Welcome to Sherpa, Daniel Reichelt on ip3-cpu2.phyip3.dur.ac.uk. Initialization of framework underway.
The local time is Thu Mar  7 21:22:55 2024.
Run_Parameter::Init(): Setting memory limit to 503.276 GB.
Random::SetSeed(): Seed set to 1232
Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded.
-----------------------------------------------------------------------------
-----------    Event generation run with SHERPA started .......   -----------
-----------------------------------------------------------------------------
................................................ |       +                   
................................................ ||  |       +  +            
...................................        ....  | |         /   +           
................. ................   _,_ |  ....  ||         +|  +  +        
...............................  __.'  ,\|  ...  ||    /    +|          +    
.............................. (  \    \   ...  | |  |   + + \         +   
.............................  (    \   -/  .... ||       +    |          +  
........ ...................  <S   /()))))~~~~~~~~##     +     /\    +       
............................ (!H   (~~)))))~~~~~~#/     +  +    |  +         
................ ........... (!E   (~~~)))))     /|/    +         +          
............................ (!R   (~~~)))))   |||   + +            +        
..... ...................... (!P    (~~~~)))   /|  + +          +            
............................ (!A>    (~~~~~~~~~##        + +        +        
............................. ~~(!    '~~~~~~~ \       +     + +      +      
...............................  `~~~QQQQQDb //   |         + + +        +   
........................ ..........   IDDDDP||     \  + + + + +             +
....................................  IDDDI||       \                      + 
.................................... IHD HD||         \ + +  + + + + +      +
...................................  IHD ##|            :-) + +\          +  
......... ............... ......... IHI ## /      /   +  + + + +\       +    
................................... IHI/ /       /      + + + +        +     
................................... ## | | /    / + +      + + /      +      
....................... /TT\ .....  ##/ ///  / + + + + + + +/       +        
......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/   \         +   
....................../TTT/TTTT\...|TT/T\\\/   +    ++  + /              
-----------------------------------------------------------------------------

     SHERPA version 3.0.0beta1 (Dhaulagiri)
                                                                             
     Authors:        Enrico Bothmann, Stefan Hoeche, Frank Krauss,           
                     Silvan Kuttimalai, Marek Schoenherr, Holger Schulz,     
                     Steffen Schumann, Frank Siegert, Korinna Zapp           
     Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth,           
                     Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke,         
                     Jan Winter                                              
                                                                             
     This program uses a lot of genuine and original research work           
     by other people. Users are encouraged to refer to                       
     the various original publications.                                      
                                                                             
     Users are kindly asked to refer to the documentation                    
     published under JHEP 02(2009)007                                        
                                                                             
     Please visit also our homepage                                          
                                                                             
       http://sherpa.hepforge.org                                            
                                                                             
     for news, bugreports, updates and new releases.                         
                                                                             
-----------------------------------------------------------------------------
WARNING: You are using an unsupported development branch.
Git branch unknownurl, revision unknownrevision.
Hadron_Init::Init(): Initializing kf table for hadrons.
Beam_Spectra_Handler: type = Collider Setup
    for P+ (on = 0, p = (3500,0,0,3500))
    and P+ (on = 0, p = (3500,0,0,-3500)).
ISR handling:
    PDFs for hard scattering:              PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
    PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
Remnant_Handlers:
    hard process: P+: Hadron + P+: Hadron
Standard_Model::FixEWParameters() {
  Input scheme: Gmu
                Gmu scheme, input: GF, m_W, m_Z, m_h, widths
  Ren. scheme:  Gmu
                
  Parameters:   sin^2(\theta_W) = 0.223043 - 0.00110541 i
                vev             = 246.218
}
Running_AlphaQED::PrintSummary() {
  Setting \alpha according to EW scheme
  1/\alpha(0)   = 137.036
  1/\alpha(def) = 132.119
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
List of Particle Data 
     IDName     kfc            Mass           Width   Stable  Massive   Active          Yukawa
          d       1            0.01               0        1        0        1               0
          u       2           0.005               0        1        0        1               0
          s       3             0.2               0        1        0        1               0
          c       4            1.42               0        1        0        1               0
          b       5            4.92               0        1        0        1               0
          t       6           172.5            1.32        0        1        1           172.5
         e-      11        0.000511               0        1        0        1               0
         ve      12               0               0        1        0        1               0
        mu-      13           0.105               0        1        0        1               0
        vmu      14               0               0        1        0        1               0
       tau-      15           1.777     2.26735e-12        0        0        1               0
       vtau      16               0               0        1        0        1               0
          G      21               0               0        1        0        1               0
          P      22               0               0        1        0        1               0
          Z      23         91.1876          2.4952        0        1        1         91.1876
         W+      24          80.379           2.085        0        1        1          80.379
         h0      25          125.09          0.0041        0        1        1          125.09
  Instanton     999               0               0        0        0        1               0
List of Particle Containers 
     IDName     kfc     Constituents
          l      90     {e-,e+,mu-,mu+,tau-,tau+}
          v      91     {ve,veb,vmu,vmub,vtau,vtaub}
          f      92     {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub}
          j      93     {d,db,u,ub,s,sb,c,cb,b,bb,G}
          Q      94     {d,db,u,ub,s,sb,c,cb,b,bb}
        ewj      98     {d,db,u,ub,s,sb,c,cb,b,bb,G,P}
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Shower_Handler initialised.

+-----------------------------------------+
|   X   X   X XXXX  XXX  XXX  XXX         |
|  X X  XX XX X    X      X  X     X   X  |
| X   X X X X XXX  X XXX  X  X    XXX XXX |
| XXXXX X   X X    X   X  X  X     X   X  |
| X   X X   X XXXX  XXX  XXX  XXX         |
+-----------------------------------------+
| please cite: JHEP 0202:044,2002         |
+-----------------------------------------+
Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none)
+----------------------------------+
|                                  |
|      CCC  OOO  M   M I X   X     |
|     C    O   O MM MM I  X X      |
|     C    O   O M M M I   X       |
|     C    O   O M   M I  X X      |
|      CCC  OOO  M   M I X   X     |
|                                  |
+==================================+
|  Color dressed  Matrix Elements  |
|     http://comix.freacafe.de     |
|   please cite  JHEP12(2008)039   |
+----------------------------------+
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none)
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none)
Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks.
Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ).
Initialized the Matrix_Element_Handler for the hard processes.
Initialized the Beam_Remnant_Handler.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none)
MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1)
Underlying event/multiple interactions handler:
    MI[2]: on = 1 (type = 1, Amisic)
Soft-collision handlers:
    Type[2]: None
Hadron_Init::Init(): Initializing kf table for hadrons.
Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface")
Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings")
Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!")
Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values")
Initialized the Fragmentation_Handler.
Initialized the Hadron_Decay_Handler, Decay model = HADRONS++
Initialized the Soft_Photon_Handler.
Initialized the Reweighting.
ISR_Channels::CheckForStructuresFromME for 0: (none)
Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j
Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix)
2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 %
  reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) 
----------------------------------------------------------
-- SHERPA generates events with the following structure --
----------------------------------------------------------
Event generation   : Weighted
Perturbative       : Signal_Processes
Perturbative       : Minimum_Bias: None
Perturbative       : Hard_Decays
Perturbative       : Jet_Evolution:CFP
Perturbative       : Lepton_FS_QED_Corrections:None
Perturbative       : Multiple_Interactions: Amisic
Hadronization      : Beam_Remnants:Parametrised
Hadronization      : Hadronization:Pythia8
Hadronization      : Hadron_Decays
Userhook           : 
Analysis           : Rivet
---------------------------------------------------------
#--------------------------------------------------------------------------
#                     FastJet release 3.3.2 [fjcore]
#                 M. Cacciari, G.P. Salam and G. Soyez                  
#     A software package for jet finding and analysis at colliders      
#                           http://fastjet.fr                           
#	                                                                      
# Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package
# for scientific work and optionally PLB641(2006)57 [hep-ph/0512210].   
#                                                                       
# FastJet is provided without warranty under the terms of the GNU GPLv2.
# It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code
# and 3rd party plugin jet algorithms. See COPYING file for details.
#--------------------------------------------------------------------------
  Event 1 ( 3s elapsed / 10d 9h 18m 16s left ) -> ETA: Mon Mar 18 06:41  XS = 1.60027e+10 pb +- ( 1.60027e+10 pb = 100 % )  
  Event 2 ( 3s elapsed / 5d 8h 7m 26s left ) -> ETA: Wed Mar 13 05:30  XS = 1.06684e+10 pb +- ( 1.06684e+10 pb = 99 % )  
  Event 3 ( 3s elapsed / 3d 14h 20m 29s left ) -> ETA: Mon Mar 11 11:43  XS = 4.57225e+09 pb +- ( 4.57218e+09 pb = 99 % )  
  Event 4 ( 3s elapsed / 2d 18h 39m 56s left ) -> ETA: Sun Mar 10 16:03  XS = 2.28612e+09 pb +- ( 2.28609e+09 pb = 99 % )  
  Event 5 ( 3s elapsed / 2d 5h 44m 56s left ) -> ETA: Sun Mar 10 03:08  XS = 2.10431e+10 pb +- ( 1.90144e+10 pb = 90 % )  
  Event 6 ( 3s elapsed / 1d 20h 54m 22s left ) -> ETA: Sat Mar 09 18:17  XS = 2.34253e+10 pb +- ( 1.66823e+10 pb = 71 % )  
  Event 7 ( 3s elapsed / 1d 14h 59m 13s left ) -> ETA: Sat Mar 09 12:22  XS = 2.31259e+10 pb +- ( 1.58291e+10 pb = 68 % )  
  Event 8 ( 3s elapsed / 1d 10h 22m 26s left ) -> ETA: Sat Mar 09 07:45  XS = 2.11004e+10 pb +- ( 1.44238e+10 pb = 68 % )  
  Event 9 ( 4s elapsed / 1d 7h 24m 11s left ) -> ETA: Sat Mar 09 04:47  XS = 2.0183e+10 pb +- ( 1.38129e+10 pb = 68 % )  
  Event 10 ( 4s elapsed / 1d 4h 32m 25s left ) -> ETA: Sat Mar 09 01:55  XS = 1.71929e+10 pb +- ( 1.18111e+10 pb = 68 % )  
  Event 20 ( 4s elapsed / 17h 45s left ) -> ETA: Fri Mar 08 14:23  XS = 1.11541e+10 pb +- ( 6.8594e+09 pb = 61 % )  
  Event 30 ( 5s elapsed / 12h 28m 31s left ) -> ETA: Fri Mar 08 09:51  XS = 9.23727e+09 pb +- ( 4.67334e+09 pb = 50 % )  
  Event 40 ( 6s elapsed / 10h 35m 18s left ) -> ETA: Fri Mar 08 07:58  XS = 9.20705e+09 pb +- ( 4.08284e+09 pb = 44 % )  
  Event 50 ( 6s elapsed / 9h 17m 23s left ) -> ETA: Fri Mar 08 06:40  XS = 7.76518e+09 pb +- ( 3.28486e+09 pb = 42 % )  
  Event 60 ( 7s elapsed / 8h 17m 6s left ) -> ETA: Fri Mar 08 05:40  XS = 7.20878e+09 pb +- ( 2.79727e+09 pb = 38 % )  
  Event 70 ( 7s elapsed / 7h 50m 42s left ) -> ETA: Fri Mar 08 05:13  XS = 6.4566e+09 pb +- ( 2.4017e+09 pb = 37 % )  
  Event 80 ( 8s elapsed / 7h 24m 38s left ) -> ETA: Fri Mar 08 04:47  XS = 6.48815e+09 pb +- ( 2.25976e+09 pb = 34 % )  
  Event 90 ( 9s elapsed / 7h 7m 9s left ) -> ETA: Fri Mar 08 04:30  XS = 5.92005e+09 pb +- ( 2.00817e+09 pb = 33 % )  
  Event 100 ( 10s elapsed / 6h 56m 54s left ) -> ETA: Fri Mar 08 04:20  XS = 5.03534e+09 pb +- ( 1.67432e+09 pb = 33 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 200 ( 16s elapsed / 5h 36m 11s left ) -> ETA: Fri Mar 08 02:59  XS = 5.69997e+09 pb +- ( 1.6248e+09 pb = 28 % )  
  Event 300 ( 22s elapsed / 5h 7m 7s left ) -> ETA: Fri Mar 08 02:30  XS = 6.1557e+09 pb +- ( 1.42278e+09 pb = 23 % )  
  Event 400 ( 28s elapsed / 4h 56m 30s left ) -> ETA: Fri Mar 08 02:20  XS = 5.79686e+09 pb +- ( 1.13389e+09 pb = 19 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 ub                    6 (     ->    2) [( 3.4931e+03,-0.0000e+00,-0.0000e+00, 3.4931e+03), p^2= 0.0000e+00, m= 3.0000e-01] (  0,602) 0
[I] 1 ub                   35 (     ->    4) [( 5.1971e+00,-0.0000e+00,-0.0000e+00, 5.1971e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,624) 0
 and Particle List with 2 elements
[I] 1 d                     5 (     ->    2) [( 5.3995e+02,-0.0000e+00,-0.0000e+00,-5.3995e+02), p^2= 0.0000e+00, m= 3.0000e-01] (611,  0) 1
[I] 1 G                    36 (     ->    4) [( 1.9779e+02,-0.0000e+00,-0.0000e+00,-1.9779e+02), p^2= 0.0000e+00, m= 0.0000e+00] (624,611) 1
 and the corresponding remnants are Particle List with 4 elements
[B] 1 ud_0                 47 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,633) 0
[B] 1 u                    43 (     ->     ) [( 7.7790e-01, 0.0000e+00, 0.0000e+00, 7.7784e-01), p^2= 8.9860e-05, m= 0.0000e+00] (633,  0) 0
[B] 1 u                    30 (     ->     ) [( 4.4150e-01, 0.0000e+00, 0.0000e+00, 4.4147e-01), p^2= 2.8945e-05, m= 0.0000e+00] (624,  0) 0
[B] 1 u                    46 (     ->     ) [( 4.7438e-01, 0.0000e+00, 0.0000e+00, 4.7434e-01), p^2= 3.3417e-05, m= 0.0000e+00] (602,  0) 0
 and Particle List with 1 elements
[B] 1 uu_1                 48 (     ->     ) [( 2.7623e+03, 0.0000e+00, 0.0000e+00,-2.7623e+03), p^2= 6.9479e-01, m= 7.7133e-01] (  0,624) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 3.4921e+03,-0.0000e+00,-0.0000e+00, 3.4921e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0
[I] 1 sb                   29 (     ->    4) [( 6.1882e+00,-0.0000e+00,-0.0000e+00, 6.1882e+00), p^2= 0.0000e+00, m= 4.0000e-01] (  0,601) 0
 and Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 1.2113e+03,-0.0000e+00,-0.0000e+00,-1.2113e+03), p^2= 0.0000e+00, m= 0.0000e+00] (620,609) 1
[I] 1 d                    30 (     ->    4) [( 9.9273e+02,-0.0000e+00,-0.0000e+00,-9.9273e+02), p^2= 0.0000e+00, m= 3.0000e-01] (609,  0) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 ud_0                 46 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,632) 0
[B] 1 s                    42 (     ->     ) [( 5.4702e-01, 0.0000e+00, 0.0000e+00, 5.4698e-01), p^2= 4.4724e-05, m= 0.0000e+00] (632,  0) 0
[B] 1 u                    45 (     ->     ) [( 1.1358e+00, 0.0000e+00, 0.0000e+00, 1.1357e+00), p^2= 1.9281e-04, m= 0.0000e+00] (603,  0) 0
 and Particle List with 1 elements
[B] 1 uu_1                 47 (     ->     ) [( 1.2960e+03, 0.0000e+00, 0.0000e+00,-1.2960e+03), p^2= 3.2598e-01, m= 7.7133e-01] (  0,620) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 500 ( 35s elapsed / 4h 52m 39s left ) -> ETA: Fri Mar 08 02:16  XS = 5.14205e+09 pb +- ( 9.43011e+08 pb = 18 % )  
Pythia8 hadronisation failed.

