 09 05:33 XS = 9.27876e+07 pb +- ( 9.08826e+07 pb = 97 % ) Event 10 ( 4s elapsed / 1d 5h 5m 45s left ) -> ETA: Sat Mar 09 02:28 XS = 1.41289e+09 pb +- ( 1.32801e+09 pb = 93 % ) Event 20 ( 4s elapsed / 17h 15m 20s left ) -> ETA: Fri Mar 08 14:38 XS = 1.31586e+09 pb +- ( 6.94847e+08 pb = 52 % ) Event 30 ( 5s elapsed / 13h 35m 10s left ) -> ETA: Fri Mar 08 10:58 XS = 8.2129e+08 pb +- ( 4.03356e+08 pb = 49 % ) Event 40 ( 6s elapsed / 11h 16m 58s left ) -> ETA: Fri Mar 08 08:40 XS = 6.24296e+08 pb +- ( 3.03075e+08 pb = 48 % ) Event 50 ( 6s elapsed / 9h 42m 23s left ) -> ETA: Fri Mar 08 07:05 XS = 4.23154e+09 pb +- ( 2.19623e+09 pb = 51 % ) Event 60 ( 7s elapsed / 8h 44m 52s left ) -> ETA: Fri Mar 08 06:08 XS = 3.58023e+09 pb +- ( 1.81687e+09 pb = 50 % ) Event 70 ( 8s elapsed / 8h 9m 44s left ) -> ETA: Fri Mar 08 05:32 XS = 3.64002e+09 pb +- ( 1.63951e+09 pb = 45 % ) Event 80 ( 8s elapsed / 7h 38m 42s left ) -> ETA: Fri Mar 08 05:01 XS = 3.21606e+09 pb +- ( 1.44557e+09 pb = 44 % ) Event 90 ( 9s elapsed / 7h 13m 10s left ) -> ETA: Fri Mar 08 04:36 XS = 3.05456e+09 pb +- ( 1.31826e+09 pb = 43 % ) Event 100 ( 10s elapsed / 6h 57m 44s left ) -> ETA: Fri Mar 08 04:20 XS = 2.65181e+09 pb +- ( 1.14396e+09 pb = 43 % ) Event 200 ( 16s elapsed / 5h 44m 18s left ) -> ETA: Fri Mar 08 03:07 XS = 3.36152e+09 pb +- ( 9.04924e+08 pb = 26 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 300 ( 22s elapsed / 5h 12m 7s left ) -> ETA: Fri Mar 08 02:35 XS = 3.92287e+09 pb +- ( 9.97432e+08 pb = 25 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 u 6 ( -> 2) [( 3.4514e+03,-0.0000e+00,-0.0000e+00, 3.4514e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 34 ( -> 4) [( 4.6570e+01,-0.0000e+00,-0.0000e+00, 4.6570e+01), p^2= 0.0000e+00, m= 0.0000e+00] (626,601) 0 [I] 1 db 45 ( -> 6) [( 5.6578e-01,-0.0000e+00,-0.0000e+00, 5.6578e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,626) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 3.2814e+03,-0.0000e+00,-0.0000e+00,-3.2814e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1 [I] 1 ub 35 ( -> 4) [( 2.6905e+01,-0.0000e+00,-0.0000e+00,-2.6905e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,603) 1 [I] 1 G 46 ( -> 6) [( 1.7057e+02,-0.0000e+00,-0.0000e+00,-1.7057e+02), p^2= 0.0000e+00, m= 0.0000e+00] (637,627) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 56 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,639) 0 [B] 1 d 52 ( -> ) [( 3.9620e-01, 0.0000e+00, 0.0000e+00, 3.9616e-01), p^2= 2.6904e-05, m= 0.0000e+00] (639, 0) 0 [B] 1 ub 29 ( -> ) [( 5.6807e-01, 0.0000e+00, 0.0000e+00, 5.6802e-01), p^2= 5.5309e-05, m= 0.0000e+00] ( 0,622) 0 [B] 1 d 55 ( -> ) [( 5.0323e-01, 0.0000e+00, 0.0000e+00, 5.0319e-01), p^2= 4.3404e-05, m= 0.0000e+00] (622, 0) 0 and Particle List with 3 elements [B] 1 ud_0 58 ( -> ) [( 1.8189e+01, 0.0000e+00, 0.0000e+00,-1.8189e+01), p^2= 3.9462e-03, m= 5.7933e-01] ( 0,637) 1 [B] 1 u 40 ( -> ) [( 1.3528e+00, 0.0000e+00, 0.0000e+00,-1.3528e+00), p^2= 2.1827e-05, m= 0.0000e+00] (627, 0) 1 [B] 1 u 57 ( -> ) [( 1.5464e+00, 0.0000e+00, 0.0000e+00,-1.5464e+00), p^2= 2.8523e-05, m= 0.0000e+00] (601, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 400 ( 28s elapsed / 4h 57m 13s left ) -> ETA: Fri Mar 08 02:20 XS = 4.51462e+09 pb +- ( 9.94649e+08 pb = 22 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 sb 6 ( -> 2) [( 8.5352e+02,-0.0000e+00,-0.0000e+00, 8.5352e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,615) 0 [I] 1 G 42 ( -> 4) [( 2.3714e+02,-0.0000e+00,-0.0000e+00, 2.3714e+02), p^2= 0.0000e+00, m= 0.0000e+00] (635,632) 0 [I] 1 ub 56 ( -> 6) [( 1.4561e+02,-0.0000e+00,-0.0000e+00, 1.4561e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,635) 0 [I] 1 G 75 ( -> 8) [( 1.4123e+02,-0.0000e+00,-0.0000e+00, 1.4123e+02), p^2= 0.0000e+00, m= 0.0000e+00] (615,671) 0 [I] 1 G 97 ( -> 10) [( 6.5733e+02,-0.0000e+00,-0.0000e+00, 6.5733e+02), p^2= 0.0000e+00, m= 0.0000e+00] (671,681) 0 [I] 1 d 113 ( -> 12) [( 5.9327e+02,-0.0000e+00,-0.0000e+00, 5.9327e+02), p^2= 0.0000e+00, m= 3.0000e-01] (681, 0) 0 and Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 3.0250e+03,-0.0000e+00,-0.0000e+00,-3.0250e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 d 43 ( -> 4) [( 3.4850e+01,-0.0000e+00,-0.0000e+00,-3.4850e+01), p^2= 0.0000e+00, m= 3.0000e-01] (603, 0) 1 [I] 1 G 57 ( -> 6) [( 3.6301e+02,-0.0000e+00,-0.0000e+00,-3.6301e+02), p^2= 0.0000e+00, m= 0.0000e+00] (647,601) 1 [I] 1 G 76 ( -> 8) [( 6.1458e+01,-0.0000e+00,-0.0000e+00,-6.1458e+01), p^2= 0.0000e+00, m= 0.0000e+00] (672,647) 1 [I] 1 G 98 ( -> 10) [( 1.3784e+01,-0.0000e+00,-0.0000e+00,-1.3784e+01), p^2= 0.0000e+00, m= 0.0000e+00] (685,672) 1 [I] 1 ub 114 ( -> 12) [( 8.5455e-01,-0.0000e+00,-0.0000e+00,-8.5455e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,685) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 125 ( -> ) [( 6.1732e+02, 0.0000e+00, 0.0000e+00, 6.1732e+02), p^2= 1.0994e-01, m= 7.7133e-01] ( 0,654) 0 [B] 1 u 70 ( -> ) [( 1.5332e+00, 0.0000e+00, 0.0000e+00, 1.5332e+00), p^2= 6.7817e-07, m= 0.0000e+00] (654, 0) 0 [B] 1 s 37 ( -> ) [( 2.5304e+02, 0.0000e+00, 0.0000e+00, 2.5304e+02), p^2= 1.8471e-02, m= 0.0000e+00] (632, 0) 0 and Particle List with 2 elements [B] 1 uu_1 126 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,706) 1 [B] 1 u 122 ( -> ) [( 1.0290e+00, 0.0000e+00, 0.0000e+00,-1.0288e+00), p^2= 2.5880e-04, m= 0.0000e+00] (706, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 34s elapsed / 4h 49m 5s left ) -> ETA: Fri Mar 08 02:12 XS = 4.24455e+09 pb +- ( 8.40624e+08 pb = 19 % ) Event 600 ( 40s elapsed / 4h 37m 31s left ) -> ETA: Fri Mar 08 02:01 XS = 4.38651e+09 pb +- ( 7.60672e+08 pb = 17 % ) Event 700 ( 46s elapsed / 4h 34m 20s left ) -> ETA: Fri Mar 08 01:58 XS = 4.40169e+09 pb +- ( 6.82244e+08 pb = 15 % ) Event 800 ( 52s elapsed / 4h 33m 32s left ) -> ETA: Fri Mar 08 01:57 XS = 4.17592e+09 pb +- ( 6.09888e+08 pb = 14 % ) Event 900 ( 59s elapsed / 4h 35m 23s left ) -> ETA: Fri Mar 08 01:59 XS = 4.24857e+09 pb +- ( 5.8593e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 G 5 ( -> 2) [( 5.2600e+02,-0.0000e+00,-0.0000e+00, 5.2600e+02), p^2= 0.0000e+00, m= 0.0000e+00] (634,627) 0 [I] 1 G 42 ( -> 4) [( 4.6724e+02,-0.0000e+00,-0.0000e+00, 4.6724e+02), p^2= 0.0000e+00, m= 0.0000e+00] (642,634) 0 [I] 1 u 54 ( -> 6) [( 2.4809e+02,-0.0000e+00,-0.0000e+00, 2.4809e+02), p^2= 0.0000e+00, m= 3.0000e-01] (627, 0) 0 [I] 1 d 66 ( -> 8) [( 6.8625e+02,-0.0000e+00,-0.0000e+00, 6.8625e+02), p^2= 0.0000e+00, m= 3.0000e-01] (654, 0) 0 [I] 1 G 79 ( -> 10) [( 3.8160e+02,-0.0000e+00,-0.0000e+00, 3.8160e+02), p^2= 0.0000e+00, m= 0.0000e+00] (672,654) 0 [I] 1 G 93 ( -> 12) [( 2.0190e+02, 0.0000e+00, 0.0000e+00, 2.0190e+02), p^2= 0.0000e+00, m= 0.0000e+00] (679,672) 0 [I] 1 G 102 ( -> 14) [( 4.3537e+02,-0.0000e+00,-0.0000e+00, 4.3537e+02), p^2= 0.0000e+00, m= 0.0000e+00] (684,679) 0 and Particle List with 7 elements [I] 1 u 6 ( -> 2) [( 3.4314e+03,-0.0000e+00,-0.0000e+00,-3.4314e+03), p^2= 0.0000e+00, m= 3.0000e-01] (609, 0) 1 [I] 1 G 43 ( -> 4) [( 4.2565e+00,-0.0000e+00,-0.0000e+00,-4.2565e+00), p^2= 0.0000e+00, m= 0.0000e+00] (640,647) 1 [I] 1 G 55 ( -> 6) [( 5.6665e+01,-0.0000e+00,-0.0000e+00,-5.6665e+01), p^2= 0.0000e+00, m= 0.0000e+00] (647,652) 1 [I] 1 G 67 ( -> 8) [( 5.2749e-01,-0.0000e+00,-0.0000e+00,-5.2749e-01), p^2= 0.0000e+00, m= 0.0000e+00] (657,609) 1 [I] 1 G 80 ( -> 10) [( 3.7827e+00,-0.0000e+00,-0.0000e+00,-3.7827e+00), p^2= 0.0000e+00, m= 0.0000e+00] (652,673) 1 [I] 1 db 94 ( -> 12) [( 3.8170e-01, 0.0000e+00, 0.0000e+00,-3.8170e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,657) 1 [I] 1 G 103 ( -> 14) [( 1.0633e+00,-0.0000e+00,-0.0000e+00,-1.0633e+00), p^2= 0.0000e+00, m= 0.0000e+00] (673,686) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 113 ( -> ) [( 4.2676e+02, 0.0000e+00, 0.0000e+00, 4.2676e+02), p^2= 8.2756e-02, m= 5.7933e-01] ( 0,684) 0 [B] 1 db 74 ( -> ) [( 1.2679e+02, 