Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway.
The local time is Wed Apr 17 21:16:13 2024.
Run_Parameter::Init(): Setting memory limit to 503.276 GB.
Random::SetSeed(): Seed set to 2162
Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded.
-----------------------------------------------------------------------------
-----------    Event generation run with SHERPA started .......   -----------
-----------------------------------------------------------------------------
................................................ |       +                   
................................................ ||  |       +  +            
...................................        ....  | |         /   +           
................. ................   _,_ |  ....  ||         +|  +  +        
...............................  __.'  ,\|  ...  ||    /    +|          +    
.............................. (  \    \   ...  | |  |   + + \         +   
.............................  (    \   -/  .... ||       +    |          +  
........ ...................  <S   /()))))~~~~~~~~##     +     /\    +       
............................ (!H   (~~)))))~~~~~~#/     +  +    |  +         
................ ........... (!E   (~~~)))))     /|/    +         +          
............................ (!R   (~~~)))))   |||   + +            +        
..... ...................... (!P    (~~~~)))   /|  + +          +            
............................ (!A>    (~~~~~~~~~##        + +        +        
............................. ~~(!    '~~~~~~~ \       +     + +      +      
...............................  `~~~QQQQQDb //   |         + + +        +   
........................ ..........   IDDDDP||     \  + + + + +             +
....................................  IDDDI||       \                      + 
.................................... IHD HD||         \ + +  + + + + +      +
...................................  IHD ##|            :-) + +\          +  
......... ............... ......... IHI ## /      /   +  + + + +\       +    
................................... IHI/ /       /      + + + +        +     
................................... ## | | /    / + +      + + /      +      
....................... /TT\ .....  ##/ ///  / + + + + + + +/       +        
......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/   \         +   
....................../TTT/TTTT\...|TT/T\\\/   +    ++  + /              
-----------------------------------------------------------------------------

     SHERPA version 3.0.0beta1 (Dhaulagiri)
                                                                             
     Authors:        Enrico Bothmann, Stefan Hoeche, Frank Krauss,           
                     Silvan Kuttimalai, Marek Schoenherr, Holger Schulz,     
                     Steffen Schumann, Frank Siegert, Korinna Zapp           
     Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth,           
                     Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke,         
                     Jan Winter                                              
                                                                             
     This program uses a lot of genuine and original research work           
     by other people. Users are encouraged to refer to                       
     the various original publications.                                      
                                                                             
     Users are kindly asked to refer to the documentation                    
     published under JHEP 02(2009)007                                        
                                                                             
     Please visit also our homepage                                          
                                                                             
       http://sherpa.hepforge.org                                            
                                                                             
     for news, bugreports, updates and new releases.                         
                                                                             
-----------------------------------------------------------------------------
WARNING: You are using an unsupported development branch.
Git branch unknownurl, revision unknownrevision.
Hadron_Init::Init(): Initializing kf table for hadrons.
Beam_Spectra_Handler: type = Collider Setup
    for P+ (on = 0, p = (6500,0,0,6500))
    and P+ (on = 0, p = (6500,0,0,-6500)).
ISR handling:
    PDFs for hard scattering:              PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
    PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas
Remnant_Handlers:
    hard process: P+: Hadron + P+: Hadron
Standard_Model::FixEWParameters() {
  Input scheme: Gmu
                Gmu scheme, input: GF, m_W, m_Z, m_h, widths
  Ren. scheme:  Gmu
                
  Parameters:   sin^2(\theta_W) = 0.223043 - 0.00110541 i
                vev             = 246.218
}
Running_AlphaQED::PrintSummary() {
  Setting \alpha according to EW scheme
  1/\alpha(0)   = 137.036
  1/\alpha(def) = 132.119
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
One_Running_AlphaS::PrintSummary() {
  Setting \alpha_s according to PDF
  perturbative order 2
  \alpha_s(M_Z) = 0.118
}
List of Particle Data 
     IDName     kfc            Mass           Width   Stable  Massive   Active          Yukawa
          d       1            0.01               0        1        0        1               0
          u       2           0.005               0        1        0        1               0
          s       3             0.2               0        1        0        1               0
          c       4            1.42               0        1        0        1               0
          b       5            4.92               0        1        0        1               0
          t       6           172.5            1.32        0        1        1           172.5
         e-      11        0.000511               0        1        0        1               0
         ve      12               0               0        1        0        1               0
        mu-      13           0.105               0        1        0        1               0
        vmu      14               0               0        1        0        1               0
       tau-      15           1.777     2.26735e-12        0        0        1               0
       vtau      16               0               0        1        0        1               0
          G      21               0               0        1        0        1               0
          P      22               0               0        1        0        1               0
          Z      23         91.1876          2.4952        0        1        1         91.1876
         W+      24          80.379           2.085        0        1        1          80.379
         h0      25          125.09          0.0041        0        1        1          125.09
  Instanton     999               0               0        0        0        1               0
List of Particle Containers 
     IDName     kfc     Constituents
          l      90     {e-,e+,mu-,mu+,tau-,tau+}
          v      91     {ve,veb,vmu,vmub,vtau,vtaub}
          f      92     {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub}
          j      93     {d,db,u,ub,s,sb,c,cb,b,bb,G}
          Q      94     {d,db,u,ub,s,sb,c,cb,b,bb}
        ewj      98     {d,db,u,ub,s,sb,c,cb,b,bb,G,P}
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefII
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
Alaric_KFrame_TdefFF
####### Permutations for 2 partons ##############
        found 2 entries:
 1th permutation = { 0 1 }
 2th permutation = { 1 0 }
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2.
FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2.
Shower_Handler initialised.