  Event 600 ( 41s elapsed / 4h 46m 31s left ) -> ETA: Fri Mar 08 02:10  XS = 5.06753e+09 pb +- ( 8.19451e+08 pb = 16 % )  
  Event 700 ( 47s elapsed / 4h 42m 18s left ) -> ETA: Fri Mar 08 02:06  XS = 4.89641e+09 pb +- ( 7.24793e+08 pb = 14 % )  
  Event 800 ( 53s elapsed / 4h 38m 28s left ) -> ETA: Fri Mar 08 02:02  XS = 4.8845e+09 pb +- ( 6.64033e+08 pb = 13 % )  
  Event 900 ( 1m elapsed / 4h 38m 1s left ) -> ETA: Fri Mar 08 02:02  XS = 4.7021e+09 pb +- ( 6.03519e+08 pb = 12 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01
  Event 1000 ( 1m 7s elapsed / 4h 38m 55s left ) -> ETA: Fri Mar 08 02:03  XS = 4.45522e+09 pb +- ( 5.53587e+08 pb = 12 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 sb                    6 (     ->    2) [( 3.4650e+03,-0.0000e+00,-0.0000e+00, 3.4650e+03), p^2= 0.0000e+00, m= 4.0000e-01] (  0,601) 0
[I] 1 G                    27 (     ->    4) [( 2.6850e+01,-0.0000e+00,-0.0000e+00, 2.6850e+01), p^2= 0.0000e+00, m= 0.0000e+00] (601,627) 0
[I] 1 G                    38 (     ->    6) [( 6.3733e+00,-0.0000e+00,-0.0000e+00, 6.3733e+00), p^2= 0.0000e+00, m= 0.0000e+00] (627,645) 0
 and Particle List with 3 elements
[I] 1 G                     5 (     ->    2) [( 3.4762e+03,-0.0000e+00,-0.0000e+00,-3.4762e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 G                    28 (     ->    4) [( 1.3349e+01,-0.0000e+00,-0.0000e+00,-1.3349e+01), p^2= 0.0000e+00, m= 0.0000e+00] (603,631) 1
[I] 1 ub                   39 (     ->    6) [( 8.9260e+00,-0.0000e+00,-0.0000e+00,-8.9260e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,601) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 ud_0                 47 (     ->     ) [( 1.0083e+00, 0.0000e+00, 0.0000e+00, 1.0082e+00), p^2= 1.4408e-04, m= 5.7933e-01] (  0,616) 0
[B] 1 s                    22 (     ->     ) [( 4.1753e-01, 0.0000e+00, 0.0000e+00, 4.1750e-01), p^2= 2.4707e-05, m= 0.0000e+00] (616,  0) 0
[B] 1 u                    46 (     ->     ) [( 3.4889e-01, 0.0000e+00, 0.0000e+00, 3.4886e-01), p^2= 1.7251e-05, m= 0.0000e+00] (645,  0) 0
 and Particle List with 3 elements
[B] 1 uu_1                 49 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,648) 1
[B] 1 u                    43 (     ->     ) [( 6.8735e-01, 0.0000e+00, 0.0000e+00,-6.8729e-01), p^2= 8.0364e-05, m= 0.0000e+00] (648,  0) 1
[B] 1 d                    48 (     ->     ) [( 7.9128e-01, 0.0000e+00, 0.0000e+00,-7.9121e-01), p^2= 1.0650e-04, m= 0.0000e+00] (631,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements
[I] 1 G                     5 (     ->    2) [( 2.7600e+03,-0.0000e+00,-0.0000e+00, 2.7600e+03), p^2= 0.0000e+00, m= 0.0000e+00] (624,622) 0
[I] 1 G                    38 (     ->    4) [( 4.1641e+02,-0.0000e+00,-0.0000e+00, 4.1641e+02), p^2= 0.0000e+00, m= 0.0000e+00] (622,662) 0
[I] 1 s                    69 (     ->    6) [( 1.0879e+00,-0.0000e+00,-0.0000e+00, 1.0879e+00), p^2= 0.0000e+00, m= 4.0000e-01] (662,  0) 0
[I] 1 s                    84 (     ->    8) [( 7.3762e+01,-0.0000e+00,-0.0000e+00, 7.3762e+01), p^2= 0.0000e+00, m= 4.0000e-01] (681,  0) 0
[I] 1 G                    96 (     ->   10) [( 1.8494e+02,-0.0000e+00,-0.0000e+00, 1.8494e+02), p^2= 0.0000e+00, m= 0.0000e+00] (692,624) 0
[I] 1 G                   117 (     ->   12) [( 6.1689e+01,-0.0000e+00,-0.0000e+00, 6.1689e+01), p^2= 0.0000e+00, m= 0.0000e+00] (687,713) 0
 and Particle List with 6 elements
[I] 1 c                     6 (     ->    2) [( 1.8984e+03,-0.0000e+00,-0.0000e+00,-1.8984e+03), p^2= 0.0000e+00, m= 1.8000e+00] (622,  0) 1
[I] 1 G                    39 (     ->    4) [( 2.7721e+02,-0.0000e+00,-0.0000e+00,-2.7721e+02), p^2= 0.0000e+00, m= 0.0000e+00] (647,658) 1
[I] 1 G                    70 (     ->    6) [( 4.1212e+02,-0.0000e+00,-0.0000e+00,-4.1212e+02), p^2= 0.0000e+00, m= 0.0000e+00] (658,662) 1
[I] 1 G                    85 (     ->    8) [( 2.0326e+02,-0.0000e+00,-0.0000e+00,-2.0326e+02), p^2= 0.0000e+00, m= 0.0000e+00] (685,622) 1
[I] 1 G                    97 (     ->   10) [( 1.5207e+02,-0.0000e+00,-0.0000e+00,-1.5207e+02), p^2= 0.0000e+00, m= 0.0000e+00] (699,685) 1
[I] 1 d                   118 (     ->   12) [( 2.3247e+02,-0.0000e+00,-0.0000e+00,-2.3247e+02), p^2= 0.0000e+00, m= 3.0000e-01] (662,  0) 1
 and the corresponding remnants are Particle List with 4 elements
[B] 1 uu_1                137 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,692) 0
[B] 1 sb                   91 (     ->     ) [( 1.3796e+00, 0.0000e+00, 0.0000e+00, 1.3795e+00), p^2= 2.2228e-04, m= 0.0000e+00] (  0,687) 0
[B] 1 sb                   79 (     ->     ) [( 4.4157e-01, 0.0000e+00, 0.0000e+00, 4.4154e-01), p^2= 2.2771e-05, m= 0.0000e+00] (  0,681) 0
[B] 1 d                   136 (     ->     ) [( 3.3257e-01, 0.0000e+00, 0.0000e+00, 3.3255e-01), p^2= 1.2917e-05, m= 0.0000e+00] (713,  0) 0
 and Particle List with 2 elements
[B] 1 uu_1                138 (     ->     ) [( 2.4803e+02, 0.0000e+00, 0.0000e+00,-2.4803e+02), p^2= 4.7692e-02, m= 7.7133e-01] (  0,699) 1
[B] 1 cb                   33 (     ->     ) [( 7.6422e+01, 0.0000e+00, 0.0000e+00,-7.6422e+01), p^2= 4.5277e-03, m= 0.0000e+00] (  0,647) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 2.4165e+03,-0.0000e+00,-0.0000e+00, 2.4165e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 0
[I] 1 G                    69 (     ->    4) [( 5.8425e+02,-0.0000e+00,-0.0000e+00, 5.8425e+02), p^2= 0.0000e+00, m= 0.0000e+00] (602,656) 0
 and Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 3.4982e+03,-0.0000e+00,-0.0000e+00,-3.4982e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 db                   70 (     ->    4) [( 4.7503e-01,-0.0000e+00,-0.0000e+00,-4.7503e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,601) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 78 (     ->     ) [( 2.4177e+02, 0.0000e+00, 0.0000e+00, 2.4177e+02), p^2= 2.9451e-02, m= 5.7933e-01] (  0,604) 0
[B] 1 u                    77 (     ->     ) [( 2.5745e+02, 0.0000e+00, 0.0000e+00, 2.5745e+02), p^2= 3.3396e-02, m= 0.0000e+00] (656,  0) 0
 and Particle List with 3 elements
[B] 1 ud_0                 80 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,658) 1
[B] 1 d                    74 (     ->     ) [( 4.3012e-01, 0.0000e+00, 0.0000e+00,-4.3008e-01), p^2= 3.4040e-05, m= 0.0000e+00] (658,  0) 1
[B] 1 u                    79 (     ->     ) [( 9.3687e-01, 0.0000e+00, 0.0000e+00,-9.3678e-01), p^2= 1.6150e-04, m= 0.0000e+00] (603,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 2000 ( 2m 12s elapsed / 4h 34m 19s left ) -> ETA: Fri Mar 08 01:59  XS = 4.73668e+09 pb +- ( 3.9126e+08 pb = 8 % )  
  Event 3000 ( 3m 18s elapsed / 4h 31m 54s left ) -> ETA: Fri Mar 08 01:58  
    Memory usage increased by 16 MB, now 144 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.89333e+09 pb +- ( 3.50958e+08 pb = 7 % )  
  Event 4000 ( 4m 24s elapsed / 4h 30m 55s left ) -> ETA: Fri Mar 08 01:58  XS = 5.25326e+09 pb +- ( 3.32553e+08 pb = 6 % )  
  Event 5000 ( 5m 28s elapsed / 4h 28m 36s left ) -> ETA: Fri Mar 08 01:57  XS = 5.29743e+09 pb +- ( 3.08143e+08 pb = 5 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 6000 ( 6m 32s elapsed / 4h 26m 5s left ) -> ETA: Fri Mar 08 01:55  XS = 5.3653e+09 pb +- ( 2.80565e+08 pb = 5 % )  
Pythia8 hadronisation failed.

Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 7000 ( 7m 39s elapsed / 4h 25m 42s left ) -> ETA: Fri Mar 08 01:56  XS = 5.21036e+09 pb +- ( 2.50817e+08 pb = 4 % )  
  Event 8000 ( 8m 46s elapsed / 4h 25m 29s left ) -> ETA: Fri Mar 08 01:57  XS = 5.18534e+09 pb +- ( 2.3395e+08 pb = 4 % )  
  Event 9000 ( 9m 51s elapsed / 4h 23m 56s left ) -> ETA: Fri Mar 08 01:56  XS = 5.09847e+09 pb +- ( 2.15833e+08 pb = 4 % )  
  Event 10000 ( 10m 56s elapsed / 4h 22m 45s left ) -> ETA: Fri Mar 08 01:56  XS = 5.01428e+09 pb +- ( 2.01245e+08 pb = 4 % )  
  Event 20000 ( 21m 48s elapsed / 4h 10m 42s left ) -> ETA: Fri Mar 08 01:55  XS = 4.99532e+09 pb +- ( 1.4028e+08 pb = 2 % )  
  Event 30000 ( 32m 49s elapsed / 4h 42s left ) -> ETA: Fri Mar 08 01:56  XS = 4.96402e+09 pb +- ( 1.20283e+08 pb = 2 % )  
  Event 40000 ( 43m 50s elapsed / 3h 50m 8s left ) -> ETA: Fri Mar 08 01:57  XS = 5.05927e+09 pb +- ( 1.24886e+08 pb = 2 % )  
  Event 50000 ( 54m 50s elapsed / 3h 39m 20s left ) -> ETA: Fri Mar 08 01:57  
    Memory usage increased by 65 MB, now 210 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 5.01723e+09 pb +- ( 1.0692e+08 pb = 2 % )  
  Event 60000 ( 1h 6m elapsed / 3h 29m 1s left ) -> ETA: Fri Mar 08 01:58  XS = 4.94185e+09 pb +- ( 9.53822e+07 pb = 1 % )  
  Event 70000 ( 1h 17m 7s elapsed / 3h 18m 18s left ) -> ETA: Fri Mar 08 01:58  XS = 4.95325e+09 pb +- ( 8.83519e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 80000 ( 1h 28m 14s elapsed / 3h 7m 29s left ) -> ETA: Fri Mar 08 01:58  XS = 4.97238e+09 pb +- ( 8.22599e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 90000 ( 1h 39m 10s elapsed / 2h 56m 18s left ) -> ETA: Fri Mar 08 01:58  XS = 4.99178e+09 pb +- ( 7.66216e+07 pb = 1 % )  
  Event 100000 ( 1h 50m 12s elapsed / 2h 45m 19s left ) -> ETA: Fri Mar 08 01:58  XS = 4.93827e+09 pb +- ( 7.14719e+07 pb = 1 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 200000 ( 3h 36m 31s elapsed / 54m 7s left ) -> ETA: Fri Mar 08 01:53  XS = 4.84057e+09 pb +- ( 4.86586e+07 pb = 1 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 250000 ( 16079 s total ) = 1.34337e+06 evts/day                    
In Event_Handler::Finish : Summarizing the run may take some time.
Rivet_Interface::Finish(Analysis_Alaric_Final_noWeight/1232){
}
--------------------------------------------------------------------------
Nominal or variation name     XS [pb]      RelDev  AbsErr [pb]      RelErr
--------------------------------------------------------------------------
Nominal                   4.86731e+09         0 %  4.34793e+07      0.89 %
--------------------------------------------------------------------------
Return_Value::PrintStatistics(): Statistics {
  Generated events: 250000
  Errors {
    From "Hadronization:Pythia8": 9 (250009) -> 0 %
  }
  New events {
    From "Beam_Remnants:Parametrised": 864 (250873) -> 0.3 %
  }
}
Blob_List: Momentum Fail Statistics {
}
Decay_Channel: Kinematics max fail statistics {
}
WARNING: You are using an unsupported development branch.
Remnant handling yields 864 fails in creating good beam breakups.
Remnant Kinematics: 864 errors (no kinematics found) and
                    178 warnings (scale kt down by factor of 10).
WARNING: Some settings that have been defined in the input
files and/or the command line have not been used. For more
details, see the Settings Report.
Time: 4h 28m 7s on Fri Mar  8 01:51:02 2024
 (User: 4h 26m 55s, System: 2s, Children User: 0s, Children System: 0s)
Welcome to Sherpa, Daniel Reichelt on ip3-cpu1.phyip3.dur.ac.uk. Initialization of framework underway.
The local time is Mon Apr  8 13:57:12 2024.
Run_Parameter::Init(): Setting memory limit to 503.276 GB.
Random::SetSeed(): Seed set to 1232
Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded.
-----------------------------------------------------------------------------
-----------    Event generation run with SHERPA started .......   -----------
-----------------------------------------------------------------------------
................................................ |       +                   
................................................ ||  |       +  +            
...................................        ....  | |         /   +           
................. ................   _,_ |  ....  ||         +|  +  +        
...............................  __.'  ,\|  ...  ||    /    +|          +    
.............................. (  \    \   ...  | |  |   + + \         +   
.............................  (    \   -/  .... ||       +    |          +  
........ ...................  <S   /()))))~~~~~~~~##     +     /\    +       
............................ (!H   (~~)))))~~~~~~#/     +  +    |  +         
................ ........... (!E   (~~~)))))     /|/    +         +          
............................ (!R   (~~~)))))   |||   + +            +        
..... ...................... (!P    (~~~~)))   /|  + +          +            
............................ (!A>    (~~~~~~~~~##        + +        +        
............................. ~~(!    '~~~~~~~ \       +     + +      +      
...............................  `~~~QQQQQDb //   |         + + +        +   
........................ ..........   IDDDDP||     \  + + + + +             +
....................................  IDDDI||       \                      + 
.................................... IHD HD||         \ + +  + + + + +      +
...................................  IHD ##|            :-) + +\          +  
......... ............... ......... IHI ## /      /   +  + + + +\       +    
................................... IHI/ /       /      + + + +        +     
................................... ## | | /    / + +      + + /      +      
....................... /TT\ .....  ##/ ///  / + + + + + + +/       +        
......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/   \         +   
....................../TTT/TTTT\...|TT/T\\\/   +    ++  + /              
-----------------------------------------------------------------------------