0.0000e+00, 0.0000e+00, 1.2679e+02), p^2= 7.3051e-03, m= 0.0000e+00] ( 0,642) 0 and Particle List with 4 elements [B] 1 uu_1 115 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,680) 1 [B] 1 d 97 ( -> ) [( 7.2874e-01, 0.0000e+00, 0.0000e+00,-7.2869e-01), p^2= 6.8744e-05, m= 0.0000e+00] (680, 0) 1 [B] 1 ub 37 ( -> ) [( 3.0271e-01, 0.0000e+00, 0.0000e+00,-3.0269e-01), p^2= 1.1862e-05, m= 0.0000e+00] ( 0,640) 1 [B] 1 d 114 ( -> ) [( 9.1159e-01, 0.0000e+00, 0.0000e+00,-9.1153e-01), p^2= 1.0757e-04, m= 0.0000e+00] (686, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 1000 ( 1m 5s elapsed / 4h 30m 59s left ) -> ETA: Fri Mar 08 01:55 [1m Memory usage increased by 16 MB, now 145 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.33536e+09 pb +- ( 5.49844e+08 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 3.4002e+03,-0.0000e+00,-0.0000e+00, 3.4002e+03), p^2= 0.0000e+00, m= 0.0000e+00] (623,621) 0 [I] 1 G 86 ( -> 4) [( 9.3920e+01,-0.0000e+00,-0.0000e+00, 9.3920e+01), p^2= 0.0000e+00, m= 0.0000e+00] (621,698) 0 [I] 1 G 107 ( -> 6) [( 2.8151e+00,-0.0000e+00,-0.0000e+00, 2.8151e+00), p^2= 0.0000e+00, m= 0.0000e+00] (704,623) 0 [I] 1 ub 118 ( -> 8) [( 1.8099e+00,-0.0000e+00,-0.0000e+00, 1.8099e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,716) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 1.2682e+03,-0.0000e+00,-0.0000e+00,-1.2682e+03), p^2= 0.0000e+00, m= 0.0000e+00] (683,631) 1 [I] 1 G 87 ( -> 4) [( 4.1293e+02,-0.0000e+00,-0.0000e+00,-4.1293e+02), p^2= 0.0000e+00, m= 0.0000e+00] (688,683) 1 [I] 1 d 108 ( -> 6) [( 1.0354e+03,-0.0000e+00,-0.0000e+00,-1.0354e+03), p^2= 0.0000e+00, m= 3.0000e-01] (631, 0) 1 [I] 1 G 119 ( -> 8) [( 6.4414e+02,-0.0000e+00,-0.0000e+00,-6.4414e+02), p^2= 0.0000e+00, m= 0.0000e+00] (714,688) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 131 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,704) 0 [B] 1 u 127 ( -> ) [( 3.1981e-01, 0.0000e+00, 0.0000e+00, 3.1978e-01), p^2= 1.9965e-05, m= 0.0000e+00] (698, 0) 0 [B] 1 u 130 ( -> ) [( 9.6868e-01, 0.0000e+00, 0.0000e+00, 9.6858e-01), p^2= 1.8317e-04, m= 0.0000e+00] (716, 0) 0 and Particle List with 1 elements [B] 1 uu_1 132 ( -> ) [( 1.3926e+02, 0.0000e+00, 0.0000e+00,-1.3926e+02), p^2= 3.5028e-02, m= 7.7133e-01] ( 0,714) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 2m 8s elapsed / 4h 25m 31s left ) -> ETA: Fri Mar 08 01:50 XS = 4.24779e+09 pb +- ( 3.59308e+08 pb = 8 % ) Event 3000 ( 3m 9s elapsed / 4h 19m 28s left ) -> ETA: Fri Mar 08 01:45 XS = 4.25843e+09 pb +- ( 2.90977e+08 pb = 6 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Event 4000 ( 4m 10s elapsed / 4h 16m 55s left ) -> ETA: Fri Mar 08 01:44 XS = 4.71148e+09 pb +- ( 3.00211e+08 pb = 6 % ) Event 5000 ( 5m 17s elapsed / 4h 19m 9s left ) -> ETA: Fri Mar 08 01:47 [1m Memory usage increased by 40 MB, now 186 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.67712e+09 pb +- ( 2.63719e+08 pb = 5 % ) Event 6000 ( 6m 22s elapsed / 4h 18m 56s left ) -> ETA: Fri Mar 08 01:48 XS = 4.72814e+09 pb +- ( 2.45702e+08 pb = 5 % ) Event 7000 ( 7m 26s elapsed / 4h 18m 18s left ) -> ETA: Fri Mar 08 01:48 XS = 4.83305e+09 pb +- ( 2.34048e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 8000 ( 8m 29s elapsed / 4h 17m 4s left ) -> ETA: Fri Mar 08 01:48 [1m Memory usage increased by 18 MB, now 204 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.92693e+09 pb +- ( 2.18395e+08 pb = 4 % ) Event 9000 ( 9m 33s elapsed / 4h 16m 4s left ) -> ETA: Fri Mar 08 01:48 XS = 4.8694e+09 pb +- ( 2.0431e+08 pb = 4 % ) Event 10000 ( 10m 37s elapsed / 4h 14m 57s left ) -> ETA: Fri Mar 08 01:48 XS = 4.93816e+09 pb +- ( 2.01921e+08 pb = 4 % ) Pythia8 hadronisation failed. Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 20000 ( 21m 18s elapsed / 4h 5m 7s left ) -> ETA: Fri Mar 08 01:49 XS = 5.15046e+09 pb +- ( 1.68158e+08 pb = 3 % ) Event 30000 ( 32m 1s elapsed / 3h 54m 53s left ) -> ETA: Fri Mar 08 01:49 XS = 5.02e+09 pb +- ( 1.28916e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 40000 ( 42m 49s elapsed / 3h 44m 50s left ) -> ETA: Fri Mar 08 01:50 XS = 4.96328e+09 pb +- ( 1.09707e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 50000 ( 53m 36s elapsed / 3h 34m 26s left ) -> ETA: Fri Mar 08 01:51 XS = 4.99087e+09 pb +- ( 9.75367e+07 pb = 1 % ) Event 60000 ( 1h 4m 24s elapsed / 3h 23m 57s left ) -> ETA: Fri Mar 08 01:51 XS = 4.98415e+09 pb +- ( 8.81602e+07 pb = 1 % ) Event 70000 ( 1h 15m 8s elapsed / 3h 13m 14s left ) -> ETA: Fri Mar 08 01:51 XS = 4.9693e+09 pb +- ( 8.10295e+07 pb = 1 % ) Event 80000 ( 1h 26m 7s elapsed / 3h 3m 1s left ) -> ETA: Fri Mar 08 01:52 XS = 4.94643e+09 pb +- ( 7.50891e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 90000 ( 1h 36m 52s elapsed / 2h 52m 14s left ) -> ETA: Fri Mar 08 01:52 XS = 4.96049e+09 pb +- ( 7.08048e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 100000 ( 1h 47m 32s elapsed / 2h 41m 18s left ) -> ETA: Fri Mar 08 01:51 XS = 4.96986e+09 pb +- ( 6.75587e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 37m 35s elapsed / 54m 23s left ) -> ETA: Fri Mar 08 01:55 [1m Memory usage increased by 19 MB, now 224 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.86169e+09 pb +- ( 4.73756e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 250000 ( 16288 s total ) = 1.32611e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. [31mRivet_Interface::Finish([32mAnalysis_Alaric_Final_noWeight/1247[31m)[0m[31m{[0m [31m}[0m -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- [1mNominal [0m[34m[1m 4.85338e+09[0m[33m 0 %[31m 4.20242e+07 0.86 %[0m -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 250000 Errors { From "Hadronization:Pythia8": 12 (250012) -> 0 % } New events { From "Beam_Remnants:Parametrised": 789 (250801) -> 0.3 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 789 fails in creating good beam breakups. Remnant Kinematics: 789 errors (no kinematics found) and 149 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 4h 31m 35s on Fri Mar 8 01:54:31 2024 (User: 4h 29m 26s, System: 1m 6s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu1.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Mon Apr 8 13:57:17 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1247 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... <S /()))))~~~~~~~~## + /\ + ............................ (!H (~~)))))~~~~~~#/ + + | + ................ ........... (!E (~~~))))) /|/ + + ............................ (!R (~~~))))) ||| + + + ..... ...................... (!P (~~~~))) /| + + + ............................ (!A> (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mMM[0m [34mMM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m [34mM[0m I [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. [34mPythia8_Hadronisation::Pythia8_Hadronisation[0m:([32m"Initialising Pythia8 hadronisation interface"[0m) [34mPythia8_Hadronisation::ApplyPythiaSettings[0m:([32m"Applying Pythia8 settings"[0m) [34mPythia8_Hadronisation::HarmonizeMasses[0m:([32m"Harmonizing particle masses and widths!"