     SHERPA version 3.0.0beta1 (Dhaulagiri)
                                                                             
     Authors:        Enrico Bothmann, Stefan Hoeche, Frank Krauss,           
                     Silvan Kuttimalai, Marek Schoenherr, Holger Schulz,     
                     Steffen Schumann, Frank Siegert, Korinna Zapp           
     Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth,           
                     Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke,         
                     Jan Winter                                              
                                                                             
     This program uses a lot of genuine and original research work           
     by other people. Users are encouraged to refer to                       
     the various original publications.                                      
                                                                             
     Users are kindly asked to refer to the documentation                    
     published under JHEP 02(2009)007                                        
                                                                             
     Please visit also our homepage                                          
                                                                             
       http://sherpa.hepforge.org                                            
                                                                             
     for news, bugreports, updates and new releases.                         
                                                                             
-----------------------------------------------------------------------------
WARNING: You are using an unsupported development branch.
Git branch unknownurl, revision unknownrevision.
Hadron_Init::Init(): Initializing kf table for hadrons.
Beam_Spectra_Handler: type = Collider Setup
    for P+ (on = 0, p = (3500,0,0,3500))
    and P+ (on = 0, p = (3500,0,0,-3500)).
ISR handling:
    PDFs for hard scattering:              PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
    PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
Remnant_Handlers:
    hard process: P+: Hadron + P+: Hadron
Standard_Model::FixEWParameters() {
  Input scheme: Gmu
                Gmu scheme, input: GF, m_W, m_Z, m_h, widths
  Ren. scheme:  Gmu
                
  Parameters:   sin^2(\theta_W) = 0.223043 - 0.00110541 i
                vev             = 246.218
}
Running_AlphaQED::PrintSummary() {
  Setting \alpha according to EW scheme
  1/\alpha(0)   = 137.036
  1/\alpha(def) = 132.119
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
List of Particle Data 
     IDName     kfc            Mass           Width   Stable  Massive   Active          Yukawa
          d       1            0.01               0        1        0        1               0
          u       2           0.005               0        1        0        1               0
          s       3             0.2               0        1        0        1               0
          c       4            1.42               0        1        0        1               0
          b       5            4.92               0        1        0        1               0
          t       6           172.5            1.32        0        1        1           172.5
         e-      11        0.000511               0        1        0        1               0
         ve      12               0               0        1        0        1               0
        mu-      13           0.105               0        1        0        1               0
        vmu      14               0               0        1        0        1               0
       tau-      15           1.777     2.26735e-12        0        0        1               0
       vtau      16               0               0        1        0        1               0
          G      21               0               0        1        0        1               0
          P      22               0               0        1        0        1               0
          Z      23         91.1876          2.4952        0        1        1         91.1876
         W+      24          80.379           2.085        0        1        1          80.379
         h0      25          125.09          0.0041        0        1        1          125.09
  Instanton     999               0               0        0        0        1               0
List of Particle Containers 
     IDName     kfc     Constituents
          l      90     {e-,e+,mu-,mu+,tau-,tau+}
          v      91     {ve,veb,vmu,vmub,vtau,vtaub}
          f      92     {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub}
          j      93     {d,db,u,ub,s,sb,c,cb,b,bb,G}
          Q      94     {d,db,u,ub,s,sb,c,cb,b,bb}
        ewj      98     {d,db,u,ub,s,sb,c,cb,b,bb,G,P}
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Shower_Handler initialised.

+-----------------------------------------+
|   X   X   X XXXX  XXX  XXX  XXX         |
|  X X  XX XX X    X      X  X     X   X  |
| X   X X X X XXX  X XXX  X  X    XXX XXX |
| XXXXX X   X X    X   X  X  X     X   X  |
| X   X X   X XXXX  XXX  XXX  XXX         |
+-----------------------------------------+
| please cite: JHEP 0202:044,2002         |
+-----------------------------------------+
Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none)
+----------------------------------+
|                                  |
|      CCC  OOO  M   M I X   X     |
|     C    O   O MM MM I  X X      |
|     C    O   O M M M I   X       |
|     C    O   O M   M I  X X      |
|      CCC  OOO  M   M I X   X     |
|                                  |
+==================================+
|  Color dressed  Matrix Elements  |
|     http://comix.freacafe.de     |
|   please cite  JHEP12(2008)039   |
+----------------------------------+
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none)
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none)
Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks.
Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ).
Initialized the Matrix_Element_Handler for the hard processes.
Initialized the Beam_Remnant_Handler.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none)
MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1)
Underlying event/multiple interactions handler:
    MI[2]: on = 1 (type = 1, Amisic)
Soft-collision handlers:
    Type[2]: None
Hadron_Init::Init(): Initializing kf table for hadrons.
Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface")
Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings")
Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!")
Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values")
Initialized the Fragmentation_Handler.
Initialized the Hadron_Decay_Handler, Decay model = HADRONS++
Initialized the Soft_Photon_Handler.
Initialized the Reweighting.
ISR_Channels::CheckForStructuresFromME for 0: (none)
Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j
Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix)
2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 %
  reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) 
----------------------------------------------------------
-- SHERPA generates events with the following structure --
----------------------------------------------------------
Event generation   : Weighted
Perturbative       : Signal_Processes
Perturbative       : Minimum_Bias: None
Perturbative       : Hard_Decays
Perturbative       : Jet_Evolution:CFP
Perturbative       : Lepton_FS_QED_Corrections:None
Perturbative       : Multiple_Interactions: Amisic
Hadronization      : Beam_Remnants:Parametrised
Hadronization      : Hadronization:Pythia8
Hadronization      : Hadron_Decays
Userhook           : 
Analysis           : Rivet
---------------------------------------------------------
#--------------------------------------------------------------------------
#                     FastJet release 3.3.2 [fjcore]
#                 M. Cacciari, G.P. Salam and G. Soyez                  
#     A software package for jet finding and analysis at colliders      
#                           http://fastjet.fr                           
#	                                                                      
# Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package
# for scientific work and optionally PLB641(2006)57 [hep-ph/0512210].   
#                                                                       
# FastJet is provided without warranty under the terms of the GNU GPLv2.
# It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code
# and 3rd party plugin jet algorithms. See COPYING file for details.
#--------------------------------------------------------------------------
  Event 1 ( 3s elapsed / 22h 38m 16s left ) -> ETA: Tue Apr 09 12:35  XS = 1.60027e+10 pb +- ( 1.60027e+10 pb = 100 % )  
  Event 2 ( 3s elapsed / 11h 42m 1s left ) -> ETA: Tue Apr 09 01:39  XS = 1.06684e+10 pb +- ( 1.06684e+10 pb = 99 % )  
  Event 3 ( 3s elapsed / 7h 53m 33s left ) -> ETA: Mon Apr 08 21:50  XS = 8.00133e+09 pb +- ( 8.00133e+09 pb = 99 % )  
  Event 4 ( 3s elapsed / 6h 3m 29s left ) -> ETA: Mon Apr 08 20:00  XS = 6.40485e+09 pb +- ( 6.40012e+09 pb = 99 % )  
  Event 5 ( 3s elapsed / 4h 54m 6s left ) -> ETA: Mon Apr 08 18:51  XS = 5.36326e+09 pb +- ( 5.32847e+09 pb = 99 % )  
  Event 6 ( 3s elapsed / 4h 8m 33s left ) -> ETA: Mon Apr 08 18:05  XS = 3.57551e+09 pb +- ( 3.55377e+09 pb = 99 % )  
  Event 7 ( 3s elapsed / 3h 37m 12s left ) -> ETA: Mon Apr 08 17:34  XS = 3.21812e+09 pb +- ( 3.19862e+09 pb = 99 % )  
  Event 8 ( 3s elapsed / 3h 14m 12s left ) -> ETA: Mon Apr 08 17:11  XS = 2.47548e+09 pb +- ( 2.46085e+09 pb = 99 % )  
  Event 9 ( 3s elapsed / 2h 55m 51s left ) -> ETA: Mon Apr 08 16:53  XS = 2.01132e+09 pb +- ( 1.99962e+09 pb = 99 % )  
  Event 10 ( 3s elapsed / 2h 38m 41s left ) -> ETA: Mon Apr 08 16:36  XS = 3.59888e+10 pb +- ( 3.40293e+10 pb = 94 % )  
  Event 20 ( 4s elapsed / 1h 33m 28s left ) -> ETA: Mon Apr 08 15:30  XS = 2.19824e+10 pb +- ( 1.82248e+10 pb = 82 % )  
  Event 30 ( 5s elapsed / 1h 13m 23s left ) -> ETA: Mon Apr 08 15:10  XS = 1.93688e+10 pb +- ( 1.33919e+10 pb = 69 % )  
  Event 40 ( 5s elapsed / 1h 44s left ) -> ETA: Mon Apr 08 14:58  XS = 1.43523e+10 pb +- ( 9.74915e+09 pb = 67 % )  
  Event 50 ( 6s elapsed / 54m 13s left ) -> ETA: Mon Apr 08 14:51  XS = 1.10407e+10 pb +- ( 7.47802e+09 pb = 67 % )  
  Event 60 ( 7s elapsed / 49m 32s left ) -> ETA: Mon Apr 08 14:46  XS = 9.5871e+09 pb +- ( 5.98965e+09 pb = 62 % )  
  Event 70 ( 7s elapsed / 45m 10s left ) -> ETA: Mon Apr 08 14:42  XS = 9.62811e+09 pb +- ( 5.14155e+09 pb = 53 % )  
  Event 80 ( 8s elapsed / 42m 21s left ) -> ETA: Mon Apr 08 14:39  XS = 1.02047e+10 pb +- ( 4.59032e+09 pb = 44 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 3.4977e+03,-0.0000e+00,-0.0000e+00, 3.4977e+03), p^2= 0.0000e+00, m= 0.0000e+00] (618,616) 0
[I] 1 ub                   49 (     ->    4) [( 8.9606e-01,-0.0000e+00,-0.0000e+00, 8.9606e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,651) 0
 and Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 1.2570e+02,-0.0000e+00,-0.0000e+00,-1.2570e+02), p^2= 0.0000e+00, m= 0.0000e+00] (624,625) 1
[I] 1 G                    50 (     ->    4) [( 6.4918e+02,-0.0000e+00,-0.0000e+00,-6.4918e+02), p^2= 0.0000e+00, m= 0.0000e+00] (625,653) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 ud_0                 61 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,618) 0
[B] 1 u                    57 (     ->     ) [( 6.3746e-01, 0.0000e+00, 0.0000e+00, 6.3740e-01), p^2= 7.0790e-05, m= 0.0000e+00] (616,  0) 0
[B] 1 u                    60 (     ->     ) [( 8.0633e-01, 0.0000e+00, 0.0000e+00, 8.0626e-01), p^2= 1.1326e-04, m= 0.0000e+00] (651,  0) 0
 and Particle List with 2 elements
[B] 1 ud_0                 63 (     ->     ) [( 2.1888e+03, 0.0000e+00, 0.0000e+00,-2.1888e+03), p^2= 4.4218e-01, m= 5.7933e-01] (  0,624) 1
[B] 1 u                    62 (     ->     ) [( 5.3635e+02, 0.0000e+00, 0.0000e+00,-5.3635e+02), p^2= 2.6552e-02, m= 0.0000e+00] (653,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 90 ( 8s elapsed / 40m 21s left ) -> ETA: Mon Apr 08 14:37  XS = 9.5926e+09 pb +- ( 3.88044e+09 pb = 40 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements
[I] 1 G                     6 (     ->    2) [( 2.3329e+03,-0.0000e+00,-0.0000e+00, 2.3329e+03), p^2= 0.0000e+00, m= 0.0000e+00] (607,638) 0
[I] 1 G                    56 (     ->    4) [( 6.0151e+01,-0.0000e+00,-0.0000e+00, 6.0151e+01), p^2= 0.0000e+00, m= 0.0000e+00] (638,649) 0
[I] 1 G                    75 (     ->    6) [( 9.4837e+01,-0.0000e+00,-0.0000e+00, 9.4837e+01), p^2= 0.0000e+00, m= 0.0000e+00] (663,607) 0
[I] 1 G                    88 (     ->    8) [( 8.9480e+01,-0.0000e+00,-0.0000e+00, 8.9480e+01), p^2= 0.0000e+00, m= 0.0000e+00] (649,669) 0
[I] 1 u                   106 (     ->   10) [( 3.6146e+02,-0.0000e+00,-0.0000e+00, 3.6146e+02), p^2= 0.0000e+00, m= 3.0000e-01] (669,  0) 0
[I] 1 G                   123 (     ->   12) [( 3.6940e+02,-0.0000e+00,-0.0000e+00, 3.6940e+02), p^2= 0.0000e+00, m= 0.0000e+00] (693,663) 0
 and Particle List with 6 elements
[I] 1 G                     5 (     ->    2) [( 2.9736e+03,-0.0000e+00,-0.0000e+00,-2.9736e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 1
[I] 1 G                    57 (     ->    4) [( 3.2183e+02,-0.0000e+00,-0.0000e+00,-3.2183e+02), p^2= 0.0000e+00, m= 0.0000e+00] (607,648) 1
[I] 1 db                   76 (     ->    6) [( 1.4612e+00,-0.0000e+00,-0.0000e+00,-1.4612e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,664) 1
[I] 1 G                    89 (     ->    8) [( 1.3384e+02,-0.0000e+00,-0.0000e+00,-1.3384e+02), p^2= 0.0000e+00, m= 0.0000e+00] (671,605) 1
[I] 1 G                   107 (     ->   10) [( 4.2649e+01,-0.0000e+00,-0.0000e+00,-4.2649e+01), p^2= 0.0000e+00, m= 0.0000e+00] (664,685) 1
[I] 1 G                   124 (     ->   12) [( 2.5137e+01,-0.0000e+00,-0.0000e+00,-2.5137e+01), p^2= 0.0000e+00, m= 0.0000e+00] (685,695) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 ud_0                137 (     ->     ) [( 1.9178e+02, 0.0000e+00, 0.0000e+00, 1.9178e+02), p^2= 4.8238e-02, m= 5.7933e-01] (  0,693) 0
 and Particle List with 3 elements
[B] 1 ud_0                139 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,671) 1
[B] 1 d                    83 (     ->     ) [( 3.1105e-01, 0.0000e+00, 0.0000e+00,-3.1102e-01), p^2= 1.6661e-05, m= 0.0000e+00] (648,  0) 1
[B] 1 u                   138 (     ->     ) [( 1.1496e+00, 0.0000e+00, 0.0000e+00,-1.1495e+00), p^2= 2.2756e-04, m= 0.0000e+00] (695,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 100 ( 9s elapsed / 38m 40s left ) -> ETA: Mon Apr 08 14:36  XS = 8.76963e+09 pb +- ( 3.44335e+09 pb = 39 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 G                     6 (     ->    2) [( 1.0535e+02,-0.0000e+00,-0.0000e+00, 1.0535e+02), p^2= 0.0000e+00, m= 0.0000e+00] (629,632) 0
[I] 1 u                    46 (     ->    4) [( 1.8283e+03,-0.0000e+00,-0.0000e+00, 1.8283e+03), p^2= 0.0000e+00, m= 3.0000e-01] (632,  0) 0
[I] 1 u                    57 (     ->    6) [( 1.3169e+03,-0.0000e+00,-0.0000e+00, 1.3169e+03), p^2= 0.0000e+00, m= 3.0000e-01] (644,  0) 0
 and Particle List with 3 elements
[I] 1 G                     5 (     ->    2) [( 3.4320e+03,-0.0000e+00,-0.0000e+00,-3.4320e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 1
[I] 1 G                    47 (     ->    4) [( 6.2949e+01,-0.0000e+00,-0.0000e+00,-6.2949e+01), p^2= 0.0000e+00, m= 0.0000e+00] (641,605) 1
[I] 1 db                   58 (     ->    6) [( 3.3373e+00,-0.0000e+00,-0.0000e+00,-3.3373e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,641) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 72 (     ->     ) [( 1.9491e+02, 0.0000e+00, 0.0000e+00, 1.9491e+02), p^2= 3.8310e-02, m= 5.7933e-01] (  0,644) 0
[B] 1 ub                   68 (     ->     ) [( 5.4516e+01, 0.0000e+00, 0.0000e+00, 5.4516e+01), p^2= 2.9971e-03, m= 0.0000e+00] (  0,629) 0
 and Particle List with 3 elements
[B] 1 uu_1                 74 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,654) 1
[B] 1 d                    69 (     ->     ) [( 3.9304e-01, 0.0000e+00, 0.0000e+00,-3.9301e-01), p^2= 2.2097e-05, m= 0.0000e+00] (654,  0) 1
[B] 1 d                    73 (     ->     ) [( 1.3654e+00, 0.0000e+00, 0.0000e+00,-1.3653e+00), p^2= 2.6665e-04, m= 0.0000e+00] (607,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 G                     6 (     ->    2) [( 3.2704e+03,-0.0000e+00,-0.0000e+00, 3.2704e+03), p^2= 0.0000e+00, m= 0.0000e+00] (611,610) 0
[I] 1 G                    58 (     ->    4) [( 2.1375e+02,-0.0000e+00,-0.0000e+00, 2.1375e+02), p^2= 0.0000e+00, m= 0.0000e+00] (660,611) 0
[I] 1 G                    78 (     ->    6) [( 1.4504e+01, 0.0000e+00, 0.0000e+00, 1.4504e+01), p^2= 0.0000e+00, m= 0.0000e+00] (683,660) 0
 and Particle List with 3 elements
[I] 1 G                     5 (     ->    2) [( 3.3926e+03,-0.0000e+00,-0.0000e+00,-3.3926e+03), p^2= 0.0000e+00, m= 0.0000e+00] (609,611) 1
[I] 1 G                    59 (     ->    4) [( 1.0490e+02,-0.0000e+00,-0.0000e+00,-1.0490e+02), p^2= 0.0000e+00, m= 0.0000e+00] (663,609) 1
[I] 1 G                    79 (     ->    6) [( 1.3304e+00, 0.0000e+00, 0.0000e+00,-1.3304e+00), p^2= 0.0000e+00, m= 0.0000e+00] (660,663) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 85 (     ->     ) [( 1.0879e+00, 0.0000e+00, 0.0000e+00, 1.0878e+00), p^2= 2.1409e-04, m= 5.7933e-01] (  0,683) 0
[B] 1 u                    84 (     ->     ) [( 3.0250e-01, 0.0000e+00, 0.0000e+00, 3.0247e-01), p^2= 1.6553e-05, m= 0.0000e+00] (610,  0) 0
 and Particle List with 2 elements
[B] 1 uu_1                 87 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,660) 1
[B] 1 d                    86 (     ->     ) [( 1.1872e+00, 0.0000e+00, 0.0000e+00,-1.1871e+00), p^2= 2.9860e-04, m= 0.0000e+00] (611,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 200 ( 15s elapsed / 31m 16s left ) -> ETA: Mon Apr 08 14:28  XS = 7.66159e+09 pb +- ( 2.01526e+09 pb = 26 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 3.4759e+03,-0.0000e+00,-0.0000e+00, 3.4759e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 0
[I] 1 G                    56 (     ->    4) [( 2.2038e+01,-0.0000e+00,-0.0000e+00, 2.2038e+01), p^2= 0.0000e+00, m= 0.0000e+00] (657,603) 0
 and Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 3.4930e+03,-0.0000e+00,-0.0000e+00,-3.4930e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 G                    57 (     ->    4) [( 5.8441e+00,-0.0000e+00,-0.0000e+00,-5.8441e+00), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 uu_1                 64 (     ->     ) [( 1.6469e+00, 0.0000e+00, 0.0000e+00, 1.6468e+00), p^2= 3.2517e-04, m= 7.7133e-01] (  0,657) 0
[B] 1 d                    63 (     ->     ) [( 4.5101e-01, 0.0000e+00, 0.0000e+00, 4.5098e-01), p^2= 2.4388e-05, m= 0.0000e+00] (602,  0) 0
 and Particle List with 2 elements
[B] 1 uu_1                 66 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,603) 1
[B] 1 d                    65 (     ->     ) [( 1.1072e+00, 0.0000e+00, 0.0000e+00,-1.1070e+00), p^2= 2.7847e-04, m= 0.0000e+00] (603,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 300 ( 20s elapsed / 28m 47s left ) -> ETA: Mon Apr 08 14:26  XS = 7.63059e+09 pb +- ( 2.04336e+09 pb = 26 % )  
  Event 400 ( 27s elapsed / 28m 11s left ) -> ETA: Mon Apr 08 14:25  XS = 6.1677e+09 pb +- ( 1.5473e+09 pb = 25 % )  
  Event 500 ( 34s elapsed / 28m 9s left ) -> ETA: Mon Apr 08 14:25  XS = 5.88115e+09 pb +- ( 1.29574e+09 pb = 22 % )  
  Event 600 ( 40s elapsed / 27m 27s left ) -> ETA: Mon Apr 08 14:25  XS = 5.70076e+09 pb +- ( 1.1062e+09 pb = 19 % )  
  Event 700 ( 46s elapsed / 26m 38s left ) -> ETA: Mon Apr 08 14:24  XS = 5.39064e+09 pb +- ( 9.49316e+08 pb = 17 % )  
  Event 800 ( 52s elapsed / 26m 30s left ) -> ETA: Mon Apr 08 14:24  XS = 5.21655e+09 pb +- ( 8.45009e+08 pb = 16 % )  
  Event 900 ( 59s elapsed / 26m 40s left ) -> ETA: Mon Apr 08 14:24  XS = 5.00769e+09 pb +- ( 7.65957e+08 pb = 15 % )  
  Event 1000 ( 1m 6s elapsed / 26m 30s left ) -> ETA: Mon Apr 08 14:24  XS = 5.20868e+09 pb +- ( 7.27014e+08 pb = 13 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 2000 ( 2m 10s elapsed / 25m 4s left ) -> ETA: Mon Apr 08 14:24  
    Memory usage increased by 17 MB, now 145 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 5.77108e+09 pb +- ( 5.88769e+08 pb = 10 % )  
  Event 3000 ( 3m 17s elapsed / 24m 7s left ) -> ETA: Mon Apr 08 14:24  XS = 5.6741e+09 pb +- ( 4.6654e+08 pb = 8 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01
  Event 4000 ( 4m 20s elapsed / 22m 48s left ) -> ETA: Mon Apr 08 14:24  XS = 5.74959e+09 pb +- ( 4.29578e+08 pb = 7 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 5000 ( 5m 25s elapsed / 21m 42s left ) -> ETA: Mon Apr 08 14:24  XS = 5.65947e+09 pb +- ( 3.9099e+08 pb = 6 % )  
  Event 6000 ( 6m 30s elapsed / 20m 37s left ) -> ETA: Mon Apr 08 14:24  XS = 5.48879e+09 pb +- ( 3.4036e+08 pb = 6 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 7000 ( 7m 37s elapsed / 19m 35s left ) -> ETA: Mon Apr 08 14:24  XS = 5.38729e+09 pb +- ( 3.03928e+08 pb = 5 % )  
  Event 8000 ( 8m 41s elapsed / 18m 28s left ) -> ETA: Mon Apr 08 14:24  XS = 5.32958e+09 pb +- ( 2.80175e+08 pb = 5 % )  
  Event 9000 ( 9m 42s elapsed / 17m 15s left ) -> ETA: Mon Apr 08 14:24  XS = 5.28989e+09 pb +- ( 2.58395e+08 pb = 4 % )  
  Event 10000 ( 10m 45s elapsed / 16m 8s left ) -> ETA: Mon Apr 08 14:24  XS = 5.1836e+09 pb +- ( 2.37374e+08 pb = 4 % )  
  Event 20000 ( 21m 43s elapsed / 5m 25s left ) -> ETA: Mon Apr 08 14:24  XS = 5.08929e+09 pb +- ( 1.53706e+08 pb = 3 % )  
  Event 25000 ( 1640 s total ) = 1.31755e+06 evts/day                    
In Event_Handler::Finish : Summarizing the run may take some time.
Rivet_Interface::Finish(Analysis_Alaric_FinalFSmod_noWeight/1232){
}
--------------------------------------------------------------------------
Nominal or variation name     XS [pb]      RelDev  AbsErr [pb]      RelErr
--------------------------------------------------------------------------
Nominal                   4.96147e+09         0 %  1.34321e+08       2.7 %
--------------------------------------------------------------------------
Return_Value::PrintStatistics(): Statistics {
  Generated events: 25000
  New events {
    From "Beam_Remnants:Parametrised": 102 (25102) -> 0.4 %
  }
}
Blob_List: Momentum Fail Statistics {
}
Decay_Channel: Kinematics max fail statistics {
}
WARNING: You are using an unsupported development branch.
Remnant handling yields 102 fails in creating good beam breakups.
Remnant Kinematics: 102 errors (no kinematics found) and
                    21 warnings (scale kt down by factor of 10).
WARNING: Some settings that have been defined in the input
files and/or the command line have not been used. For more
details, see the Settings Report.
Time: 27m 24s on Mon Apr  8 14:24:37 2024
 (User: 27m 15s, System: 0s, Children User: 0s, Children System: 0s)
Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway.
The local time is Tue Apr  9 21:39:46 2024.
Run_Parameter::Init(): Setting memory limit to 503.276 GB.
Random::SetSeed(): Seed set to 1232
Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded.
-----------------------------------------------------------------------------
-----------    Event generation run with SHERPA started .......   -----------
-----------------------------------------------------------------------------
................................................ |       +                   
................................................ ||  |       +  +            
...................................        ....  | |         /   +           
................. ................   _,_ |  ....  ||         +|  +  +        
...............................  __.'  ,\|  ...  ||    /    +|          +    
.............................. (  \    \   ...  | |  |   + + \         +   
.............................  (    \   -/  .... ||       +    |          +  
........ ...................  <S   /()))))~~~~~~~~##     +     /\    +       
............................ (!H   (~~)))))~~~~~~#/     +  +    |  +         
................ ........... (!E   (~~~)))))     /|/    +         +          
............................ (!R   (~~~)))))   |||   + +            +        
..... ...................... (!P    (~~~~)))   /|  + +          +            
............................ (!A>    (~~~~~~~~~##        + +        +        
............................. ~~(!    '~~~~~~~ \       +     + +      +      
...............................  `~~~QQQQQDb //   |         + + +        +   
........................ ..........   IDDDDP||     \  + + + + +             +
....................................  IDDDI||       \                      + 
.................................... IHD HD||         \ + +  + + + + +      +
...................................  IHD ##|            :-) + +\          +  
......... ............... ......... IHI ## /      /   +  + + + +\       +    
................................... IHI/ /       /      + + + +        +     
................................... ## | | /    / + +      + + /      +      
....................... /TT\ .....  ##/ ///  / + + + + + + +/       +        
......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/   \         +   
....................../TTT/TTTT\...|TT/T\\\/   +    ++  + /              
-----------------------------------------------------------------------------

     SHERPA version 3.0.0beta1 (Dhaulagiri)
                                                                             
     Authors:        Enrico Bothmann, Stefan Hoeche, Frank Krauss,           
                     Silvan Kuttimalai, Marek Schoenherr, Holger Schulz,     
                     Steffen Schumann, Frank Siegert, Korinna Zapp           
     Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth,           
                     Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke,         
                     Jan Winter                                              
                                                                             
     This program uses a lot of genuine and original research work           
     by other people. Users are encouraged to refer to                       
     the various original publications.                                      
                                                                             
     Users are kindly asked to refer to the documentation                    
     published under JHEP 02(2009)007                                        
                                                                             
     Please visit also our homepage                                          
                                                                             
       http://sherpa.hepforge.org                                            
                                                                             
     for news, bugreports, updates and new releases.                         
                                                                             
-----------------------------------------------------------------------------
WARNING: You are using an unsupported development branch.
Git branch unknownurl, revision unknownrevision.
Hadron_Init::Init(): Initializing kf table for hadrons.
Beam_Spectra_Handler: type = Collider Setup
    for P+ (on = 0, p = (3500,0,0,3500))
    and P+ (on = 0, p = (3500,0,0,-3500)).
ISR handling:
    PDFs for hard scattering:              PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
    PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
Remnant_Handlers:
    hard process: P+: Hadron + P+: Hadron
Standard_Model::FixEWParameters() {
  Input scheme: Gmu
                Gmu scheme, input: GF, m_W, m_Z, m_h, widths
  Ren. scheme:  Gmu
                
  Parameters:   sin^2(\theta_W) = 0.223043 - 0.00110541 i
                vev             = 246.218
}
Running_AlphaQED::PrintSummary() {
  Setting \alpha according to EW scheme
  1/\alpha(0)   = 137.036
  1/\alpha(def) = 132.119
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
List of Particle Data 
     IDName     kfc            Mass           Width   Stable  Massive   Active          Yukawa
          d       1            0.01               0        1        0        1               0
          u       2           0.005               0        1        0        1               0
          s       3             0.2               0        1        0        1               0
          c       4            1.42               0        1        0        1               0
          b       5            4.92               0        1        0        1               0
          t       6           172.5            1.32        0        1        1           172.5
         e-      11        0.000511               0        1        0        1               0
         ve      12               0               0        1        0        1               0
        mu-      13           0.105               0        1        0        1               0
        vmu      14               0               0        1        0        1               0
       tau-      15           1.777     2.26735e-12        0        0        1               0
       vtau      16               0               0        1        0        1               0
          G      21               0               0        1        0        1               0
          P      22               0               0        1        0        1               0
          Z      23         91.1876          2.4952        0        1        1         91.1876
         W+      24          80.379           2.085        0        1        1          80.379
         h0      25          125.09          0.0041        0        1        1          125.09
  Instanton     999               0               0        0        0        1               0
List of Particle Containers 
     IDName     kfc     Constituents
          l      90     {e-,e+,mu-,mu+,tau-,tau+}
          v      91     {ve,veb,vmu,vmub,vtau,vtaub}
          f      92     {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub}
          j      93     {d,db,u,ub,s,sb,c,cb,b,bb,G}
          Q      94     {d,db,u,ub,s,sb,c,cb,b,bb}
        ewj      98     {d,db,u,ub,s,sb,c,cb,b,bb,G,P}
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Shower_Handler initialised.