[0m) [34mPythia8_Hadronisation::ModifyPythiaValues[0m:([32m"Changing Pythia Values"[0m) Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) [1m2_2__j__j__j__j[0m : [34m[1m4.95201e+09 pb[0m +- ( [31m2.57792e+07 pb = 0.52058 %[0m ) [1m exp. eff: [31m0.320522 %[0m reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 1d 5m 46s left ) -> ETA: Tue Apr 09 14:03 XS = 25296.5 pb +- ( 25296.5 pb = 100 % ) Event 2 ( 3s elapsed / 12h 21m 36s left ) -> ETA: Tue Apr 09 02:19 XS = 10118.6 pb +- ( 10118.6 pb = 99 % ) Event 3 ( 3s elapsed / 8h 18m 33s left ) -> ETA: Mon Apr 08 22:15 XS = 111865 pb +- ( 104825 pb = 93 % ) Event 4 ( 3s elapsed / 6h 15m 58s left ) -> ETA: Mon Apr 08 20:13 XS = 9.47644e+09 pb +- ( 9.47634e+09 pb = 99 % ) Event 5 ( 3s elapsed / 5h 8m 16s left ) -> ETA: Mon Apr 08 19:05 XS = 7.28957e+09 pb +- ( 7.28949e+09 pb = 99 % ) Event 6 ( 3s elapsed / 4h 18m 16s left ) -> ETA: Mon Apr 08 18:15 XS = 5.9228e+09 pb +- ( 5.92271e+09 pb = 99 % ) Event 7 ( 3s elapsed / 3h 43m 44s left ) -> ETA: Mon Apr 08 17:41 XS = 5.00777e+09 pb +- ( 4.98647e+09 pb = 99 % ) Event 8 ( 3s elapsed / 3h 16m 48s left ) -> ETA: Mon Apr 08 17:14 XS = 4.54604e+09 pb +- ( 4.51093e+09 pb = 99 % ) Event 9 ( 3s elapsed / 2h 56m 19s left ) -> ETA: Mon Apr 08 16:53 XS = 3.67832e+09 pb +- ( 3.64346e+09 pb = 99 % ) Event 10 ( 3s elapsed / 2h 41m 36s left ) -> ETA: Mon Apr 08 16:39 XS = 3.2978e+09 pb +- ( 3.26668e+09 pb = 99 % ) Event 20 ( 4s elapsed / 1h 34m 42s left ) -> ETA: Mon Apr 08 15:32 XS = 2.12607e+09 pb +- ( 2.10543e+09 pb = 99 % ) Event 30 ( 5s elapsed / 1h 10m 44s left ) -> ETA: Mon Apr 08 15:08 XS = 1.51992e+09 pb +- ( 1.50395e+09 pb = 98 % ) Event 40 ( 5s elapsed / 57m 49s left ) -> ETA: Mon Apr 08 14:55 XS = 3.56245e+09 pb +- ( 1.98958e+09 pb = 55 % ) Event 50 ( 6s elapsed / 53m 58s left ) -> ETA: Mon Apr 08 14:51 XS = 3.2558e+09 pb +- ( 1.51377e+09 pb = 46 % ) Event 60 ( 7s elapsed / 50m 1s left ) -> ETA: Mon Apr 08 14:47 XS = 2.70646e+09 pb +- ( 1.2519e+09 pb = 46 % ) Event 70 ( 7s elapsed / 46m left ) -> ETA: Mon Apr 08 14:43 XS = 2.37283e+09 pb +- ( 1.04424e+09 pb = 44 % ) Event 80 ( 8s elapsed / 43m 39s left ) -> ETA: Mon Apr 08 14:41 XS = 2.1856e+09 pb +- ( 9.2957e+08 pb = 42 % ) Event 90 ( 8s elapsed / 41m 19s left ) -> ETA: Mon Apr 08 14:38 XS = 2.29403e+09 pb +- ( 8.94566e+08 pb = 38 % ) Event 100 ( 9s elapsed / 40m 15s left ) -> ETA: Mon Apr 08 14:37 XS = 2.08796e+09 pb +- ( 7.82341e+08 pb = 37 % ) Event 200 ( 16s elapsed / 33m 22s left ) -> ETA: Mon Apr 08 14:30 XS = 3.07954e+09 pb +- ( 9.08906e+08 pb = 29 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 d 5 ( -> 2) [( 2.6267e+03,-0.0000e+00,-0.0000e+00, 2.6267e+03), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 0 [I] 1 ub 44 ( -> 4) [( 7.6734e+02,-0.0000e+00,-0.0000e+00, 7.6734e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,605) 0 [I] 1 s 69 ( -> 6) [( 7.6237e+01,-0.0000e+00,-0.0000e+00, 7.6237e+01), p^2= 0.0000e+00, m= 4.0000e-01] (662, 0) 0 [I] 1 u 86 ( -> 8) [( 2.3554e+00,-0.0000e+00,-0.0000e+00, 2.3554e+00), p^2= 0.0000e+00, m= 3.0000e-01] (666, 0) 0 [I] 1 G 98 ( -> 10) [( 2.5901e+01,-0.0000e+00,-0.0000e+00, 2.5901e+01), p^2= 0.0000e+00, m= 0.0000e+00] (680,666) 0 and Particle List with 5 elements [I] 1 G 6 ( -> 2) [( 2.2664e+03,-0.0000e+00,-0.0000e+00,-2.2664e+03), p^2= 0.0000e+00, m= 0.0000e+00] (607,606) 1 [I] 1 G 45 ( -> 4) [( 3.5970e+02,-0.0000e+00,-0.0000e+00,-3.5970e+02), p^2= 0.0000e+00, m= 0.0000e+00] (650,607) 1 [I] 1 G 70 ( -> 6) [( 5.0204e+02,-0.0000e+00,-0.0000e+00,-5.0204e+02), p^2= 0.0000e+00, m= 0.0000e+00] (657,650) 1 [I] 1 G 87 ( -> 8) [( 1.3138e+02,-0.0000e+00,-0.0000e+00,-1.3138e+02), p^2= 0.0000e+00, m= 0.0000e+00] (606,669) 1 [I] 1 sb 99 ( -> 10) [( 5.3909e+01,-0.0000e+00,-0.0000e+00,-5.3909e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,675) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 110 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,680) 0 [B] 1 sb 81 ( -> ) [( 1.5070e+00, 0.0000e+00, 0.0000e+00, 1.5068e+00), p^2= 3.7903e-04, m= 0.0000e+00] ( 0,662) 0 and Particle List with 3 elements [B] 1 ud_0 113 ( -> ) [( 1.5670e+02, 0.0000e+00, 0.0000e+00,-1.5670e+02), p^2= 3.3102e-02, m= 5.7933e-01] ( 0,657) 1 [B] 1 s 107 ( -> ) [( 1.2508e+00, 0.0000e+00, 0.0000e+00,-1.2508e+00), p^2= 2.1091e-06, m= 0.0000e+00] (669, 0) 1 [B] 1 u 112 ( -> ) [( 2.8637e+01, 0.0000e+00, 0.0000e+00,-2.8637e+01), p^2= 1.1055e-03, m= 0.0000e+00] (675, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 300 ( 22s elapsed / 31m 27s left ) -> ETA: Mon Apr 08 14:29 XS = 3.95867e+09 pb +- ( 9.0266e+08 pb = 22 % ) Event 400 ( 29s elapsed / 30m 6s left ) -> ETA: Mon Apr 08 14:27 XS = 4.24132e+09 pb +- ( 8.09404e+08 pb = 19 % ) Event 500 ( 36s elapsed / 29m 45s left ) -> ETA: Mon Apr 08 14:27 XS = 3.87308e+09 pb +- ( 6.66082e+08 pb = 17 % ) Event 600 ( 43s elapsed / 29m 17s left ) -> ETA: Mon Apr 08 14:27 XS = 3.8709e+09 pb +- ( 5.95896e+08 pb = 15 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 6 ( -> 2) [( 2.5132e+03,-0.0000e+00,-0.0000e+00, 2.5132e+03), p^2= 0.0000e+00, m= 0.0000e+00] (635,606) 0 [I] 1 d 83 ( -> 4) [( 1.7722e+02,-0.0000e+00,-0.0000e+00, 1.7722e+02), p^2= 0.0000e+00, m= 3.0000e-01] (606, 0) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4939e+03,-0.0000e+00,-0.0000e+00,-3.4939e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 sb 84 ( -> 4) [( 4.6622e+00,-0.0000e+00,-0.0000e+00,-4.6622e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,674) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 uu_1 98 ( -> ) [( 8.0962e+02, 0.0000e+00, 0.0000e+00, 8.0962e+02), p^2= 2.0364e-01, m= 7.7133e-01] ( 0,635) 0 and Particle List with 3 elements [B] 1 ud_0 100 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,601) 1 [B] 1 s 95 ( -> ) [( 6.6198e-01, 0.0000e+00, 0.0000e+00,-6.6192e-01), p^2= 7.5285e-05, m= 0.0000e+00] (603, 0) 1 [B] 1 u 99 ( -> ) [( 8.0205e-01, 0.0000e+00, 0.0000e+00,-8.0198e-01), p^2= 1.1052e-04, m= 0.0000e+00] (674, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 700 ( 49s elapsed / 28m 21s left ) -> ETA: Mon Apr 08 14:26 XS = 4.04536e+09 pb +- ( 5.43902e+08 pb = 13 % ) Event 800 ( 55s elapsed / 27m 45s left ) -> ETA: Mon Apr 08 14:26 XS = 3.93583e+09 pb +- ( 4.92416e+08 pb = 12 % ) Event 900 ( 1m 2s elapsed / 27m 47s left ) -> ETA: Mon Apr 08 14:26 XS = 3.99501e+09 pb +- ( 4.65194e+08 pb = 11 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 3.4736e+03,-0.0000e+00,-0.0000e+00, 3.4736e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 0 [I] 1 G 57 ( -> 4) [( 2.0526e+01,-0.0000e+00,-0.0000e+00, 2.0526e+01), p^2= 0.0000e+00, m= 0.0000e+00] (646,603) 0 [I] 1 G 71 ( -> 6) [( 2.7872e+00,-0.0000e+00,-0.0000e+00, 2.7872e+00), p^2= 0.0000e+00, m= 0.0000e+00] (664,646) 0 [I] 1 ub 80 ( -> 8) [( 1.7196e+00,-0.0000e+00,-0.0000e+00, 1.7196e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,664) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 8.9078e+02,-0.0000e+00,-0.0000e+00,-8.9078e+02), p^2= 0.0000e+00, m= 0.0000e+00] (613,628) 1 [I] 1 G 58 ( -> 4) [( 1.5620e+02,-0.0000e+00,-0.0000e+00,-1.5620e+02), p^2= 0.0000e+00, m= 0.0000e+00] (654,613) 1 [I] 1 G 72 ( -> 6) [( 2.8802e+02,-0.0000e+00,-0.0000e+00,-2.8802e+02), p^2= 0.0000e+00, m= 0.0000e+00] (665,654) 1 [I] 1 u 81 ( -> 8) [( 9.0479e+02,-0.0000e+00,-0.0000e+00,-9.0479e+02), p^2= 0.0000e+00, m= 3.0000e-01] (628, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 91 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,676) 0 [B] 1 u 87 ( -> ) [( 9.2030e-01, 0.0000e+00, 0.0000e+00, 9.2021e-01), p^2= 1.6022e-04, m= 0.0000e+00] (676, 0) 0 [B] 1 u 90 ( -> ) [( 4.0928e-01, 0.0000e+00, 0.0000e+00, 4.0925e-01), p^2= 3.1689e-05, m= 0.0000e+00] (602, 0) 0 and Particle List with 1 elements [B] 1 ud_0 92 ( -> ) [( 1.2602e+03, 0.0000e+00, 0.0000e+00,-1.2602e+03), p^2= 3.1698e-01, m= 5.7933e-01] ( 0,665) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 1000 ( 1m 9s elapsed / 27m 41s left ) -> ETA: Mon Apr 08 14:26 XS = 4.07107e+09 pb +- ( 4.45191e+08 pb = 10 % ) Pythia8 hadronisation failed. Event 2000 ( 2m 13s elapsed / 25m 37s left ) -> ETA: Mon Apr 08 14:25 XS = 4.44213e+09 pb +- ( 3.67977e+08 pb = 8 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 3.4697e+03,-0.0000e+00,-0.0000e+00, 3.4697e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 0 [I] 1 G 52 ( -> 4) [( 2.1840e+01,-0.0000e+00,-0.0000e+00, 2.1840e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,643) 0 [I] 1 G 70 ( -> 6) [( 6.6282e+00,-0.0000e+00,-0.0000e+00, 6.6282e+00), p^2= 0.0000e+00, m= 0.0000e+00] (643,603) 0 [I] 1 db 81 ( -> 8) [( 6.3882e-01,-0.0000e+00,-0.0000e+00, 6.3882e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,656) 0 and Particle List with 4 elements [I] 1 db 5 ( -> 2) [( 