+-----------------------------------------+
|   X   X   X XXXX  XXX  XXX  XXX         |
|  X X  XX XX X    X      X  X     X   X  |
| X   X X X X XXX  X XXX  X  X    XXX XXX |
| XXXXX X   X X    X   X  X  X     X   X  |
| X   X X   X XXXX  XXX  XXX  XXX         |
+-----------------------------------------+
| please cite: JHEP 0202:044,2002         |
+-----------------------------------------+
Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none)
+----------------------------------+
|                                  |
|      CCC  OOO  M   M I X   X     |
|     C    O   O MM MM I  X X      |
|     C    O   O M M M I   X       |
|     C    O   O M   M I  X X      |
|      CCC  OOO  M   M I X   X     |
|                                  |
+==================================+
|  Color dressed  Matrix Elements  |
|     http://comix.freacafe.de     |
|   please cite  JHEP12(2008)039   |
+----------------------------------+
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none)
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none)
Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks.
Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ).
Initialized the Matrix_Element_Handler for the hard processes.
Initialized the Beam_Remnant_Handler.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none)
MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1)
Underlying event/multiple interactions handler:
    MI[2]: on = 1 (type = 1, Amisic)
Soft-collision handlers:
    Type[2]: None
Hadron_Init::Init(): Initializing kf table for hadrons.
Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface")
Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings")
Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!")
Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values")
Initialized the Fragmentation_Handler.
Initialized the Hadron_Decay_Handler, Decay model = HADRONS++
Initialized the Soft_Photon_Handler.
Initialized the Reweighting.
ISR_Channels::CheckForStructuresFromME for 0: (none)
Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j
Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix)
2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 %
  reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) 
----------------------------------------------------------
-- SHERPA generates events with the following structure --
----------------------------------------------------------
Event generation   : Weighted
Perturbative       : Signal_Processes
Perturbative       : Minimum_Bias: None
Perturbative       : Hard_Decays
Perturbative       : Jet_Evolution:CFP
Perturbative       : Lepton_FS_QED_Corrections:None
Perturbative       : Multiple_Interactions: Amisic
Hadronization      : Beam_Remnants:Parametrised
Hadronization      : Hadronization:Pythia8
Hadronization      : Hadron_Decays
Userhook           : 
Analysis           : Rivet
---------------------------------------------------------
#--------------------------------------------------------------------------
#                     FastJet release 3.3.2 [fjcore]
#                 M. Cacciari, G.P. Salam and G. Soyez                  
#     A software package for jet finding and analysis at colliders      
#                           http://fastjet.fr                           
#	                                                                      
# Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package
# for scientific work and optionally PLB641(2006)57 [hep-ph/0512210].   
#                                                                       
# FastJet is provided without warranty under the terms of the GNU GPLv2.
# It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code
# and 3rd party plugin jet algorithms. See COPYING file for details.
#--------------------------------------------------------------------------
  Event 1 ( 3s elapsed / 4d 5h 6m 36s left ) -> ETA: Sun Apr 14 02:46  XS = 1.60027e+10 pb +- ( 1.60027e+10 pb = 100 % )  
  Event 2 ( 3s elapsed / 2d 5h 3m 16s left ) -> ETA: Fri Apr 12 02:43  XS = 8.00133e+09 pb +- ( 8.00133e+09 pb = 99 % )  
  Event 3 ( 3s elapsed / 1d 11h 38m 49s left ) -> ETA: Thu Apr 11 09:18  XS = 7.79364e+09 pb +- ( 6.20128e+09 pb = 79 % )  
  Event 4 ( 3s elapsed / 1d 2h 52m 26s left ) -> ETA: Thu Apr 11 00:32  XS = 5.56768e+09 pb +- ( 4.51408e+09 pb = 81 % )  
  Event 5 ( 3s elapsed / 21h 36m 36s left ) -> ETA: Wed Apr 10 19:16  XS = 2.99798e+09 pb +- ( 2.4755e+09 pb = 82 % )  
  Event 6 ( 3s elapsed / 18h 22m 42s left ) -> ETA: Wed Apr 10 16:02  XS = 3.56033e+09 pb +- ( 2.35985e+09 pb = 66 % )  
  Event 7 ( 4s elapsed / 15h 59m 27s left ) -> ETA: Wed Apr 10 13:39  XS = 3.32298e+09 pb +- ( 2.20968e+09 pb = 66 % )  
  Event 8 ( 4s elapsed / 14h 14m 5s left ) -> ETA: Wed Apr 10 11:53  XS = 3.11529e+09 pb +- ( 2.07738e+09 pb = 66 % )  
  Event 9 ( 4s elapsed / 13h 10m 40s left ) -> ETA: Wed Apr 10 10:50  XS = 2.6234e+09 pb +- ( 1.76071e+09 pb = 67 % )  
  Event 10 ( 4s elapsed / 11h 58m 15s left ) -> ETA: Wed Apr 10 09:38  XS = 2.26567e+09 pb +- ( 1.52757e+09 pb = 67 % )  
  Event 20 ( 4s elapsed / 6h 43m 15s left ) -> ETA: Wed Apr 10 04:23  XS = 4.97386e+09 pb +- ( 2.45536e+09 pb = 49 % )  
  Event 30 ( 5s elapsed / 5h 13m 47s left ) -> ETA: Wed Apr 10 02:53  XS = 4.27152e+09 pb +- ( 2.02534e+09 pb = 47 % )  
  Event 40 ( 6s elapsed / 4h 21m 8s left ) -> ETA: Wed Apr 10 02:01  XS = 4.00557e+09 pb +- ( 1.65385e+09 pb = 41 % )  
  Event 50 ( 6s elapsed / 3h 52m 13s left ) -> ETA: Wed Apr 10 01:32  XS = 3.53393e+09 pb +- ( 1.40594e+09 pb = 39 % )  
  Event 60 ( 7s elapsed / 3h 40m 8s left ) -> ETA: Wed Apr 10 01:20  XS = 3.03971e+09 pb +- ( 1.21298e+09 pb = 39 % )  
  Event 70 ( 8s elapsed / 3h 26m 59s left ) -> ETA: Wed Apr 10 01:06  XS = 3.74471e+09 pb +- ( 1.30317e+09 pb = 34 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements
[I] 1 u                     6 (     ->    2) [( 2.8541e+03,-0.0000e+00,-0.0000e+00, 2.8541e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601,  0) 0
[I] 1 G                    31 (     ->    4) [( 5.2682e+02,-0.0000e+00,-0.0000e+00, 5.2682e+02), p^2= 0.0000e+00, m= 0.0000e+00] (628,659) 0
[I] 1 G                    47 (     ->    6) [( 8.3498e+01,-0.0000e+00,-0.0000e+00, 8.3498e+01), p^2= 0.0000e+00, m= 0.0000e+00] (641,601) 0
[I] 1 G                    65 (     ->    8) [( 1.8866e+01,-0.0000e+00,-0.0000e+00, 1.8866e+01), p^2= 0.0000e+00, m= 0.0000e+00] (659,628) 0
 and Particle List with 4 elements
[I] 1 G                     5 (     ->    2) [( 3.4874e+03,-0.0000e+00,-0.0000e+00,-3.4874e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1
[I] 1 db                   32 (     ->    4) [( 6.4979e-01,-0.0000e+00,-0.0000e+00,-6.4979e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,603) 1
[I] 1 G                    48 (     ->    6) [( 9.1493e+00,-0.0000e+00,-0.0000e+00,-9.1493e+00), p^2= 0.0000e+00, m= 0.0000e+00] (601,640) 1
[I] 1 sb                   66 (     ->    8) [( 1.1459e+00,-0.0000e+00,-0.0000e+00,-1.1459e+00), p^2= 0.0000e+00, m= 4.0000e-01] (  0,633) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 ud_0                 73 (     ->     ) [( 1.6667e+01, 0.0000e+00, 0.0000e+00, 1.6667e+01), p^2= 4.1924e-03, m= 5.7933e-01] (  0,641) 0
 and Particle List with 4 elements
[B] 1 uu_1                 76 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,661) 1
[B] 1 s                    70 (     ->     ) [( 4.6550e-01, 0.0000e+00, 0.0000e+00,-4.6547e-01), p^2= 3.3039e-05, m= 0.0000e+00] (661,  0) 1
[B] 1 d                    42 (     ->     ) [( 3.5071e-01, 0.0000e+00, 0.0000e+00,-3.5068e-01), p^2= 1.8754e-05, m= 0.0000e+00] (633,  0) 1
[B] 1 d                    75 (     ->     ) [( 8.3342e-01, 0.0000e+00, 0.0000e+00,-8.3335e-01), p^2= 1.0590e-04, m= 0.0000e+00] (640,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 80 ( 9s elapsed / 3h 22m 20s left ) -> ETA: Wed Apr 10 01:02  XS = 3.56415e+09 pb +- ( 1.16893e+09 pb = 32 % )  
  Event 90 ( 10s elapsed / 3h 15m 56s left ) -> ETA: Wed Apr 10 00:55  XS = 3.22851e+09 pb +- ( 1.0609e+09 pb = 32 % )  
  Event 100 ( 11s elapsed / 3h 5m 58s left ) -> ETA: Wed Apr 10 00:45  XS = 3.0055e+09 pb +- ( 9.62175e+08 pb = 32 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 ub                    6 (     ->    2) [( 3.4920e+03,-0.0000e+00,-0.0000e+00, 3.4920e+03), p^2= 0.0000e+00, m= 3.0000e-01] (  0,601) 0
[I] 1 d                    46 (     ->    4) [( 6.1681e+00,-0.0000e+00,-0.0000e+00, 6.1681e+00), p^2= 0.0000e+00, m= 3.0000e-01] (601,  0) 0
 and Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 2.9881e+02,-0.0000e+00,-0.0000e+00,-2.9881e+02), p^2= 0.0000e+00, m= 0.0000e+00] (612,630) 1
[I] 1 s                    47 (     ->    4) [( 4.4942e+02,-0.0000e+00,-0.0000e+00,-4.4942e+02), p^2= 0.0000e+00, m= 4.0000e-01] (646,  0) 1
 and the corresponding remnants are Particle List with 4 elements
[B] 1 ud_0                 62 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,634) 0
[B] 1 db                   57 (     ->     ) [( 6.2791e-01, 0.0000e+00, 0.0000e+00, 6.2787e-01), p^2= 5.5017e-05, m= 0.0000e+00] (  0,650) 0
[B] 1 u                    41 (     ->     ) [( 6.5278e-01, 0.0000e+00, 0.0000e+00, 6.5274e-01), p^2= 5.9462e-05, m= 0.0000e+00] (634,  0) 0
[B] 1 u                    61 (     ->     ) [( 5.2180e-01, 0.0000e+00, 0.0000e+00, 5.2176e-01), p^2= 3.7993e-05, m= 0.0000e+00] (650,  0) 0
 and Particle List with 3 elements
[B] 1 ud_0                 64 (     ->     ) [( 2.4608e+03, 0.0000e+00, 0.0000e+00,-2.4608e+03), p^2= 5.5351e-01, m= 5.7933e-01] (  0,646) 1
[B] 1 sb                   58 (     ->     ) [( 4.0292e-01, 0.0000e+00, 0.0000e+00,-4.0292e-01), p^2= 1.4839e-08, m= 0.0000e+00] (  0,612) 1
[B] 1 u                    63 (     ->     ) [( 2.9059e+02, 0.0000e+00, 0.0000e+00,-2.9059e+02), p^2= 7.7185e-03, m= 0.0000e+00] (630,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 G                     5 (     ->    2) [( 3.4813e+03,-0.0000e+00,-0.0000e+00, 3.4813e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0
[I] 1 db                   63 (     ->    4) [( 1.0742e+00,-0.0000e+00,-0.0000e+00, 1.0742e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,601) 0
[I] 1 G                    77 (     ->    6) [( 1.6017e+01,-0.0000e+00,-0.0000e+00, 1.6017e+01), p^2= 0.0000e+00, m= 0.0000e+00] (668,656) 0
 and Particle List with 3 elements
[I] 1 u                     6 (     ->    2) [( 1.7517e+03,-0.0000e+00,-0.0000e+00,-1.7517e+03), p^2= 0.0000e+00, m= 3.0000e-01] (637,  0) 1
[I] 1 u                    64 (     ->    4) [( 1.8064e+02,-0.0000e+00,-0.0000e+00,-1.8064e+02), p^2= 0.0000e+00, m= 3.0000e-01] (655,  0) 1
[I] 1 G                    78 (     ->    6) [( 8.0110e+02,-0.0000e+00,-0.0000e+00,-8.0110e+02), p^2= 0.0000e+00, m= 0.0000e+00] (674,655) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 uu_1                 92 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,668) 0
[B] 1 d                    71 (     ->     ) [( 1.1779e+00, 0.0000e+00, 0.0000e+00, 1.1779e+00), p^2= 2.1960e-04, m= 0.0000e+00] (656,  0) 0
[B] 1 d                    91 (     ->     ) [( 4.1129e-01, 0.0000e+00, 0.0000e+00, 4.1126e-01), p^2= 2.6772e-05, m= 0.0000e+00] (603,  0) 0
 and Particle List with 2 elements
[B] 1 ud_0                 93 (     ->     ) [( 4.8374e+02, 0.0000e+00, 0.0000e+00,-4.8374e+02), p^2= 7.6783e-02, m= 5.7933e-01] (  0,674) 1
[B] 1 ub                   72 (     ->     ) [( 2.8284e+02, 0.0000e+00, 0.0000e+00,-2.8284e+02), p^2= 2.6249e-02, m= 0.0000e+00] (  0,637) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 200 ( 18s elapsed / 2h 37m 51s left ) -> ETA: Wed Apr 10 00:18  
    Memory usage increased by 17 MB, now 145 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.05277e+09 pb +- ( 1.2217e+09 pb = 30 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 7.2929e+02,-0.0000e+00,-0.0000e+00, 7.2929e+02), p^2= 0.0000e+00, m= 0.0000e+00] (624,637) 0
[I] 1 G                    54 (     ->    4) [( 5.0607e+02,-0.0000e+00,-0.0000e+00, 5.0607e+02), p^2= 0.0000e+00, m= 0.0000e+00] (650,624) 0
 and Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 3.4976e+03,-0.0000e+00,-0.0000e+00,-3.4976e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 db                   55 (     ->    4) [( 5.9215e-01,-0.0000e+00,-0.0000e+00,-5.9215e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,646) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 66 (     ->     ) [( 1.5364e+03, 0.0000e+00, 0.0000e+00, 1.5364e+03), p^2= 2.6217e-01, m= 5.7933e-01] (  0,650) 0
[B] 1 u                    65 (     ->     ) [( 7.2826e+02, 0.0000e+00, 0.0000e+00, 7.2826e+02), p^2= 5.8907e-02, m= 0.0000e+00] (637,  0) 0
 and Particle List with 3 elements
[B] 1 uu_1                 68 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,601) 1
[B] 1 d                    62 (     ->     ) [( 6.3129e-01, 0.0000e+00, 0.0000e+00,-6.3125e-01), p^2= 5.5041e-05, m= 0.0000e+00] (603,  0) 1
[B] 1 d                    67 (     ->     ) [( 1.1899e+00, 0.0000e+00, 0.0000e+00,-1.1898e+00), p^2= 1.9554e-04, m= 0.0000e+00] (646,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 300 ( 26s elapsed / 2h 24m 43s left ) -> ETA: Wed Apr 10 00:04  XS = 5.50915e+09 pb +- ( 1.68744e+09 pb = 30 % )  
  Event 400 ( 32s elapsed / 2h 16m 52s left ) -> ETA: Tue Apr 09 23:57  XS = 5.63745e+09 pb +- ( 1.35678e+09 pb = 24 % )  
  Event 500 ( 40s elapsed / 2h 13m 53s left ) -> ETA: Tue Apr 09 23:54  XS = 5.7916e+09 pb +- ( 1.14496e+09 pb = 19 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements
[I] 1 d                     5 (     ->    2) [( 1.3818e+03,-0.0000e+00,-0.0000e+00, 1.3818e+03), p^2= 0.0000e+00, m= 3.0000e-01] (627,  0) 0
[I] 1 G                    67 (     ->    4) [( 4.4539e+02,-0.0000e+00,-0.0000e+00, 4.4539e+02), p^2= 0.0000e+00, m= 0.0000e+00] (664,627) 0
[I] 1 d                    94 (     ->    6) [( 1.1082e+03,-0.0000e+00,-0.0000e+00, 1.1082e+03), p^2= 0.0000e+00, m= 3.0000e-01] (675,  0) 0
[I] 1 sb                  116 (     ->    8) [( 1.7622e+01,-0.0000e+00,-0.0000e+00, 1.7622e+01), p^2= 0.0000e+00, m= 4.0000e-01] (  0,675) 0
[I] 1 d                   132 (     ->   10) [( 1.6395e+02,-0.0000e+00,-0.0000e+00, 1.6395e+02), p^2= 0.0000e+00, m= 3.0000e-01] (713,  0) 0
[I] 1 G                   152 (     ->   12) [( 1.1613e+02,-0.0000e+00,-0.0000e+00, 1.1613e+02), p^2= 0.0000e+00, m= 0.0000e+00] (718,713) 0
[I] 1 G                   168 (     ->   14) [( 2.6466e+02,-0.0000e+00,-0.0000e+00, 2.6466e+02), p^2= 0.0000e+00, m= 0.0000e+00] (728,718) 0
 and Particle List with 7 elements
[I] 1 d                     6 (     ->    2) [( 1.5602e+03,-0.0000e+00,-0.0000e+00,-1.5602e+03), p^2= 0.0000e+00, m= 3.0000e-01] (626,  0) 1
[I] 1 G                    68 (     ->    4) [( 1.3344e+03,-0.0000e+00,-0.0000e+00,-1.3344e+03), p^2= 0.0000e+00, m= 0.0000e+00] (668,626) 1
[I] 1 ub                   95 (     ->    6) [( 5.5447e+01,-0.0000e+00,-0.0000e+00,-5.5447e+01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,668) 1
[I] 1 G                   117 (     ->    8) [( 3.8419e+02,-0.0000e+00,-0.0000e+00,-3.8419e+02), p^2= 0.0000e+00, m= 0.0000e+00] (700,689) 1
[I] 1 ub                  133 (     ->   10) [( 1.2894e+02,-0.0000e+00,-0.0000e+00,-1.2894e+02), p^2= 0.0000e+00, m= 3.0000e-01] (  0,700) 1
[I] 1 G                   153 (     ->   12) [( 1.1095e+01,-0.0000e+00,-0.0000e+00,-1.1095e+01), p^2= 0.0000e+00, m= 0.0000e+00] (725,717) 1
[I] 1 G                   169 (     ->   14) [( 2.3505e+01,-0.0000e+00,-0.0000e+00,-2.3505e+01), p^2= 0.0000e+00, m= 0.0000e+00] (731,725) 1
 and the corresponding remnants are Particle List with 4 elements
[B] 1 uu_1                179 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,728) 0
[B] 1 db                  146 (     ->     ) [( 3.3723e-01, 0.0000e+00, 0.0000e+00, 3.3721e-01), p^2= 1.3022e-05, m= 0.0000e+00] (  0,703) 0
[B] 1 s                   127 (     ->     ) [( 1.3012e+00, 0.0000e+00, 0.0000e+00, 1.3012e+00), p^2= 1.9388e-04, m= 0.0000e+00] (703,  0) 0
[B] 1 db                  110 (     ->     ) [( 5.5817e-01, 0.0000e+00, 0.0000e+00, 5.5814e-01), p^2= 3.5674e-05, m= 0.0000e+00] (  0,664) 0
 and Particle List with 3 elements
[B] 1 uu_1                180 (     ->     ) [( 1.5395e+00, 0.0000e+00, 0.0000e+00,-1.5395e+00), p^2= 2.6148e-04, m= 7.7133e-01] (  0,731) 1
[B] 1 u                   147 (     ->     ) [( 3.5209e-01, 0.0000e+00, 0.0000e+00,-3.5207e-01), p^2= 1.3676e-05, m= 0.0000e+00] (717,  0) 1
[B] 1 u                   111 (     ->     ) [( 3.8828e-01, 0.0000e+00, 0.0000e+00,-3.8826e-01), p^2= 1.6632e-05, m= 0.0000e+00] (689,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 600 ( 48s elapsed / 2h 12m 41s left ) -> ETA: Tue Apr 09 23:53  XS = 5.87648e+09 pb +- ( 1.06466e+09 pb = 18 % )  
  Event 700 ( 55s elapsed / 2h 11m 30s left ) -> ETA: Tue Apr 09 23:52  XS = 6.42275e+09 pb +- ( 1.05539e+09 pb = 16 % )  
  Event 800 ( 1m 3s elapsed / 2h 10m 40s left ) -> ETA: Tue Apr 09 23:51  XS = 6.30401e+09 pb +- ( 9.74453e+08 pb = 15 % )  
  Event 900 ( 1m 10s elapsed / 2h 10m 4s left ) -> ETA: Tue Apr 09 23:51  XS = 5.93337e+09 pb +- ( 8.72855e+08 pb = 14 % )  
  Event 1000 ( 1m 17s elapsed / 2h 8m 6s left ) -> ETA: Tue Apr 09 23:49  XS = 5.80861e+09 pb +- ( 8.01485e+08 pb = 13 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 2000 ( 2m 31s elapsed / 2h 3m 29s left ) -> ETA: Tue Apr 09 23:45  XS = 5.00491e+09 pb +- ( 4.74118e+08 pb = 9 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 3000 ( 3m 45s elapsed / 2h 1m 36s left ) -> ETA: Tue Apr 09 23:45  XS = 5.15808e+09 pb +- ( 4.03859e+08 pb = 7 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01
  Event 4000 ( 5m 1s elapsed / 2h 35s left ) -> ETA: Tue Apr 09 23:45  XS = 4.9085e+09 pb +- ( 3.27528e+08 pb = 6 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 5000 ( 6m 12s elapsed / 1h 57m 54s left ) -> ETA: Tue Apr 09 23:43  XS = 5.05591e+09 pb +- ( 2.94452e+08 pb = 5 % )  
  Event 6000 ( 7m 25s elapsed / 1h 56m 22s left ) -> ETA: Tue Apr 09 23:43  XS = 4.98264e+09 pb +- ( 2.66927e+08 pb = 5 % )  
  Event 7000 ( 8m 38s elapsed / 1h 54m 50s left ) -> ETA: Tue Apr 09 23:43  XS = 4.92097e+09 pb +- ( 2.43491e+08 pb = 4 % )  
  Event 8000 ( 9m 55s elapsed / 1h 54m 11s left ) -> ETA: Tue Apr 09 23:43  XS = 4.83534e+09 pb +- ( 2.23299e+08 pb = 4 % )  
  Event 9000 ( 11m 10s elapsed / 1h 52m 56s left ) -> ETA: Tue Apr 09 23:43  XS = 4.84186e+09 pb +- ( 2.09518e+08 pb = 4 % )  
  Event 10000 ( 12m 24s elapsed / 1h 51m 39s left ) -> ETA: Tue Apr 09 23:43  XS = 4.75003e+09 pb +- ( 1.94399e+08 pb = 4 % )  
Pythia8 hadronisation failed.

  Event 20000 ( 24m 34s elapsed / 1h 38m 18s left ) -> ETA: Tue Apr 09 23:42  XS = 4.76482e+09 pb +- ( 1.3846e+08 pb = 2 % )  
  Event 30000 ( 36m 43s elapsed / 1h 25m 40s left ) -> ETA: Tue Apr 09 23:42  XS = 4.82978e+09 pb +- ( 1.18258e+08 pb = 2 % )  
  Event 40000 ( 49m 12s elapsed / 1h 13m 48s left ) -> ETA: Tue Apr 09 23:42  XS = 4.82212e+09 pb +- ( 1.03095e+08 pb = 2 % )  
Pythia8 hadronisation failed.

  Event 50000 ( 1h 1m 23s elapsed / 1h 1m 23s left ) -> ETA: Tue Apr 09 23:42  XS = 4.80083e+09 pb +- ( 9.36714e+07 pb = 1 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 60000 ( 1h 13m 27s elapsed / 48m 58s left ) -> ETA: Tue Apr 09 23:42  
    Memory usage increased by 65 MB, now 211 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.78793e+09 pb +- ( 8.42391e+07 pb = 1 % )  
  Event 70000 ( 1h 25m 50s elapsed / 36m 47s left ) -> ETA: Tue Apr 09 23:42  XS = 4.79588e+09 pb +- ( 7.85262e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 80000 ( 1h 38m 9s elapsed / 24m 32s left ) -> ETA: Tue Apr 09 23:42  XS = 4.83944e+09 pb +- ( 7.34275e+07 pb = 1 % )  
  Event 90000 ( 1h 50m 26s elapsed / 12m 16s left ) -> ETA: Tue Apr 09 23:42  XS = 4.8441e+09 pb +- ( 6.91605e+07 pb = 1 % )  
  Event 100000 ( 7351 s total ) = 1.17533e+06 evts/day                    
In Event_Handler::Finish : Summarizing the run may take some time.
Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_ISAS0_25_noWeight/1232){
}
--------------------------------------------------------------------------
Nominal or variation name     XS [pb]      RelDev  AbsErr [pb]      RelErr
--------------------------------------------------------------------------
Nominal                   4.84034e+09         0 %   6.5849e+07      1.36 %
--------------------------------------------------------------------------
Return_Value::PrintStatistics(): Statistics {
  Generated events: 100000
  Errors {
    From "Hadronization:Pythia8": 5 (100005) -> 0 %
  }
  New events {
    From "Beam_Remnants:Parametrised": 438 (100443) -> 0.4 %
  }
}
Blob_List: Momentum Fail Statistics {
}
Decay_Channel: Kinematics max fail statistics {
}
WARNING: You are using an unsupported development branch.
Remnant handling yields 438 fails in creating good beam breakups.
Remnant Kinematics: 438 errors (no kinematics found) and
                    94 warnings (scale kt down by factor of 10).
WARNING: Some settings that have been defined in the input
files and/or the command line have not been used. For more
details, see the Settings Report.
Time: 2h 2m 36s on Tue Apr  9 23:42:22 2024
 (User: 2h 2m 6s, System: 1s, Children User: 0s, Children System: 0s)
Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway.
The local time is Wed Apr 10 10:14:47 2024.
Run_Parameter::Init(): Setting memory limit to 503.276 GB.
Random::SetSeed(): Seed set to 1232
Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded.
-----------------------------------------------------------------------------
-----------    Event generation run with SHERPA started .......   -----------
-----------------------------------------------------------------------------
................................................ |       +                   
................................................ ||  |       +  +            
...................................        ....  | |         /   +           
................. ................   _,_ |  ....  ||         +|  +  +        
...............................  __.'  ,\|  ...  ||    /    +|          +    
.............................. (  \    \   ...  | |  |   + + \         +   
.............................  (    \   -/  .... ||       +    |          +  
........ ...................  <S   /()))))~~~~~~~~##     +     /\    +       
............................ (!H   (~~)))))~~~~~~#/     +  +    |  +         
................ ........... (!E   (~~~)))))     /|/    +         +          
............................ (!R   (~~~)))))   |||   + +            +        
..... ...................... (!P    (~~~~)))   /|  + +          +            
............................ (!A>    (~~~~~~~~~##        + +        +        
............................. ~~(!    '~~~~~~~ \       +     + +      +      
...............................  `~~~QQQQQDb //   |         + + +        +   
........................ ..........   IDDDDP||     \  + + + + +             +
....................................  IDDDI||       \                      + 
.................................... IHD HD||         \ + +  + + + + +      +
...................................  IHD ##|            :-) + +\          +  
......... ............... ......... IHI ## /      /   +  + + + +\       +    
................................... IHI/ /       /      + + + +        +     
................................... ## | | /    / + +      + + /      +      
....................... /TT\ .....  ##/ ///  / + + + + + + +/       +        
......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/   \         +   
....................../TTT/TTTT\...|TT/T\\\/   +    ++  + /              
-----------------------------------------------------------------------------

     SHERPA version 3.0.0beta1 (Dhaulagiri)
                                                                             
     Authors:        Enrico Bothmann, Stefan Hoeche, Frank Krauss,           
                     Silvan Kuttimalai, Marek Schoenherr, Holger Schulz,     
                     Steffen Schumann, Frank Siegert, Korinna Zapp           
     Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth,           
                     Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke,         
                     Jan Winter                                              
                                                                             