1.5915e+03,-0.0000e+00,-0.0000e+00,-1.5915e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,603) 1 [I] 1 sb 53 ( -> 4) [( 3.2258e+02,-0.0000e+00,-0.0000e+00,-3.2258e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,634) 1 [I] 1 G 71 ( -> 6) [( 1.3406e+02,-0.0000e+00,-0.0000e+00,-1.3406e+02), p^2= 0.0000e+00, m= 0.0000e+00] (603,649) 1 [I] 1 G 82 ( -> 8) [( 3.5876e+02,-0.0000e+00,-0.0000e+00,-3.5876e+02), p^2= 0.0000e+00, m= 0.0000e+00] (654,645) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 92 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,604) 0 [B] 1 d 88 ( -> ) [( 5.9284e-01, 0.0000e+00, 0.0000e+00, 5.9278e-01), p^2= 7.6806e-05, m= 0.0000e+00] (603, 0) 0 [B] 1 d 91 ( -> ) [( 5.5809e-01, 0.0000e+00, 0.0000e+00, 5.5803e-01), p^2= 6.8065e-05, m= 0.0000e+00] (656, 0) 0 and Particle List with 4 elements [B] 1 uu_1 94 ( -> ) [( 5.9520e+02, 0.0000e+00, 0.0000e+00,-5.9520e+02), p^2= 8.1517e-02, m= 7.7133e-01] ( 0,654) 1 [B] 1 s 65 ( -> ) [( 2.9659e+00, 0.0000e+00, 0.0000e+00,-2.9659e+00), p^2= 2.0240e-06, m= 0.0000e+00] (645, 0) 1 [B] 1 d 47 ( -> ) [( 5.4365e-01, 0.0000e+00, 0.0000e+00,-5.4365e-01), p^2= 6.8007e-08, m= 0.0000e+00] (634, 0) 1 [B] 1 d 93 ( -> ) [( 4.9442e+02, 0.0000e+00, 0.0000e+00,-4.9442e+02), p^2= 5.6248e-02, m= 0.0000e+00] (649, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 11 elements [I] 1 G 6 ( -> 2) [( 6.2578e+02,-0.0000e+00,-0.0000e+00, 6.2578e+02), p^2= 0.0000e+00, m= 0.0000e+00] (606,602) 0 [I] 1 G 33 ( -> 4) [( 2.0478e+02,-0.0000e+00,-0.0000e+00, 2.0478e+02), p^2= 0.0000e+00, m= 0.0000e+00] (625,606) 0 [I] 1 d 49 ( -> 6) [( 5.4542e+01,-0.0000e+00,-0.0000e+00, 5.4542e+01), p^2= 0.0000e+00, m= 3.0000e-01] (639, 0) 0 [I] 1 u 67 ( -> 8) [( 1.9347e+02,-0.0000e+00,-0.0000e+00, 1.9347e+02), p^2= 0.0000e+00, m= 3.0000e-01] (602, 0) 0 [I] 1 G 85 ( -> 10) [( 1.6617e+02,-0.0000e+00,-0.0000e+00, 1.6617e+02), p^2= 0.0000e+00, m= 0.0000e+00] (666,639) 0 [I] 1 G 104 ( -> 12) [( 2.4403e+01,-0.0000e+00,-0.0000e+00, 2.4403e+01), p^2= 0.0000e+00, m= 0.0000e+00] (675,666) 0 [I] 1 G 117 ( -> 14) [( 5.0951e+02,-0.0000e+00,-0.0000e+00, 5.0951e+02), p^2= 0.0000e+00, m= 0.0000e+00] (685,675) 0 [I] 1 G 136 ( -> 16) [( 1.7770e+02,-0.0000e+00,-0.0000e+00, 1.7770e+02), p^2= 0.0000e+00, m= 0.0000e+00] (696,685) 0 [I] 1 u 150 ( -> 18) [( 6.1478e+02,-0.0000e+00,-0.0000e+00, 6.1478e+02), p^2= 0.0000e+00, m= 3.0000e-01] (702, 0) 0 [I] 1 u 163 ( -> 20) [( 2.4801e+02,-0.0000e+00,-0.0000e+00, 2.4801e+02), p^2= 0.0000e+00, m= 3.0000e-01] (711, 0) 0 [I] 1 G 176 ( -> 22) [( 2.0047e+02,-0.0000e+00,-0.0000e+00, 2.0047e+02), p^2= 0.0000e+00, m= 0.0000e+00] (723,711) 0 and Particle List with 11 elements [I] 1 G 5 ( -> 2) [( 1.8413e+02,-0.0000e+00,-0.0000e+00,-1.8413e+02), p^2= 0.0000e+00, m= 0.0000e+00] (610,622) 1 [I] 1 G 34 ( -> 4) [( 3.0121e+02,-0.0000e+00,-0.0000e+00,-3.0121e+02), p^2= 0.0000e+00, m= 0.0000e+00] (628,610) 1 [I] 1 d 50 ( -> 6) [( 1.4609e+03,-0.0000e+00,-0.0000e+00,-1.4609e+03), p^2= 0.0000e+00, m= 3.0000e-01] (622, 0) 1 [I] 1 G 68 ( -> 8) [( 1.1582e+03,-0.0000e+00,-0.0000e+00,-1.1582e+03), p^2= 0.0000e+00, m= 0.0000e+00] (650,628) 1 [I] 1 G 86 ( -> 10) [( 2.3717e+02,-0.0000e+00,-0.0000e+00,-2.3717e+02), p^2= 0.0000e+00, m= 0.0000e+00] (670,650) 1 [I] 1 G 105 ( -> 12) [( 9.3259e+00,-0.0000e+00,-0.0000e+00,-9.3259e+00), p^2= 0.0000e+00, m= 0.0000e+00] (672,670) 1 [I] 1 G 118 ( -> 14) [( 1.3781e+02,-0.0000e+00,-0.0000e+00,-1.3781e+02), p^2= 0.0000e+00, m= 0.0000e+00] (680,672) 1 [I] 1 G 137 ( -> 16) [( 2.2923e+00,-0.0000e+00,-0.0000e+00,-2.2923e+00), p^2= 0.0000e+00, m= 0.0000e+00] (694,680) 1 [I] 1 d 151 ( -> 18) [( 9.5487e-01,-0.0000e+00,-0.0000e+00,-9.5487e-01), p^2= 0.0000e+00, m= 3.0000e-01] (701, 0) 1 [I] 1 G 164 ( -> 20) [( 4.5689e+00,-0.0000e+00,-0.0000e+00,-4.5689e+00), p^2= 0.0000e+00, m= 0.0000e+00] (713,701) 1 [I] 1 G 177 ( -> 22) [( 1.8248e+00,-0.0000e+00,-0.0000e+00,-1.8248e+00), p^2= 0.0000e+00, m= 0.0000e+00] (711,713) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 185 ( -> ) [( 4.1597e+02, 0.0000e+00, 0.0000e+00, 4.1597e+02), p^2= 9.0601e-02, m= 5.7933e-01] ( 0,723) 0 [B] 1 ub 171 ( -> ) [( 1.6861e+01, 0.0000e+00, 0.0000e+00, 1.6861e+01), p^2= 1.4886e-04, m= 0.0000e+00] ( 0,702) 0 [B] 1 ub 157 ( -> ) [( 3.2870e+00, 0.0000e+00, 0.0000e+00, 3.2870e+00), p^2= 5.6573e-06, m= 0.0000e+00] ( 0,696) 0 [B] 1 db 62 ( -> ) [( 4.4262e+01, 0.0000e+00, 0.0000e+00, 4.4262e+01), p^2= 1.0258e-03, m= 0.0000e+00] ( 0,625) 0 and Particle List with 2 elements [B] 1 uu_1 186 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,711) 1 [B] 1 db 158 ( -> ) [( 1.5804e+00, 0.0000e+00, 0.0000e+00,-1.5803e+00), p^2= 3.9751e-04, m= 0.0000e+00] ( 0,694) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.001 Event 3000 ( 3m 18s elapsed / 24m 14s left ) -> ETA: Mon Apr 08 14:24 [1m Memory usage increased by 16 MB, now 144 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.80141e+09 pb +- ( 3.48118e+08 pb = 7 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 4000 ( 4m 24s elapsed / 23m 7s left ) -> ETA: Mon Apr 08 14:24 XS = 4.80254e+09 pb +- ( 2.92114e+08 pb = 6 % ) Event 5000 ( 5m 28s elapsed / 21m 53s left ) -> ETA: Mon Apr 08 14:24 XS = 4.93261e+09 pb +- ( 2.80119e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 6000 ( 6m 31s elapsed / 20m 40s left ) -> ETA: Mon Apr 08 14:24 XS = 4.97637e+09 pb +- ( 2.6766e+08 pb = 5 % ) Event 7000 ( 7m 37s elapsed / 19m 35s left ) -> ETA: Mon Apr 08 14:24 XS = 4.84629e+09 pb +- ( 2.45754e+08 pb = 5 % ) Event 8000 ( 8m 42s elapsed / 18m 31s left ) -> ETA: Mon Apr 08 14:24 XS = 4.79569e+09 pb +- ( 2.27726e+08 pb = 4 % ) Event 9000 ( 9m 50s elapsed / 17m 29s left ) -> ETA: Mon Apr 08 14:24 [1m Memory usage increased by 19 MB, now 163 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.70501e+09 pb +- ( 2.09759e+08 pb = 4 % ) Event 10000 ( 10m 58s elapsed / 16m 27s left ) -> ETA: Mon Apr 08 14:24 XS = 4.67945e+09 pb +- ( 1.97169e+08 pb = 4 % ) Event 20000 ( 22m 16s elapsed / 5m 34s left ) -> ETA: Mon Apr 08 14:25 XS = 4.49801e+09 pb +- ( 1.32731e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 25000 ( 1670 s total ) = 1.29313e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. [31mRivet_Interface::Finish([32mAnalysis_Alaric_FinalFSmod_noWeight/1247[31m)[0m[31m{[0m [31m}[0m -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- [1mNominal [0m[34m[1m 4.59586e+09[0m[33m 0 %[31m 1.1882e+08 2.58 %[0m -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 25000 Errors { From "Hadronization:Pythia8": 2 (25002) -> 0 % } New events { From "Beam_Remnants:Parametrised": 74 (25076) -> 0.2 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 74 fails in creating good beam breakups. Remnant Kinematics: 74 errors (no kinematics found) and 11 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 27m 54s on Mon Apr 8 14:25:11 2024 (User: 27m 45s, System: 0s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Apr 9 21:39:45 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1247 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... <S /()))))~~~~~~~~## + /\ + ............................ (!H (~~)))))~~~~~~#/ + + | + ................ ........... (!E (~~~))))) /|/ + + ............................ (!R (~~~))))) ||| + + + ..... ...................... (!P (~~~~))) /| + + + ............................ (!A> (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mMM[0m [34mMM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m [34mM[0m I [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. [34mPythia8_Hadronisation::Pythia8_Hadronisation[0m:([32m"Initialising Pythia8 hadronisation interface"[0m) [34mPythia8_Hadronisation::ApplyPythiaSettings[0m:([32m"Applying Pythia8 settings"[0m) [34mPythia8_Hadronisation::HarmonizeMasses[0m:([32m"Harmonizing particle masses and widths!"[0m) [34mPythia8_Hadronisation::ModifyPythiaValues[0m:([32m"Changing Pythia Values"[0m) Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) [1m2_2__j__j__j__j[0m : [34m[1m4.95201e+09 pb[0m +- ( [31m2.57792e+07 pb = 0.52058 %[0m ) [1m exp. eff: [31m0.320522 %[0m reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 4d 2h 53m 16s left ) -> ETA: Sun Apr 14 00:33 XS = 25296.5 pb +- ( 25296.5 pb = 100 % ) Event 2 ( 3s elapsed / 2d 1h 43m 16s left ) -> ETA: Thu Apr 11 23:23 XS = 16864.3 pb +- ( 16864.3 pb = 99 % ) Event 3 ( 3s elapsed / 1d 9h 58m 49s left ) -> ETA: Thu Apr 11 07:38 XS = 8432.16 pb +- ( 8432.16 pb = 99 % ) Event 4 ( 3s elapsed / 1d 1h 41m 36s left ) -> ETA: Wed Apr 10 23:21 XS = 7191.28 pb +- ( 5644.36 pb = 78 % ) Event 5 ( 3s elapsed / 20h 39m 56s left ) -> ETA: Wed Apr 10 18:19 XS = 2.63842e+10 pb +- ( 2.63842e+10 pb = 99 % ) Event 6 ( 3s elapsed / 17h 32m 42s left ) -> ETA: Wed Apr 10 15:12 XS = 2.28663e+10 pb +- ( 2.28663e+10 pb = 99 % ) Event 7 ( 3s elapsed / 15h 11m 50s left ) -> ETA: Wed Apr 10 12:51 XS = 2.14372e+10 pb +- ( 2.14371e+10 pb = 99 % ) Event 8 ( 3s elapsed / 13h 30m 21s left ) -> ETA: Wed Apr 10 11:10 XS = 2.01762e+10 pb +- ( 2.01761e+10 pb = 99 % ) Event 9 ( 3s elapsed / 12h 13m 16s left ) -> ETA: Wed Apr 10 09:53 XS = 1.90553e+10 pb +- ( 1.90552e+10 pb = 99 % ) Event 10 ( 4s elapsed / 11h 11m 35s left ) -> ETA: Wed Apr 10 08:51 XS = 1.80524e+10 pb +- ( 1.80523e+10 pb = 99 % ) Event 20 ( 4s elapsed / 6h 14m 5s left ) -> ETA: Wed Apr 10 03:53 XS = 9.68816e+09 pb +- ( 8.59858e+09 pb = 88 % ) Event 30 ( 5s elapsed / 4h 42m 41s left ) -> ETA: Wed Apr 10 02:22 XS = 6.45187e+09 pb +- ( 5.31019e+09 pb = 82 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 2.1784e+03,-0.0000e+00,-0.0000e+00, 2.1784e+03), p^2= 0.0000e+00, m= 0.0000e+00] (637,609) 0 [I] 1 G 46 ( -> 4) [( 4.2463e+02,-0.0000e+00,-0.0000e+00, 4.2463e+02), p^2= 0.0000e+00, m= 0.0000e+00] (646,637) 0 and Particle List with 2 elements [I] 1 cb 6 ( -> 2) [( 3.4961e+03,-0.0000e+00,-0.0000e+00,-3.4961e+03), p^2= 0.0000e+00, m= 1.8000e+00] ( 0,608) 1 [I] 1 ub 47 ( -> 4) [( 5.7108e-01,-0.0000e+00,-0.0000e+00,-5.7108e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,642) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 56 ( -> ) [( 5.2099e+02, 0.0000e+00, 0.0000e+00, 5.2099e+02), p^2= 7.6111e-02, m= 5.7933e-01] ( 0,646) 0 [B] 1 u 55 ( -> ) [( 3.7602e+02, 0.0000e+00, 0.0000e+00, 3.7602e+02), p^2= 3.9647e-02, m= 0.0000e+00] (609, 0) 0 and Particle List with 4 elements [B] 1 ud_0 58 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,650) 1 [B] 1 u 52 ( -> ) [( 7.6846e-01, 0.0000e+00, 0.0000e+00,-7.6843e-01), p^2= 4.4530e-05, m= 0.0000e+00] (650, 0) 1 [B] 1 c 41 ( -> ) [( 2.0421e+00, 0.0000e+00, 0.0000e+00,-2.0420e+00), p^2= 3.1447e-04, m= 0.0000e+00] (642, 0) 1 [B] 1 u 57 ( -> ) [( 5.2495e-01, 0.0000e+00, 0.0000e+00,-5.2493e-01), p^2= 2.0781e-05, m= 0.0000e+00] (608, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 40 ( 5s elapsed / 4h 6m 59s left ) -> ETA: Wed Apr 10 01:46 XS = 5.5749e+09 pb +- ( 3.96704e+09 pb = 71 % ) Event 50 ( 6s elapsed / 3h 35m 53s left ) -> ETA: Wed Apr 10 01:15 XS = 4.44603e+09 pb +- ( 3.03991e+09 pb = 68 % ) Event 60 ( 7s elapsed / 3h 16m 16s left ) -> ETA: Wed Apr 10 00:56 XS = 4.28286e+09 pb +- ( 2.53406e+09 pb = 59 % ) Event 70 ( 7s elapsed / 3h 9m 52s left ) -> ETA: Wed Apr 10 00:49 XS = 3.93774e+09 pb +- ( 2.24804e+09 pb = 57 % ) Event 80 ( 8s elapsed / 2h 59m 51s left ) -> ETA: Wed Apr 10 00:39 XS = 4.72017e+09 pb +- ( 2.14373e+09 pb = 45 % ) Event 90 ( 9s elapsed / 2h 51m 8s left ) -> ETA: Wed Apr 10 00:31 XS = 4.18158e+09 pb +- ( 1.82708e+09 pb = 43 % ) Event 100 ( 9s elapsed / 2h 45m 20s left ) -> ETA: Wed Apr 10 00:25 XS = 4.28117e+09 pb +- ( 1.64787e+09 pb = 38 % ) Event 200 ( 16s elapsed / 2h 16m 18s left ) -> ETA: Tue Apr 09 23:56 XS = 5.82366e+09 pb +- ( 1.39089e+09 pb = 23 % ) Event 300 ( 24s elapsed / 2h 15m 5s left ) -> ETA: Tue Apr 09 23:55 XS = 6.86437e+09 pb +- ( 2.19111e+09 pb = 31 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 u 6 ( -> 2) [( 6.2171e+02,-0.0000e+00,-0.0000e+00, 6.2171e+02), p^2= 0.0000e+00, m= 3.0000e-01] (711, 0) 0 [I] 1 d 59 ( -> 4) [( 1.0238e+03,-0.0000e+00,-0.0000e+00, 1.0238e+03), p^2= 0.0000e+00, m= 3.0000e-01] (662, 0) 0 [I] 1 c 96 ( -> 6) [( 2.7749e+02,-0.0000e+00,-0.0000e+00, 2.7749e+02), p^2= 0.0000e+00, m= 1.8000e+00] (687, 0) 0 [I] 1 db 116 ( -> 8) [( 2.4768e+02,-0.0000e+00,-0.0000e+00, 2.4768e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,687) 0 [I] 1 G 134 ( -> 10) [( 9.8328e+02,-0.0000e+00,-0.0000e+00, 9.8328e+02), p^2= 0.0000e+00, m= 0.0000e+00] (720,711) 0 [I] 1 G 146 ( -> 12) [( 5.0840e+01,-0.0000e+00,-0.0000e+00, 5.0840e+01), p^2= 0.0000e+00, m= 0.0000e+00] (732,720) 0 and Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 1.9545e+03,-0.0000e+00,-0.0000e+00,-1.9545e+03), p^2= 0.0000e+00, m= 0.0000e+00] (643,651) 1 [I] 1 u 60 ( -> 4) [( 1.4646e+03,-0.0000e+00,-0.0000e+00,-1.4646e+03), p^2= 0.0000e+00, m= 3.0000e-01] (651, 0) 1 [I] 1 G 97 ( -> 6) [( 2.6520e+01,-0.0000e+00,-0.0000e+00,-2.6520e+01), p^2= 0.0000e+00, m= 0.0000e+00] (684,643) 1 [I] 1 G 117 ( -> 8) [( 3.7814e+01,-0.0000e+00,-0.0000e+00,-3.7814e+01), p^2= 0.0000e+00, m= 0.0000e+00] (708,684) 1 [I] 1 u 135 ( -> 10) [( 1.0620e+00,-0.0000e+00,-0.0000e+00,-1.0620e+00), p^2= 0.0000e+00, m= 3.0000e-01] (678, 0) 1 [I] 1 d 147 ( -> 12) [( 1.4501e+01,-0.0000e+00,-0.0000e+00,-1.4501e+01), p^2= 0.0000e+00, m= 3.0000e-01] (725, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 161 ( -> ) [( 1.8074e+02, 0.0000e+00, 0.0000e+00, 1.8074e+02), p^2= 2.7831e-02, m= 5.7933e-01] ( 0,732) 0 [B] 1 cb 111 ( -> ) [( 1.1449e+02, 0.0000e+00, 0.0000e+00, 1.1449e+02), p^2= 1.1168e-02, m= 0.0000e+00] ( 0,662) 0 and Particle List with 3 elements [B] 1 ud_0 163 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,725) 1 [B] 1 db 158 ( -> ) [( 3.8797e-01, 0.0000e+00, 0.0000e+00,-3.8791e-01), p^2= 4.1640e-05, m= 0.0000e+00] ( 0,708) 1 [B] 1 ub 91 ( -> ) [( 5.2119e-01, 0.0000e+00, 0.0000e+00,-5.2112e-01), p^2= 7.5147e-05, m= 0.0000e+00] ( 0,678) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 400 ( 32s elapsed / 2h 13m 32s left ) -> ETA: Tue Apr 09 23:53 XS = 6.29278e+09 pb +- ( 1.69075e+09 pb = 26 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 u 6 ( -> 2) [( 3.2996e+03,-0.0000e+00,-0.0000e+00, 3.2996e+03), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 0 [I] 1 G 48 ( -> 4) [( 8.6727e+01,-0.0000e+00,-0.0000e+00, 8.6727e+01), p^2= 0.0000e+00, m= 0.0000e+00] (646,605) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 3.4948e+03,-0.0000e+00,-0.0000e+00,-3.4948e+03), p^2= 0.0000e+00, m= 0.0000e+00] (607,605) 1 [I] 1 sb 49 ( -> 4) [( 3.2672e+00,-0.0000e+00,-0.0000e+00,-3.2672e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,607) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 59 ( -> ) [( 6.2058e+01, 0.0000e+00, 0.0000e+00, 6.2058e+01), p^2= 8.5181e-03, m= 7.7133e-01] ( 0,646) 0 [B] 1 ub 43 ( -> ) [( 5.8974e+00, 0.0000e+00, 0.0000e+00, 5.8974e+00), p^2= 7.6924e-05, m= 0.0000e+00] ( 0,638) 0 [B] 1 d 58 ( -> ) [( 4.5766e+01, 0.0000e+00, 0.0000e+00, 4.5766e+01), p^2= 4.6327e-03, m= 0.0000e+00] (638, 0) 0 and Particle List with 3 elements [B] 1 uu_1 61 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,647) 1 [B] 1 s 55 ( -> ) [( 9.0251e-01, 0.0000e+00, 0.0000e+00,-9.0245e-01), p^2= 1.0792e-04, m= 0.0000e+00] (647, 0) 1 [B] 1 d 60 ( -> ) [( 9.9580e-01, 0.0000e+00, 0.0000e+00,-9.9573e-01), p^2= 1.3139e-04, m= 0.0000e+00] (605, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 u 5 ( -> 2) [( 2.1768e+03,-0.0000e+00,-0.0000e+00, 2.1768e+03), p^2= 0.0000e+00, m= 3.0000e-01] (621, 0) 0 [I] 1 db 63 ( -> 4) [( 1.6902e+02,-0.0000e+00,-0.0000e+00, 1.6902e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,621) 0 and Particle List with 2 elements [I] 1 cb 6 ( -> 2) [( 3.4952e+03,-0.0000e+00,-0.0000e+00,-3.4952e+03), p^2= 0.0000e+00, m= 1.8000e+00] ( 0,604) 1 [I] 1 db 64 ( -> 4) [( 1.5053e+00,-0.0000e+00,-0.0000e+00,-1.5053e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,651) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 