     This program uses a lot of genuine and original research work           
     by other people. Users are encouraged to refer to                       
     the various original publications.                                      
                                                                             
     Users are kindly asked to refer to the documentation                    
     published under JHEP 02(2009)007                                        
                                                                             
     Please visit also our homepage                                          
                                                                             
       http://sherpa.hepforge.org                                            
                                                                             
     for news, bugreports, updates and new releases.                         
                                                                             
-----------------------------------------------------------------------------
WARNING: You are using an unsupported development branch.
Git branch unknownurl, revision unknownrevision.
Hadron_Init::Init(): Initializing kf table for hadrons.
Beam_Spectra_Handler: type = Collider Setup
    for P+ (on = 0, p = (3500,0,0,3500))
    and P+ (on = 0, p = (3500,0,0,-3500)).
ISR handling:
    PDFs for hard scattering:              PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
    PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
Remnant_Handlers:
    hard process: P+: Hadron + P+: Hadron
Standard_Model::FixEWParameters() {
  Input scheme: Gmu
                Gmu scheme, input: GF, m_W, m_Z, m_h, widths
  Ren. scheme:  Gmu
                
  Parameters:   sin^2(\theta_W) = 0.223043 - 0.00110541 i
                vev             = 246.218
}
Running_AlphaQED::PrintSummary() {
  Setting \alpha according to EW scheme
  1/\alpha(0)   = 137.036
  1/\alpha(def) = 132.119
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
List of Particle Data 
     IDName     kfc            Mass           Width   Stable  Massive   Active          Yukawa
          d       1            0.01               0        1        0        1               0
          u       2           0.005               0        1        0        1               0
          s       3             0.2               0        1        0        1               0
          c       4            1.42               0        1        0        1               0
          b       5            4.92               0        1        0        1               0
          t       6           172.5            1.32        0        1        1           172.5
         e-      11        0.000511               0        1        0        1               0
         ve      12               0               0        1        0        1               0
        mu-      13           0.105               0        1        0        1               0
        vmu      14               0               0        1        0        1               0
       tau-      15           1.777     2.26735e-12        0        0        1               0
       vtau      16               0               0        1        0        1               0
          G      21               0               0        1        0        1               0
          P      22               0               0        1        0        1               0
          Z      23         91.1876          2.4952        0        1        1         91.1876
         W+      24          80.379           2.085        0        1        1          80.379
         h0      25          125.09          0.0041        0        1        1          125.09
  Instanton     999               0               0        0        0        1               0
List of Particle Containers 
     IDName     kfc     Constituents
          l      90     {e-,e+,mu-,mu+,tau-,tau+}
          v      91     {ve,veb,vmu,vmub,vtau,vtaub}
          f      92     {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub}
          j      93     {d,db,u,ub,s,sb,c,cb,b,bb,G}
          Q      94     {d,db,u,ub,s,sb,c,cb,b,bb}
        ewj      98     {d,db,u,ub,s,sb,c,cb,b,bb,G,P}
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Shower_Handler initialised.

+-----------------------------------------+
|   X   X   X XXXX  XXX  XXX  XXX         |
|  X X  XX XX X    X      X  X     X   X  |
| X   X X X X XXX  X XXX  X  X    XXX XXX |
| XXXXX X   X X    X   X  X  X     X   X  |
| X   X X   X XXXX  XXX  XXX  XXX         |
+-----------------------------------------+
| please cite: JHEP 0202:044,2002         |
+-----------------------------------------+
Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none)
+----------------------------------+
|                                  |
|      CCC  OOO  M   M I X   X     |
|     C    O   O MM MM I  X X      |
|     C    O   O M M M I   X       |
|     C    O   O M   M I  X X      |
|      CCC  OOO  M   M I X   X     |
|                                  |
+==================================+
|  Color dressed  Matrix Elements  |
|     http://comix.freacafe.de     |
|   please cite  JHEP12(2008)039   |
+----------------------------------+
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none)
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none)
Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks.
Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 53 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 54 MB, 0s / 0s ).
Initialized the Matrix_Element_Handler for the hard processes.
Initialized the Beam_Remnant_Handler.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none)
MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1)
Underlying event/multiple interactions handler:
    MI[2]: on = 1 (type = 1, Amisic)
Soft-collision handlers:
    Type[2]: None
Hadron_Init::Init(): Initializing kf table for hadrons.
Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface")
Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings")
Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!")
Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values")
Initialized the Fragmentation_Handler.
Initialized the Hadron_Decay_Handler, Decay model = HADRONS++
Initialized the Soft_Photon_Handler.
Initialized the Reweighting.
ISR_Channels::CheckForStructuresFromME for 0: (none)
Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j
Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix)
2_2__j__j__j__j : 4.95201e+09 pb +- ( 2.57792e+07 pb = 0.52058 % )  exp. eff: 0.320522 %
  reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 0.00320522 ) 
----------------------------------------------------------
-- SHERPA generates events with the following structure --
----------------------------------------------------------
Event generation   : Weighted
Perturbative       : Signal_Processes
Perturbative       : Minimum_Bias: None
Perturbative       : Hard_Decays
Perturbative       : Jet_Evolution:CFP
Perturbative       : Lepton_FS_QED_Corrections:None
Perturbative       : Multiple_Interactions: Amisic
Hadronization      : Beam_Remnants:Parametrised
Hadronization      : Hadronization:Pythia8
Hadronization      : Hadron_Decays
Userhook           : 
Analysis           : Rivet
---------------------------------------------------------
#--------------------------------------------------------------------------
#                     FastJet release 3.3.2 [fjcore]
#                 M. Cacciari, G.P. Salam and G. Soyez                  
#     A software package for jet finding and analysis at colliders      
#                           http://fastjet.fr                           
#	                                                                      
# Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package
# for scientific work and optionally PLB641(2006)57 [hep-ph/0512210].   
#                                                                       
# FastJet is provided without warranty under the terms of the GNU GPLv2.
# It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code
# and 3rd party plugin jet algorithms. See COPYING file for details.
#--------------------------------------------------------------------------
  Event 1 ( 3s elapsed / 40d 20h 33m 16s left ) -> ETA: Tue May 21 06:48  XS = 1.60027e+10 pb +- ( 1.60027e+10 pb = 100 % )  
  Event 2 ( 3s elapsed / 21d 4h 19m 56s left ) -> ETA: Wed May 01 14:34  XS = 1.06684e+10 pb +- ( 1.06684e+10 pb = 99 % )  
  Event 3 ( 3s elapsed / 14d 5h 39m 56s left ) -> ETA: Wed Apr 24 15:54  XS = 1.14096e+10 pb +- ( 7.9012e+09 pb = 69 % )  
  Event 4 ( 3s elapsed / 11d 2h 39m 56s left ) -> ETA: Sun Apr 21 12:54  XS = 1.01419e+10 pb +- ( 7.08259e+09 pb = 69 % )  
  Event 5 ( 3s elapsed / 9d 6m 36s left ) -> ETA: Fri Apr 19 10:21  XS = 9.13191e+09 pb +- ( 6.41487e+09 pb = 70 % )  
  Event 6 ( 4s elapsed / 7d 17h 11m 2s left ) -> ETA: Thu Apr 18 03:25  XS = 6.08829e+09 pb +- ( 4.35423e+09 pb = 71 % )  
  Event 7 ( 4s elapsed / 6d 19h 5m 38s left ) -> ETA: Wed Apr 17 05:20  XS = 5.37202e+09 pb +- ( 3.85722e+09 pb = 71 % )  
  Event 8 ( 4s elapsed / 6d 1h 8m 15s left ) -> ETA: Tue Apr 16 11:23  XS = 4.34878e+09 pb +- ( 3.13973e+09 pb = 72 % )  
  Event 9 ( 4s elapsed / 5d 9h 19m 11s left ) -> ETA: Mon Apr 15 19:34  XS = 1.36358e+10 pb +- ( 9.75764e+09 pb = 71 % )  
  Event 10 ( 4s elapsed / 4d 21h 46m 35s left ) -> ETA: Mon Apr 15 08:01  XS = 1.25109e+10 pb +- ( 8.96064e+09 pb = 71 % )  
  Event 20 ( 4s elapsed / 2d 19h 38m 15s left ) -> ETA: Sat Apr 13 05:53  XS = 1.44772e+10 pb +- ( 7.26886e+09 pb = 50 % )  
  Event 30 ( 5s elapsed / 2d 3h 45m 27s left ) -> ETA: Fri Apr 12 14:00  XS = 1.49366e+10 pb +- ( 5.97008e+09 pb = 39 % )  
  Event 40 ( 6s elapsed / 1d 20h 47m 23s left ) -> ETA: Fri Apr 12 07:02  XS = 1.16934e+10 pb +- ( 4.68093e+09 pb = 40 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 3.4984e+03,-0.0000e+00,-0.0000e+00, 3.4984e+03), p^2= 0.0000e+00, m= 0.0000e+00] (605,607) 0
[I] 1 ub                   54 (     ->    4) [( 4.1526e-01,-0.0000e+00,-0.0000e+00, 4.1526e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,657) 0
 and Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 2.3438e+03,-0.0000e+00,-0.0000e+00,-2.3438e+03), p^2= 0.0000e+00, m= 0.0000e+00] (622,614) 1
[I] 1 u                    55 (     ->    4) [( 8.5451e+02,-0.0000e+00,-0.0000e+00,-8.5451e+02), p^2= 0.0000e+00, m= 3.0000e-01] (614,  0) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 ud_0                 66 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,605) 0
[B] 1 u                    62 (     ->     ) [( 5.3722e-01, 0.0000e+00, 0.0000e+00, 5.3716e-01), p^2= 6.1846e-05, m= 0.0000e+00] (607,  0) 0
[B] 1 u                    65 (     ->     ) [( 6.3646e-01, 0.0000e+00, 0.0000e+00, 6.3639e-01), p^2= 8.6808e-05, m= 0.0000e+00] (657,  0) 0
 and Particle List with 1 elements
[B] 1 ud_0                 67 (     ->     ) [( 3.0165e+02, 0.0000e+00, 0.0000e+00,-3.0165e+02), p^2= 7.5873e-02, m= 5.7933e-01] (  0,622) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 50 ( 7s elapsed / 1d 15h 53m 12s left ) -> ETA: Fri Apr 12 02:08  XS = 9.35272e+09 pb +- ( 3.51316e+09 pb = 37 % )  
  Event 60 ( 7s elapsed / 1d 11h 30m 25s left ) -> ETA: Thu Apr 11 21:45  XS = 8.6367e+09 pb +- ( 3.06984e+09 pb = 35 % )  
  Event 70 ( 8s elapsed / 1d 8h 15m 34s left ) -> ETA: Thu Apr 11 18:30  XS = 7.5035e+09 pb +- ( 2.61691e+09 pb = 34 % )  
  Event 80 ( 9s elapsed / 1d 7h 33m 35s left ) -> ETA: Thu Apr 11 17:48  XS = 7.42353e+09 pb +- ( 2.36149e+09 pb = 31 % )  
  Event 90 ( 9s elapsed / 1d 5h 56m 8s left ) -> ETA: Thu Apr 11 16:11  XS = 7.98814e+09 pb +- ( 2.33283e+09 pb = 29 % )  
  Event 100 ( 10s elapsed / 1d 5h 13m 9s left ) -> ETA: Thu Apr 11 15:28  XS = 7.80363e+09 pb +- ( 2.19051e+09 pb = 28 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements
[I] 1 G                     5 (     ->    2) [( 3.4754e+03,-0.0000e+00,-0.0000e+00, 3.4754e+03), p^2= 0.0000e+00, m= 0.0000e+00] (606,607) 0
[I] 1 G                    47 (     ->    4) [( 1.7112e+01,-0.0000e+00,-0.0000e+00, 1.7112e+01), p^2= 0.0000e+00, m= 0.0000e+00] (607,658) 0
[I] 1 sb                   73 (     ->    6) [( 9.5705e-01,-0.0000e+00,-0.0000e+00, 9.5705e-01), p^2= 0.0000e+00, m= 4.0000e-01] (  0,662) 0
[I] 1 G                    88 (     ->    8) [( 5.0080e+00,-0.0000e+00,-0.0000e+00, 5.0080e+00), p^2= 0.0000e+00, m= 0.0000e+00] (662,673) 0
 and Particle List with 4 elements
[I] 1 u                     6 (     ->    2) [( 6.3978e+02,-0.0000e+00,-0.0000e+00,-6.3978e+02), p^2= 0.0000e+00, m= 3.0000e-01] (621,  0) 1
[I] 1 G                    48 (     ->    4) [( 5.9028e+02,-0.0000e+00,-0.0000e+00,-5.9028e+02), p^2= 0.0000e+00, m= 0.0000e+00] (652,621) 1
[I] 1 u                    74 (     ->    6) [( 1.3199e+03,-0.0000e+00,-0.0000e+00,-1.3199e+03), p^2= 0.0000e+00, m= 3.0000e-01] (666,  0) 1
[I] 1 u                    89 (     ->    8) [( 4.4589e+02,-0.0000e+00,-0.0000e+00,-4.4589e+02), p^2= 0.0000e+00, m= 3.0000e-01] (670,  0) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 ud_0                100 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,606) 0
[B] 1 s                    82 (     ->     ) [( 8.0584e-01, 0.0000e+00, 0.0000e+00, 8.0577e-01), p^2= 1.0555e-04, m= 0.0000e+00] (658,  0) 0
[B] 1 u                    99 (     ->     ) [( 7.4158e-01, 0.0000e+00, 0.0000e+00, 7.4151e-01), p^2= 8.9387e-05, m= 0.0000e+00] (673,  0) 0
 and Particle List with 3 elements
[B] 1 ud_0                101 (     ->     ) [( 3.9798e+02, 0.0000e+00, 0.0000e+00,-3.9798e+02), p^2= 7.9023e-02, m= 5.7933e-01] (  0,670) 1
[B] 1 ub                   96 (     ->     ) [( 2.1342e+00, 0.0000e+00, 0.0000e+00,-2.1342e+00), p^2= 2.2725e-06, m= 0.0000e+00] (  0,666) 1
[B] 1 ub                   83 (     ->     ) [( 1.0403e+02, 0.0000e+00, 0.0000e+00,-1.0403e+02), p^2= 5.3997e-03, m= 0.0000e+00] (  0,652) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 200 ( 17s elapsed / 23h 41m 22s left ) -> ETA: Thu Apr 11 09:56  XS = 5.28702e+09 pb +- ( 1.22289e+09 pb = 23 % )  
  Event 300 ( 23s elapsed / 21h 56m 49s left ) -> ETA: Thu Apr 11 08:12  XS = 4.71379e+09 pb +- ( 8.92395e+08 pb = 18 % )  
  Event 400 ( 30s elapsed / 21h 19s left ) -> ETA: Thu Apr 11 07:15  XS = 4.58303e+09 pb +- ( 7.72566e+08 pb = 16 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 500 ( 36s elapsed / 20h 9m 23s left ) -> ETA: Thu Apr 11 06:24  XS = 4.92995e+09 pb +- ( 7.66434e+08 pb = 15 % )  
  Event 600 ( 44s elapsed / 20h 22m 35s left ) -> ETA: Thu Apr 11 06:38  XS = 4.74409e+09 pb +- ( 6.85221e+08 pb = 14 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements
[I] 1 G                     5 (     ->    2) [( 3.0755e+03,-0.0000e+00,-0.0000e+00, 3.0755e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0
[I] 1 G                    36 (     ->    4) [( 4.1906e+02,-0.0000e+00,-0.0000e+00, 4.1906e+02), p^2= 0.0000e+00, m= 0.0000e+00] (603,630) 0
[I] 1 G                    54 (     ->    6) [( 2.7052e+00,-0.0000e+00,-0.0000e+00, 2.7052e+00), p^2= 0.0000e+00, m= 0.0000e+00] (642,601) 0
[I] 1 sb                   66 (     ->    8) [( 1.2142e+00,-0.0000e+00,-0.0000e+00, 1.2142e+00), p^2= 0.0000e+00, m= 4.0000e-01] (  0,658) 0
 and Particle List with 4 elements
[I] 1 u                     6 (     ->    2) [( 7.4036e+02,-0.0000e+00,-0.0000e+00,-7.4036e+02), p^2= 0.0000e+00, m= 3.0000e-01] (620,  0) 1
[I] 1 G                    37 (     ->    4) [( 4.5815e+02,-0.0000e+00,-0.0000e+00,-4.5815e+02), p^2= 0.0000e+00, m= 0.0000e+00] (633,620) 1
[I] 1 G                    55 (     ->    6) [( 3.8066e+02,-0.0000e+00,-0.0000e+00,-3.8066e+02), p^2= 0.0000e+00, m= 0.0000e+00] (643,633) 1
[I] 1 G                    67 (     ->    8) [( 4.2070e+02,-0.0000e+00,-0.0000e+00,-4.2070e+02), p^2= 0.0000e+00, m= 0.0000e+00] (655,643) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 ud_0                 79 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,642) 0
[B] 1 s                    75 (     ->     ) [( 5.2937e-01, 0.0000e+00, 0.0000e+00, 5.2932e-01), p^2= 4.5090e-05, m= 0.0000e+00] (630,  0) 0
[B] 1 u                    78 (     ->     ) [( 1.0338e+00, 0.0000e+00, 0.0000e+00, 1.0337e+00), p^2= 1.7197e-04, m= 0.0000e+00] (658,  0) 0
 and Particle List with 1 elements
[B] 1 ud_0                 80 (     ->     ) [( 1.5001e+03, 0.0000e+00, 0.0000e+00,-1.5001e+03), p^2= 3.7733e-01, m= 5.7933e-01] (  0,655) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements
[I] 1 G                     6 (     ->    2) [( 3.4711e+03,-0.0000e+00,-0.0000e+00, 3.4711e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 0
[I] 1 G                    55 (     ->    4) [( 1.7125e+01,-0.0000e+00,-0.0000e+00, 1.7125e+01), p^2= 0.0000e+00, m= 0.0000e+00] (655,603) 0
[I] 1 d                    67 (     ->    6) [( 6.1413e+00,-0.0000e+00,-0.0000e+00, 6.1413e+00), p^2= 0.0000e+00, m= 3.0000e-01] (602,  0) 0
[I] 1 d                    78 (     ->    8) [( 4.9677e+00,-0.0000e+00,-0.0000e+00, 4.9677e+00), p^2= 0.0000e+00, m= 3.0000e-01] (671,  0) 0
 and Particle List with 4 elements
[I] 1 G                     5 (     ->    2) [( 2.5155e+03,-0.0000e+00,-0.0000e+00,-2.5155e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 G                    56 (     ->    4) [( 4.1272e+02,-0.0000e+00,-0.0000e+00,-4.1272e+02), p^2= 0.0000e+00, m= 0.0000e+00] (660,601) 1
[I] 1 G                    68 (     ->    6) [( 1.1661e+02,-0.0000e+00,-0.0000e+00,-1.1661e+02), p^2= 0.0000e+00, m= 0.0000e+00] (667,660) 1
[I] 1 G                    79 (     ->    8) [( 9.0949e+01,-0.0000e+00,-0.0000e+00,-9.0949e+01), p^2= 0.0000e+00, m= 0.0000e+00] (603,675) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 uu_1                 87 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,671) 0
[B] 1 db                   84 (     ->     ) [( 6.2540e-01, 0.0000e+00, 0.0000e+00, 6.2527e-01), p^2= 1.5729e-04, m= 0.0000e+00] (  0,655) 0
 and Particle List with 2 elements
[B] 1 ud_0                 89 (     ->     ) [( 1.8045e+02, 0.0000e+00, 0.0000e+00,-1.8045e+02), p^2= 2.2486e-02, m= 5.7933e-01] (  0,667) 1
[B] 1 u                    88 (     ->     ) [( 1.8379e+02, 0.0000e+00, 0.0000e+00,-1.8379e+02), p^2= 2.3326e-02, m= 0.0000e+00] (675,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 700 ( 51s elapsed / 20h 23m 25s left ) -> ETA: Thu Apr 11 06:39  
    Memory usage increased by 16 MB, now 144 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.95023e+09 pb +- ( 7.02876e+08 pb = 14 % )  
  Event 800 ( 58s elapsed / 20h 17m 34s left ) -> ETA: Thu Apr 11 06:33  XS = 4.79113e+09 pb +- ( 6.34652e+08 pb = 13 % )  
  Event 900 ( 1m 4s elapsed / 19h 59m 6s left ) -> ETA: Thu Apr 11 06:15  XS = 4.7019e+09 pb +- ( 5.85506e+08 pb = 12 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 1000 ( 1m 12s elapsed / 20h 2m 27s left ) -> ETA: Thu Apr 11 06:18  XS = 5.00576e+09 pb +- ( 6.67145e+08 pb = 13 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements
[I] 1 ub                    6 (     ->    2) [( 3.4942e+03,-0.0000e+00,-0.0000e+00, 3.4942e+03), p^2= 0.0000e+00, m= 3.0000e-01] (  0,601) 0
[I] 1 d                    46 (     ->    4) [( 3.5795e+00,-0.0000e+00,-0.0000e+00, 3.5795e+00), p^2= 0.0000e+00, m= 3.0000e-01] (601,  0) 0
[I] 1 G                    65 (     ->    6) [( 1.3788e+00,-0.0000e+00,-0.0000e+00, 1.3788e+00), p^2= 0.0000e+00, m= 0.0000e+00] (651,633) 0
 and Particle List with 3 elements
[I] 1 u                     5 (     ->    2) [( 7.7981e+02,-0.0000e+00,-0.0000e+00,-7.7981e+02), p^2= 0.0000e+00, m= 3.0000e-01] (624,  0) 1
[I] 1 u                    47 (     ->    4) [( 1.0953e+03,-0.0000e+00,-0.0000e+00,-1.0953e+03), p^2= 0.0000e+00, m= 3.0000e-01] (643,  0) 1
[I] 1 G                    66 (     ->    6) [( 1.0552e+02,-0.0000e+00,-0.0000e+00,-1.0552e+02), p^2= 0.0000e+00, m= 0.0000e+00] (633,643) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 uu_1                 75 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,651) 0
[B] 1 u                    41 (     ->     ) [( 8.0602e-01, 0.0000e+00, 0.0000e+00, 8.0590e-01), p^2= 2.0272e-04, m= 0.0000e+00] (633,  0) 0
 and Particle List with 2 elements
[B] 1 ud_0                 76 (     ->     ) [( 9.8398e+02, 0.0000e+00, 0.0000e+00,-9.8398e+02), p^2= 1.6028e-01, m= 5.7933e-01] (  0,633) 1
[B] 1 ub                   60 (     ->     ) [( 5.3543e+02, 0.0000e+00, 0.0000e+00,-5.3543e+02), p^2= 4.7459e-02, m= 0.0000e+00] (  0,624) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 2000 ( 2m 16s elapsed / 18h 53m 28s left ) -> ETA: Thu Apr 11 05:10  XS = 4.80822e+09 pb +- ( 4.40043e+08 pb = 9 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 3000 ( 3m 23s elapsed / 18h 48m 22s left ) -> ETA: Thu Apr 11 05:06  XS = 4.79851e+09 pb +- ( 3.49922e+08 pb = 7 % )  
  Event 4000 ( 4m 30s elapsed / 18h 42m 59s left ) -> ETA: Thu Apr 11 05:02  XS = 4.92335e+09 pb +- ( 3.1637e+08 pb = 6 % )  
  Event 5000 ( 5m 37s elapsed / 18h 38m 28s left ) -> ETA: Thu Apr 11 04:58  XS = 4.72452e+09 pb +- ( 2.71921e+08 pb = 5 % )  
  Event 6000 ( 6m 42s elapsed / 18h 30m 29s left ) -> ETA: Thu Apr 11 04:52  XS = 4.7722e+09 pb +- ( 2.44821e+08 pb = 5 % )  
Pythia8 hadronisation failed.