75 ( -> ) [( 6.7599e+02, 0.0000e+00, 0.0000e+00, 6.7599e+02), p^2= 9.9591e-02, m= 5.7933e-01] ( 0,658) 0 [B] 1 d 71 ( -> ) [( 4.7814e+02, 0.0000e+00, 0.0000e+00, 4.7814e+02), p^2= 4.9824e-02, m= 0.0000e+00] (658, 0) 0 and Particle List with 4 elements [B] 1 uu_1 77 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,659) 1 [B] 1 d 72 ( -> ) [( 5.4742e-01, 0.0000e+00, 0.0000e+00,-5.4740e-01), p^2= 2.2568e-05, m= 0.0000e+00] (659, 0) 1 [B] 1 c 58 ( -> ) [( 1.8666e+00, 0.0000e+00, 0.0000e+00,-1.8665e+00), p^2= 2.6239e-04, m= 0.0000e+00] (651, 0) 1 [B] 1 d 76 ( -> ) [( 9.2586e-01, 0.0000e+00, 0.0000e+00,-9.2583e-01), p^2= 6.4557e-05, m= 0.0000e+00] (604, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 40s elapsed / 2h 13m 33s left ) -> ETA: Tue Apr 09 23:54 XS = 6.30267e+09 pb +- ( 1.42364e+09 pb = 22 % ) Event 600 ( 46s elapsed / 2h 8m 11s left ) -> ETA: Tue Apr 09 23:48 XS = 6.9686e+09 pb +- ( 1.27138e+09 pb = 18 % ) Event 700 ( 52s elapsed / 2h 5m 11s left ) -> ETA: Tue Apr 09 23:45 XS = 6.84664e+09 pb +- ( 1.13588e+09 pb = 16 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 d 6 ( -> 2) [( 1.5319e+03,-0.0000e+00,-0.0000e+00, 1.5319e+03), p^2= 0.0000e+00, m= 3.0000e-01] (621, 0) 0 [I] 1 d 40 ( -> 4) [( 7.1430e+02,-0.0000e+00,-0.0000e+00, 7.1430e+02), p^2= 0.0000e+00, m= 3.0000e-01] (638, 0) 0 [I] 1 G 69 ( -> 6) [( 1.0120e+02,-0.0000e+00,-0.0000e+00, 1.0120e+02), p^2= 0.0000e+00, m= 0.0000e+00] (661,638) 0 [I] 1 G 91 ( -> 8) [( 6.0090e+02,-0.0000e+00,-0.0000e+00, 6.0090e+02), p^2= 0.0000e+00, m= 0.0000e+00] (672,661) 0 [I] 1 G 108 ( -> 10) [( 4.8541e+01,-0.0000e+00,-0.0000e+00, 4.8541e+01), p^2= 0.0000e+00, m= 0.0000e+00] (681,672) 0 [I] 1 u 125 ( -> 12) [( 1.9179e+02,-0.0000e+00,-0.0000e+00, 1.9179e+02), p^2= 0.0000e+00, m= 3.0000e-01] (691, 0) 0 [I] 1 d 144 ( -> 14) [( 1.6553e+02,-0.0000e+00,-0.0000e+00, 1.6553e+02), p^2= 0.0000e+00, m= 3.0000e-01] (707, 0) 0 and Particle List with 7 elements [I] 1 u 5 ( -> 2) [( 9.1118e+02,-0.0000e+00,-0.0000e+00,-9.1118e+02), p^2= 0.0000e+00, m= 3.0000e-01] (609, 0) 1 [I] 1 u 41 ( -> 4) [( 1.1543e+03,-0.0000e+00,-0.0000e+00,-1.1543e+03), p^2= 0.0000e+00, m= 3.0000e-01] (635, 0) 1 [I] 1 u 70 ( -> 6) [( 1.3656e+03,-0.0000e+00,-0.0000e+00,-1.3656e+03), p^2= 0.0000e+00, m= 3.0000e-01] (659, 0) 1 [I] 1 G 92 ( -> 8) [( 1.2599e+01,-0.0000e+00,-0.0000e+00,-1.2599e+01), p^2= 0.0000e+00, m= 0.0000e+00] (674,659) 1 [I] 1 G 109 ( -> 10) [( 4.6108e+01,-0.0000e+00,-0.0000e+00,-4.6108e+01), p^2= 0.0000e+00, m= 0.0000e+00] (676,674) 1 [I] 1 sb 126 ( -> 12) [( 6.8987e+00,-0.0000e+00,-0.0000e+00,-6.8987e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,676) 1 [I] 1 G 145 ( -> 14) [( 1.7690e+00,-0.0000e+00,-0.0000e+00,-1.7690e+00), p^2= 0.0000e+00, m= 0.0000e+00] (706,697) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 160 ( -> ) [( 1.1395e+02, 0.0000e+00, 0.0000e+00, 1.1395e+02), p^2= 2.2389e-02, m= 7.7133e-01] ( 0,707) 0 [B] 1 db 157 ( -> ) [( 4.7169e-01, 0.0000e+00, 0.0000e+00, 4.7169e-01), p^2= 3.8360e-07, m= 0.0000e+00] ( 0,691) 0 [B] 1 ub 138 ( -> ) [( 8.7065e+00, 0.0000e+00, 0.0000e+00, 8.7065e+00), p^2= 1.3070e-04, m= 0.0000e+00] ( 0,681) 0 [B] 1 db 63 ( -> ) [( 2.2754e+01, 0.0000e+00, 0.0000e+00, 2.2754e+01), p^2= 8.9267e-04, m= 0.0000e+00] ( 0,621) 0 and Particle List with 4 elements [B] 1 ud_0 161 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,706) 1 [B] 1 s 139 ( -> ) [( 6.8770e-01, 0.0000e+00, 0.0000e+00,-6.8765e-01), p^2= 7.8250e-05, m= 0.0000e+00] (697, 0) 1 [B] 1 ub 86 ( -> ) [( 3.6553e-01, 0.0000e+00, 0.0000e+00,-3.6550e-01), p^2= 2.2107e-05, m= 0.0000e+00] ( 0,635) 1 [B] 1 ub 64 ( -> ) [( 4.6693e-01, 0.0000e+00, 0.0000e+00,-4.6689e-01), p^2= 3.6073e-05, m= 0.0000e+00] ( 0,609) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 800 ( 1m elapsed / 2h 4m 28s left ) -> ETA: Tue Apr 09 23:45 XS = 6.60585e+09 pb +- ( 1.02413e+09 pb = 15 % ) Event 900 ( 1m 7s elapsed / 2h 4m 24s left ) -> ETA: Tue Apr 09 23:45 XS = 6.30984e+09 pb +- ( 9.17402e+08 pb = 14 % ) Event 1000 ( 1m 14s elapsed / 2h 3m 20s left ) -> ETA: Tue Apr 09 23:44 XS = 5.96219e+09 pb +- ( 8.33251e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 2m 27s elapsed / 2h 43s left ) -> ETA: Tue Apr 09 23:42 [1m Memory usage increased by 19 MB, now 148 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 5.46394e+09 pb +- ( 5.80535e+08 pb = 10 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 3m 37s elapsed / 1h 56m 57s left ) -> ETA: Tue Apr 09 23:40 XS = 5.56075e+09 pb +- ( 4.80504e+08 pb = 8 % ) Event 4000 ( 4m 47s elapsed / 1h 55m 10s left ) -> ETA: Tue Apr 09 23:39 XS = 5.53061e+09 pb +- ( 4.09546e+08 pb = 7 % ) Event 5000 ( 6m elapsed / 1h 54m 15s left ) -> ETA: Tue Apr 09 23:40 XS = 5.48517e+09 pb +- ( 3.74977e+08 pb = 6 % ) Event 6000 ( 7m 14s elapsed / 1h 53m 23s left ) -> ETA: Tue Apr 09 23:40 XS = 5.37567e+09 pb +- ( 3.29253e+08 pb = 6 % ) Event 7000 ( 8m 31s elapsed / 1h 53m 12s left ) -> ETA: Tue Apr 09 23:41 XS = 5.30838e+09 pb +- ( 3.20768e+08 pb = 6 % ) Event 8000 ( 9m 45s elapsed / 1h 52m 11s left ) -> ETA: Tue Apr 09 23:41 XS = 5.31969e+09 pb +- ( 2.96064e+08 pb = 5 % ) Event 9000 ( 10m 54s elapsed / 1h 50m 17s left ) -> ETA: Tue Apr 09 23:41 XS = 5.30298e+09 pb +- ( 2.72826e+08 pb = 5 % ) Event 10000 ( 12m 10s elapsed / 1h 49m 38s left ) -> ETA: Tue Apr 09 23:41 XS = 5.18027e+09 pb +- ( 2.51231e+08 pb = 4 % ) Event 20000 ( 24m 22s elapsed / 1h 37m 29s left ) -> ETA: Tue Apr 09 23:41 XS = 4.92071e+09 pb +- ( 1.57291e+08 pb = 3 % ) Pythia8 hadronisation failed. Event 30000 ( 36m 41s elapsed / 1h 25m 35s left ) -> ETA: Tue Apr 09 23:42 XS = 4.83494e+09 pb +- ( 1.23437e+08 pb = 2 % ) Event 40000 ( 49m 10s elapsed / 1h 13m 46s left ) -> ETA: Tue Apr 09 23:42 [1m Memory usage increased by 16 MB, now 164 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.87322e+09 pb +- ( 1.04799e+08 pb = 2 % ) Event 50000 ( 1h 1m 20s elapsed / 1h 1m 20s left ) -> ETA: Tue Apr 09 23:42 XS = 4.88316e+09 pb +- ( 9.17039e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 60000 ( 1h 13m 33s elapsed / 49m 2s left ) -> ETA: Tue Apr 09 23:42 XS = 4.86204e+09 pb +- ( 8.39074e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 70000 ( 1h 25m 52s elapsed / 36m 48s left ) -> ETA: Tue Apr 09 23:42 XS = 4.84215e+09 pb +- ( 7.83631e+07 pb = 1 % ) Event 80000 ( 1h 38m 6s elapsed / 24m 31s left ) -> ETA: Tue Apr 09 23:42 XS = 4.82714e+09 pb +- ( 7.28109e+07 pb = 1 % ) Event 90000 ( 1h 50m 20s elapsed / 12m 15s left ) -> ETA: Tue Apr 09 23:42 XS = 4.82377e+09 pb +- ( 6.87141e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 100000 ( 7356 s total ) = 1.17453e+06 evts/day In Event_Handler::Finish : Summarizing the run may take some time. [31mRivet_Interface::Finish([32mAnalysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1247[31m)[0m[31m{[0m [31m}[0m -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- [1mNominal [0m[34m[1m 4.82013e+09[0m[33m 0 %[31m 6.54711e+07 1.35 %[0m -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 100000 Errors { From "Hadronization:Pythia8": 5 (100005) -> 0 % } New events { From "Beam_Remnants:Parametrised": 410 (100415) -> 0.4 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 410 fails in creating good beam breakups. Remnant Kinematics: 410 errors (no kinematics found) and 127 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 2h 2m 41s on Tue Apr 9 23:42:26 2024 (User: 2h 2m 20s, System: 1s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Apr 10 10:14:47 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1247 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... <S /()))))~~~~~~~~## + /\ + ............................ (!H (~~)))))~~~~~~#/ + + | + ................ ........... (!E (~~~))))) /|/ + + ............................ (!R (~~~))))) ||| + + + ..... ...................... (!P (~~~~))) /| + + + ............................ (!A> (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (3500,0,0,3500)) and P+ (on = 0, p = (3500,0,0,-3500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mMM[0m [34mMM[0m I [33mX[0m [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m [34mM[0m I [33mX[0m | | [31mC[0m [32mO[0m [32mO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | [31mCCC[0m [32mOOO[0m [34mM[0m [34mM[0m I [33mX[0m [33mX[0m | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. [34mPythia8_Hadronisation::Pythia8_Hadronisation[0m:([32m"Initialising Pythia8 hadronisation interface"[0m) [34mPythia8_Hadronisation::ApplyPythiaSettings[0m:([32m"Applying Pythia8 settings"[0m) [34mPythia8_Hadronisation::HarmonizeMasses[0m:([32m"Harmonizing particle masses and widths!"[0m) [34mPythia8_Hadronisation::ModifyPythiaValues[0m:([32m"Changing Pythia Values"[0m) Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) [1m2_2__j__j__j__j[0m : [34m[1m4.95201e+09 pb[0m +- ( [31m2.57792e+07 pb = 0.52058 %[0m ) [1m exp. eff: [31m0.320522 %[0m reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 3s elapsed / 39d 8h 26m 36s left ) -> ETA: Sun May 19 18:41 XS = 25296.5 pb +- ( 25296.5 pb = 100 % ) Event 2 ( 3s elapsed / 19d 18h 59m 56s left ) -> ETA: Tue Apr 30 05:14 XS = 16864.3 pb +- ( 16864.3 pb = 99 % ) Event 3 ( 3s elapsed / 13d 12h 59m 56s left ) -> ETA: Tue Apr 23 23:14 XS = 6568.87 pb +- ( 5582.72 pb = 84 % ) Event 4 ( 3s elapsed / 10d 8h 36m 36s left ) -> ETA: Sat Apr 20 18:51 XS = 4.13836e+06 pb +- ( 4.1318e+06 pb = 99 % ) Event 5 ( 3s elapsed / 8d 10h 46m 36s left ) -> ETA: Thu Apr 18 21:01 XS = 3.44864e+06 pb +- ( 3.44326e+06 pb = 99 % ) Event 6 ( 3s elapsed / 7d 11h 37m 42s left ) -> ETA: Wed Apr 17 21:52 XS = 2.95597e+06 pb +- ( 2.95143e+06 pb = 99 % ) Event 7 ( 3s elapsed / 6d 12h 44m 41s left ) -> ETA: Tue Apr 16 22:59 XS = 4.11418e+06 pb +- ( 2.84138e+06 pb = 69 % ) Event 8 ( 3s elapsed / 5d 18h 11m 36s left ) -> ETA: Tue Apr 16 04:26 XS = 1.68644e+07 pb +- ( 1.3386e+07 pb = 79 % ) Event 9 ( 4s elapsed / 5d 4h 4m 22s left ) -> ETA: Mon Apr 15 14:19 XS = 1.60986e+07 pb +- ( 1.2786e+07 pb = 79 % ) Event 10 ( 4s elapsed / 4d 17h 19m 55s left ) -> ETA: Mon Apr 15 03:34 XS = 1.41667e+07 pb +- ( 1.12703e+07 pb = 79 % ) Event 20 ( 4s elapsed / 2d 16h 9m 55s left ) -> ETA: Sat Apr 13 02:24 XS = 6.16635e+08 pb +- ( 4.4667e+08 pb = 72 % ) Event 30 ( 5s elapsed / 1d 23h 41m 1s left ) -> ETA: Fri Apr 12 09:55 XS = 5.18071e+08 pb +- ( 3.24701e+08 pb = 62 % ) Event 40 ( 5s elapsed / 1d 15h 14m 4s left ) -> ETA: Fri Apr 12 01:29 XS = 3.45384e+09 pb +- ( 1.93133e+09 pb = 55 % ) Event 50 ( 6s elapsed / 1d 10h 46m 33s left ) -> ETA: Thu Apr 11 21:01 XS = 6.07987e+09 pb +- ( 3.18381e+09 pb = 52 % ) Event 60 ( 6s elapsed / 1d 8h 21m 33s left ) -> ETA: Thu Apr 11 18:36 XS = 5.17765e+09 pb +- ( 2.71155e+09 pb = 52 % ) Event 70 ( 7s elapsed / 1d 6h 33m 12s left ) -> ETA: Thu Apr 11 16:48 XS = 4.60216e+09 pb +- ( 2.40354e+09 pb = 52 % ) Event 80 ( 8s elapsed / 1d 5h 39m 1s left ) -> ETA: Thu Apr 11 15:54 XS = 4.21851e+09 pb +- ( 2.14836e+09 pb = 50 % ) Event 90 ( 9s elapsed / 1d 4h 40m 12s left ) -> ETA: Thu Apr 11 14:55 XS = 3.76911e+09 pb +- ( 1.90444e+09 pb = 50 % ) Event 100 ( 10s elapsed / 1d 3h 58m 9s left ) -> ETA: Thu Apr 11 14:13 XS = 3.41027e+09 pb +- ( 1.70327e+09 pb = 49 % ) Event 200 ( 16s elapsed / 22h 42m 13s left ) -> ETA: Thu Apr 11 08:57 XS = 3.59e+09 pb +- ( 9.92952e+08 pb = 27 % ) Event 300 ( 23s elapsed / 21h 23m 30s left ) -> ETA: Thu Apr 11 07:38 XS = 5.1426e+09 pb +- ( 1.1048e+09 pb = 21 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 d 5 ( -> 2) [( 1.4795e+03,-0.0000e+00,-0.0000e+00, 1.4795e+03), p^2= 0.0000e+00, m= 3.0000e-01] (616, 0) 0 [I] 1 u 47 ( -> 4) [( 1.1261e+03,-0.0000e+00,-0.0000e+00, 1.1261e+03), p^2= 0.0000e+00, m= 3.0000e-01] (644, 0) 0 [I] 1 G 69 ( -> 6) [( 1.2866e+02,-0.0000e+00,-0.0000e+00, 1.2866e+02), p^2= 0.0000e+00, m= 0.0000e+00] (660,644) 0 and Particle List with 3 elements [I] 1 db 6 ( -> 2) [( 3.4931e+03,-0.0000e+00,-0.0000e+00,-3.4931e+03), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,604) 1 [I] 1 u 48 ( -> 4) [( 2.0245e+00,-0.0000e+00,-0.0000e+00,-2.0245e+00), p^2= 0.0000e+00, m= 3.0000e-01] (604, 0) 1 [I] 1 G 70 ( -> 6) [( 3.9815e+00,-0.0000e+00,-0.0000e+00,-3.9815e+00), p^2= 0.0000e+00, m= 0.0000e+00] (657,635) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 79 ( -> ) [( 7.1406e+02, 0.0000e+00, 0.0000e+00, 7.1406e+02), p^2= 1.6748e-01, m= 7.7133e-01] ( 0,660) 0 [B] 1 ub 64 ( -> ) [( 5.1703e+01, 0.0000e+00, 0.0000e+00, 5.1703e+01), p^2= 8.7807e-04, m= 0.0000e+00] ( 0,616) 0 and Particle List with 2 elements [B] 1 ud_0 80 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,657) 1 [B] 1 d 42 ( -> ) [( 9.1978e-01, 0.0000e+00, 0.0000e+00,-9.1965e-01), p^2= 2.3134e-04, m= 0.0000e+00] (635, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 u 5 ( -> 2) [( 1.3717e+03,-0.0000e+00,-0.0000e+00, 1.3717e+03), p^2= 0.0000e+00, m= 3.0000e-01] (637, 0) 0 [I] 1 u 52 ( -> 4) [( 4.6562e+02,-0.0000e+00,-0.0000e+00, 4.6562e+02), p^2= 0.0000e+00, m= 3.0000e-01] (645, 0) 0 and Particle List with 2 elements [I] 1 u 6 ( -> 2) [( 3.4988e+03,-0.0000e+00,-0.0000e+00,-3.4988e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 d 53 ( -> 4) [( 4.3625e-01,-0.0000e+00,-0.0000e+00,-4.3625e-01), p^2= 0.0000e+00, m= 3.0000e-01] (641, 0) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 66 ( -> ) [( 1.2569e+03, 0.0000e+00, 0.0000e+00, 1.2569e+03), p^2= 2.3899e-01, m= 5.7933e-01] ( 0,645) 0 [B] 1 ub 62 ( -> ) [( 4.0577e+02, 0.0000e+00, 0.0000e+00, 4.0577e+02), p^2= 2.4908e-02, m= 0.0000e+00] ( 0,637) 0 and Particle List with 2 elements [B] 1 ud_0 67 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,641) 1 [B] 1 db 63 ( -> ) [( 7.8839e-01, 0.0000e+00, 0.0000e+00,-7.8827e-01), p^2= 1.9829e-04, m= 0.0000e+00] ( 0,601) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 400 ( 29s elapsed / 20h 43m 40s left ) -> ETA: Thu Apr 11 06:59 XS = 4.94568e+09 pb +- ( 9.53564e+08 pb = 19 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 2.2978e+03,-0.0000e+00,-0.0000e+00, 2.2978e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,616) 0 [I] 1 G 54 ( -> 4) [( 2.0762e+02,-0.0000e+00,-0.0000e+00, 2.0762e+02), p^2= 0.0000e+00, m= 0.0000e+00] (616,652) 0 [I] 1 u 70 ( -> 6) [( 9.1212e+01,-0.0000e+00,-0.0000e+00, 9.1212e+01), p^2= 0.0000e+00, m= 3.0000e-01] (652, 0) 0 [I] 1 d 81 ( -> 8) [( 8.7919e+02,-0.0000e+00,-0.0000e+00, 8.7919e+02), p^2= 0.0000e+00, m= 3.0000e-01] (659, 0) 0 and Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 3.1133e+03,-0.0000e+00,-0.0000e+00,-3.1133e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 1 [I] 1 G 55 ( -> 4) [( 3.7194e+02,-0.0000e+00,-0.0000e+00,-3.7194e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,651) 1 [I] 1 db 71 ( -> 6) [( 8.3357e-01,-0.0000e+00,-0.0000e+00,-8.3357e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,652) 1 [I] 1 G 82 ( -> 8) [( 1.2040e+01,-0.0000e+00,-0.0000e+00,-1.2040e+01), p^2= 0.0000e+00, m= 0.0000e+00] (662,603) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 97 ( -> ) [( 8.9014e+00, 0.0000e+00, 0.0000e+00, 8.9014e+00), p^2= 8.2541e-04, m= 5.7933e-01] ( 0,601) 0 [B] 1 db 93 ( -> ) [( 1.5244e+01, 0.0000e+00, 0.0000e+00, 1.5244e+01), p^2= 2.4208e-03, m= 0.0000e+00] ( 0,659) 0 and Particle List with 3 elements [B] 1 uu_1 100 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,662) 1 [B] 1 d 76 ( -> ) [( 5.3872e-01, 0.0000e+00, 0.0000e+00,-5.3868e-01), p^2= 3.9607e-05, m= 0.0000e+00] (651, 0) 1 [B] 1 d 99 ( -> ) [( 1.3043e+00, 0.0000e+00, 0.0000e+00,-1.3042e+00), p^2= 2.3217e-04, m= 0.0000e+00] (652, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 35s elapsed / 19h 49m 24s left ) -> ETA: Thu Apr 11 06:04 XS = 4.91646e+09 pb +- ( 8.25291e+08 pb = 16 % ) Event 600 ( 43s elapsed / 19h 53m 43s left ) -> ETA: Thu Apr 11 06:09 XS = 4.51395e+09 pb +- ( 7.13804e+08 pb = 15 % ) Event 700 ( 48s elapsed / 19h 22m 16s left ) -> ETA: Thu Apr 11 05:37 XS = 4.28606e+09 pb +- ( 6.25511e+08 pb = 14 % ) Event 800 ( 54s elapsed / 19h 20s left ) -> ETA: Thu Apr 11 05:16 XS = 4.61483e+09 pb +- ( 6.08831e+08 pb = 13 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 u 6 ( -> 2) [( 3.4879e+03,-0.0000e+00,-0.0000e+00, 3.4879e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 ub 57 ( -> 4) [( 9.4973e-01,-0.0000e+00,-0.0000e+00, 9.4973e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 0 [I] 1 ub 68 ( -> 6) [( 5.0118e-01,-0.0000e+00,-0.0000e+00, 5.0118e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,647) 0 [I] 1 sb 83 ( -> 8) [( 9.0265e+00,-0.0000e+00,-0.0000e+00, 9.0265e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,657) 0 and Particle List with 4 elements [I] 1 s 5 ( -> 2) [( 4.7887e+02,-0.0000e+00,-0.0000e+00,-4.7887e+02), p^2= 0.0000e+00, m= 4.0000e-01] (631, 0) 1 [I] 1 G 58 ( -> 4) [( 1.2810e+02,-0.0000e+00,-0.0000e+00,-1.2810e+02), p^2= 0.0000e+00, m= 0.0000e+00] (641,646) 1 [I] 1 G 69 ( -> 6) [( 1.9214e+03,-0.0000e+00,-0.0000e+00,-1.9214e+03), p^2= 0.0000e+00, m= 0.0000e+00] (653,631) 1 [I] 1 u 84 ( -> 8) [( 9.6580e+02,-0.0000e+00,-0.0000e+00,-9.6580e+02), p^2= 0.0000e+00, m= 3.0000e-01] (646, 0) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 103 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,674) 0 [B] 1 s 99 ( -> ) [( 5.4390e-01, 0.0000e+00, 0.0000e+00, 5.4385e-01), p^2= 4.5704e-05, m= 0.0000e+00] (674, 0) 0 [B] 1 u 78 ( -> ) [( 7.7632e-01, 0.0000e+00, 0.0000e+00, 7.7626e-01), p^2= 9.3112e-05, m= 0.0000e+00] (657, 0) 0 [B] 1 u 63 ( -> ) [( 3.0776e-01, 0.0000e+00, 0.0000e+00, 3.0774e-01), p^2= 1.4634e-05, m= 0.0000e+00] (647, 0) 0 and Particle List with 4 elements [B] 1 uu_1 105 ( -> ) [( 3.9055e+00, 0.0000e+00, 0.0000e+00,-3.9054e+00), p^2= 6.6215e-04, m= 7.7133e-01] ( 0,653) 1 [B] 1 ub 100 ( -> ) [( 6.5626e-01, 0.0000e+00, 0.0000e+00,-6.5625e-01), p^2= 1.8696e-05, m= 0.0000e+00] ( 0,675) 1 [B] 1 sb 52 ( -> ) [( 5.1496e-01, 0.0000e+00, 0.0000e+00,-5.1495e-01), p^2= 1.1512e-05, m= 0.0000e+00] ( 0,641) 1 [B] 1 d 104 ( -> ) [( 7.1741e-01, 0.0000e+00, 0.0000e+00,-7.1739e-01), p^2= 2.2342e-05, m= 0.0000e+00] (675, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 900 ( 1m 1s elapsed / 18h 57m 29s left ) -> ETA: Thu Apr 11 05:13 XS = 4.65395e+09 pb +- ( 5.74067e+08 pb = 12 % ) Event 1000 ( 1m 7s elapsed / 18h 50m 2s left ) -> ETA: Thu Apr 11 05:06 XS = 4.8055e+09 pb +- ( 5.57611e+08 pb = 11 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements [I] 1 bb 6 ( -> 2) [( 3.4936e+03,-0.0000e+00,-0.0000e+00, 3.4936e+03), p^2= 0.0000e+00, m= 5.1000e+00] ( 0,605) 0 [I] 1 G 79 ( -> 4) [( 5.1262e-02,-0.0000e+00,-0.0000e+00, 5.1262e-02), p^2= 0.0000e+00, m= 0.0000e+00] (605,692) 0 and Particle List with 2 elements [I] 1 G 5 ( -> 2) [( 1.0265e+03,-0.0000e+00,-0.0000e+00,-1.0265e+03), p^2= 0.0000e+00, m= 0.0000e+00] (621,618) 1 [I] 1 u 80 ( -> 4) [( 1.4159e+03,-0.0000e+00,-0.0000e+00,-1.4159e+03), p^2= 0.0000e+00, m= 3.0000e-01] (618, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 91 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,665) 0 [B] 1 b 74 ( -> ) [( 5.5315e+00, 0.0000e+00, 0.0000e+00, 5.5314e+00), p^2= 1.2116e-03, m= 0.0000e+00] (665, 0) 0 [B] 1 u 90 ( -> ) [( 8.2074e-01, 0.0000e+00, 0.0000e+00, 8.2072e-01), p^2= 2.6673e-05, m= 0.0000e+00] (692, 0) 0 and Particle List with 1 elements [B] 1 ud_0 92 ( -> ) [( 1.0575e+03, 0.0000e+00, 0.0000e+00,-1.0575e+03), p^2= 2.6600e-01, m= 5.7933e-01] ( 0,621) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 2m 10s elapsed / 18h 5m 34s left ) -> ETA: Thu Apr 11 04:22 [1m Memory usage increased by 22 MB, now 150 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 5.12183e+09 pb +- ( 4.58555e+08 pb = 8 % ) Event 3000 ( 3m 16s elapsed / 18h 5m 53s left ) -> ETA: Thu Apr 11 04:24 XS = 4.98629e+09 pb +- ( 3.77464e+08 pb = 7 % ) Event 4000 ( 4m 20s elapsed / 18h 1m 14s left ) -> ETA: Thu Apr 11 04:20 XS = 5.0629e+09 pb +- ( 3.19122e+08 pb = 6 % ) Event 5000 ( 5m 26s elapsed / 18h 3m 55s left ) -> ETA: Thu Apr 11 04:24 XS = 4.93044e+09 pb +- ( 2.80846e+08 pb = 5 % ) Event 6000 ( 6m 31s elapsed / 18h 55s left ) -> ETA: Thu Apr 11 04:22 XS = 5.27944e+09 pb +- ( 2.91111e+08 pb = 5 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 7000 ( 7m 37s elapsed / 18h 1m 12s left ) -> ETA: Thu Apr 11 04:23 XS = 5.18655e+09 pb +- ( 2.61291e+08 pb = 5 % ) Pythia8 hadronisation failed. Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 8000 ( 8m 41s elapsed / 17h 57m 55s left ) -> ETA: Thu Apr 11 04:21 XS = 5.18992e+09 pb +- ( 2.43823e+08 pb = 4 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 9000 ( 9m 49s elapsed / 18h 2m 13s left ) -> ETA: Thu Apr 11 04:26 XS = 5.0976e+09 pb +- ( 2.28353e+08 pb = 4 % ) Event 10000 ( 10m 55s elapsed / 18h 1m 59s left ) -> ETA: Thu Apr 11 04:27 XS = 5.07082e+09 pb +- ( 2.12728e+08 pb = 4 % ) Pythia8 hadronisation failed. Event 20000 ( 22m 3s elapsed / 18h 1m 5s left ) -> ETA: Thu Apr 11 04:38 XS = 4.98874e+09 pb +- ( 1.52315e+08 pb = 3 % ) Pythia8 hadronisation failed. Event 30000 ( 33m 15s elapsed / 17h 55m 10s left ) -> ETA: Thu Apr 11 04:43 XS = 5.00759e+09 pb +- ( 1.27259e+08 pb = 2 % ) Event 40000 ( 44m 28s elapsed / 17h 47m 28s left ) -> ETA: Thu Apr 11 04:46 XS = 4.95941e+09 pb +- ( 1.07981e+08 pb = 2 % ) Event 50000 ( 55m 41s elapsed / 17h 38m 11s left ) -> ETA: Thu Apr 11 04:48 XS = 4.92903e+09 pb +- ( 9.64838e+07 pb = 1 % ) Event 60000 ( 1h 6m 56s elapsed / 17h 28m 46s left ) -> ETA: Thu Apr 11 04:50 [1m Memory usage increased by 31 MB, now 182 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.87988e+09 pb +- ( 8.88033e+07 pb = 1 % ) Event 70000 ( 1h 18m 56s elapsed / 17h 28m 51s left ) -> ETA: Thu Apr 11 05:02 XS = 4.90346e+09 pb +- ( 8.20116e+07 pb = 1 % ) Event 80000 ( 1h 30m 21s elapsed / 17h 19m 4s left ) -> ETA: Thu Apr 11 05:04 [1m Memory usage increased by 31 MB, now 214 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.89296e+09 pb +- ( 7.66262e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 90000 ( 1h 41m 40s elapsed / 17h 8m 2s left ) -> ETA: Thu Apr 11 05:04 XS = 4.86698e+09 pb +- ( 7.1455e+07 pb = 1 % ) Pythia8 hadronisation failed. Event 100000 ( 1h 53m 28s elapsed / 17h 1m 16s left ) -> ETA: Thu Apr 11 05:09 XS = 4.86393e+09 pb +- ( 6.76218e+07 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 3h 46m 10s elapsed / 15h 4m 43s left ) -> ETA: Thu Apr 11 05:05 XS = 4.83114e+09 pb +- ( 4.71903e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 300000 ( 5h 43m 58s elapsed / 13h 22m 35s left ) -> ETA: Thu Apr 11 05:21 XS = 4.80801e+09 pb +- ( 3.78421e+07 pb = 0 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. [31mWARNING: last allowed error message from 'Hadronize' [0mPythia8 hadronisation failed. Event 400000 ( 7h 41m 2s elapsed / 11h 31m 33s left ) -> ETA: Thu Apr 11 05:27 [1m Memory usage increased by 21 MB, now 235 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.80134e+09 pb +- ( 3.26112e+07 pb = 0 % ) Event 500000 ( 9h 27m 5s elapsed / 9h 27m 5s left ) -> ETA: Thu Apr 11 05:09 XS = 4.79466e+09 pb +- ( 2.92772e+07 pb = 0 % ) Event 600000 ( 12h 23m 43s elapsed / 8h 15m 48s left ) -> ETA: Thu Apr 11 06:54 [1m Memory usage increased by 24 MB, now 260 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.78848e+09 pb +- ( 2.67666e+07 pb = 0 % ) Event 700000 ( 14h 12m elapsed / 6h 5m 8s left ) -> ETA: Thu Apr 11 06:31 XS = 4.79225e+09 pb +- ( 2.47099e+07 pb = 0 % ) Event 800000 ( 15h 54m 12s elapsed / 3h 58m 33s left ) -> ETA: Thu Apr 11 06:07 [1m Memory usage increased by 20 MB, now 280 MB. [31m This might indicate a memory leak! Please monitor this process closely.[0m XS = 4.791e+09 pb +- ( 2.30653e+07 pb = 0 % ) Event 900000 ( 17h 36m 13s elapsed / 1h 57m 21s left ) -> ETA: Thu Apr 11 05:48 XS = 4.78342e+09 pb +- ( 2.16359e+07 pb = 0 % )