  Event 7000 ( 7m 47s elapsed / 18h 25m 30s left ) -> ETA: Thu Apr 11 04:48  XS = 4.8791e+09 pb +- ( 2.24995e+08 pb = 4 % )  
  Event 8000 ( 8m 52s elapsed / 18h 21m 10s left ) -> ETA: Thu Apr 11 04:44  XS = 4.94948e+09 pb +- ( 2.1146e+08 pb = 4 % )  
  Event 9000 ( 10m elapsed / 18h 21m 27s left ) -> ETA: Thu Apr 11 04:46  XS = 4.96036e+09 pb +- ( 2.06882e+08 pb = 4 % )  
  Event 10000 ( 11m 6s elapsed / 18h 19m 31s left ) -> ETA: Thu Apr 11 04:45  XS = 5.11765e+09 pb +- ( 2.32767e+08 pb = 4 % )  
  Event 20000 ( 22m 2s elapsed / 18h 9s left ) -> ETA: Thu Apr 11 04:37  XS = 5.032e+09 pb +- ( 1.546e+08 pb = 3 % )  
  Event 30000 ( 33m 9s elapsed / 17h 52m 11s left ) -> ETA: Thu Apr 11 04:40  XS = 4.85558e+09 pb +- ( 1.18396e+08 pb = 2 % )  
  Event 40000 ( 44m 26s elapsed / 17h 46m 42s left ) -> ETA: Thu Apr 11 04:45  XS = 4.89606e+09 pb +- ( 1.02643e+08 pb = 2 % )  
  Event 50000 ( 55m 34s elapsed / 17h 35m 59s left ) -> ETA: Thu Apr 11 04:46  
    Memory usage increased by 44 MB, now 188 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.94056e+09 pb +- ( 9.26872e+07 pb = 1 % )  
  Event 60000 ( 1h 6m 39s elapsed / 17h 24m 25s left ) -> ETA: Thu Apr 11 04:45  XS = 4.95896e+09 pb +- ( 8.41507e+07 pb = 1 % )  
  Event 70000 ( 1h 17m 45s elapsed / 17h 13m left ) -> ETA: Thu Apr 11 04:45  XS = 4.97383e+09 pb +- ( 7.94469e+07 pb = 1 % )  
Pythia8 hadronisation failed.

  Event 80000 ( 1h 28m 59s elapsed / 17h 3m 28s left ) -> ETA: Thu Apr 11 04:47  XS = 4.97486e+09 pb +- ( 7.53126e+07 pb = 1 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 90000 ( 1h 40m 5s elapsed / 16h 51m 58s left ) -> ETA: Thu Apr 11 04:46  XS = 4.96667e+09 pb +- ( 7.06974e+07 pb = 1 % )  
  Event 100000 ( 1h 51m 32s elapsed / 16h 43m 52s left ) -> ETA: Thu Apr 11 04:50  XS = 4.94268e+09 pb +- ( 6.66276e+07 pb = 1 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 200000 ( 3h 44m 1s elapsed / 14h 56m 4s left ) -> ETA: Thu Apr 11 04:54  
    Memory usage increased by 34 MB, now 222 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.88777e+09 pb +- ( 4.68293e+07 pb = 0 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 300000 ( 5h 28m 44s elapsed / 12h 47m 4s left ) -> ETA: Thu Apr 11 04:30  XS = 4.89909e+09 pb +- ( 3.79135e+07 pb = 0 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

WARNING: last allowed error message from 'Hadronize'
Pythia8 hadronisation failed.

  Event 400000 ( 7h 8m 26s elapsed / 10h 42m 39s left ) -> ETA: Thu Apr 11 04:05  
    Memory usage increased by 20 MB, now 243 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.8945e+09 pb +- ( 3.28915e+07 pb = 0 % )  
  Event 500000 ( 8h 52m 27s elapsed / 8h 52m 27s left ) -> ETA: Thu Apr 11 03:59  XS = 4.90107e+09 pb +- ( 2.97297e+07 pb = 0 % )  
  Event 600000 ( 10h 41m 21s elapsed / 7h 7m 34s left ) -> ETA: Thu Apr 11 04:03  XS = 4.88915e+09 pb +- ( 2.71358e+07 pb = 0 % )  
  Event 700000 ( 12h 29m 33s elapsed / 5h 21m 14s left ) -> ETA: Thu Apr 11 04:05  
    Memory usage increased by 23 MB, now 266 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.89095e+09 pb +- ( 2.52237e+07 pb = 0 % )  
  Event 800000 ( 14h 22m 10s elapsed / 3h 35m 32s left ) -> ETA: Thu Apr 11 04:12  XS = 4.87397e+09 pb +- ( 2.35453e+07 pb = 0 % )  
  Event 900000 ( 16h 15m 20s elapsed / 1h 48m 22s left ) -> ETA: Thu Apr 11 04:18  
    Memory usage increased by 26 MB, now 293 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 4.86538e+09 pb +- ( 2.21497e+07 pb = 0 % )  
  Event 1000000 ( 65471 s total ) = 1.31967e+06 evts/day                    
In Event_Handler::Finish : Summarizing the run may take some time.
Rivet_Interface::Finish(Analysis_Alaric_FinalFSmodKfac_noWeight/1232){
}
--------------------------------------------------------------------------
Nominal or variation name     XS [pb]      RelDev  AbsErr [pb]      RelErr
--------------------------------------------------------------------------
Nominal                   4.86195e+09         0 %  2.10353e+07      0.43 %
--------------------------------------------------------------------------
Return_Value::PrintStatistics(): Statistics {
  Generated events: 1000000
  Errors {
    From "Hadronization:Pythia8": 62 (1000062) -> 0 %
  }
  New events {
    From "Beam_Remnants:Parametrised": 3498 (1003560) -> 0.3 %
  }
}
Blob_List: Momentum Fail Statistics {
}
Error messages from 'Hadronize' exceeded frequency limit: 62/20
Decay_Channel: Kinematics max fail statistics {
}
WARNING: You are using an unsupported development branch.
Remnant handling yields 3498 fails in creating good beam breakups.
Remnant Kinematics: 3498 errors (no kinematics found) and
                    651 warnings (scale kt down by factor of 10).
WARNING: Some settings that have been defined in the input
files and/or the command line have not been used. For more
details, see the Settings Report.
Time: 18h 11m 16s on Thu Apr 11 04:26:03 2024
 (User: 18h 7m 40s, System: 8s, Children User: 0s, Children System: 0s)