+-----------------------------------------+
|   X   X   X XXXX  XXX  XXX  XXX         |
|  X X  XX XX X    X      X  X     X   X  |
| X   X X X X XXX  X XXX  X  X    XXX XXX |
| XXXXX X   X X    X   X  X  X     X   X  |
| X   X X   X XXXX  XXX  XXX  XXX         |
+-----------------------------------------+
| please cite: JHEP 0202:044,2002         |
+-----------------------------------------+
Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none)
+----------------------------------+
|                                  |
|      CCC  OOO  M   M I X   X     |
|     C    O   O MM MM I  X X      |
|     C    O   O M M M I   X       |
|     C    O   O M   M I  X X      |
|      CCC  OOO  M   M I X   X     |
|                                  |
+==================================+
|  Color dressed  Matrix Elements  |
|     http://comix.freacafe.de     |
|   please cite  JHEP12(2008)039   |
+----------------------------------+
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none)
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none)
Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks.
Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 51 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 51 MB, 0s / 0s ).
Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ).
Initialized the Matrix_Element_Handler for the hard processes.
Initialized the Beam_Remnant_Handler.
ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none)
MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1)
Underlying event/multiple interactions handler:
    MI[2]: on = 1 (type = 1, Amisic)
Soft-collision handlers:
    Type[2]: None
Hadron_Init::Init(): Initializing kf table for hadrons.
Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface")
Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings")
Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!")
Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values")
Initialized the Fragmentation_Handler.
Initialized the Hadron_Decay_Handler, Decay model = HADRONS++
Initialized the Soft_Photon_Handler.
Initialized the Reweighting.
ISR_Channels::CheckForStructuresFromME for 0: (none)
Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j
Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix)
2_2__j__j__j__j : 1.77797e+10 pb +- ( 2.94929e+08 pb = 1.6588 % )  exp. eff: 2.70518e-05 %
  reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 2.70518e-07 ) 
----------------------------------------------------------
-- SHERPA generates events with the following structure --
----------------------------------------------------------
Event generation   : Weighted
Perturbative       : Signal_Processes
Perturbative       : Minimum_Bias: None
Perturbative       : Hard_Decays
Perturbative       : Jet_Evolution:CFP
Perturbative       : Lepton_FS_QED_Corrections:None
Perturbative       : Multiple_Interactions: Amisic
Hadronization      : Beam_Remnants:Parametrised
Hadronization      : Hadronization:Pythia8
Hadronization      : Hadron_Decays
Userhook           : 
Analysis           : Rivet
---------------------------------------------------------
#--------------------------------------------------------------------------
#                     FastJet release 3.3.2 [fjcore]
#                 M. Cacciari, G.P. Salam and G. Soyez                  
#     A software package for jet finding and analysis at colliders      
#                           http://fastjet.fr                           
#	                                                                      
# Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package
# for scientific work and optionally PLB641(2006)57 [hep-ph/0512210].   
#                                                                       
# FastJet is provided without warranty under the terms of the GNU GPLv2.
# It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code
# and 3rd party plugin jet algorithms. See COPYING file for details.
#--------------------------------------------------------------------------
  Event 1 ( 11s elapsed / 25d 20h 33m 8s left ) -> ETA: Mon May 13 17:49  XS = 2091.49 pb +- ( 2091.49 pb = 100 % )  
  Event 2 ( 11s elapsed / 13d 3h 33m 8s left ) -> ETA: Wed May 01 00:49  XS = 1057.68 pb +- ( 1033.81 pb = 97 % )  
  Event 3 ( 11s elapsed / 8d 20h 35m 21s left ) -> ETA: Fri Apr 26 17:51  XS = 1040.58 pb +- ( 593.982 pb = 57 % )  
  Event 4 ( 11s elapsed / 6d 15h 59m 48s left ) -> ETA: Wed Apr 24 13:16  XS = 529692 pb +- ( 528998 pb = 99 % )  
  Event 5 ( 11s elapsed / 5d 8h 19m 48s left ) -> ETA: Tue Apr 23 05:36  XS = 463661 pb +- ( 462860 pb = 99 % )  
  Event 6 ( 11s elapsed / 4d 11h 13m 8s left ) -> ETA: Mon Apr 22 08:29  XS = 412148 pb +- ( 411442 pb = 99 % )  
  Event 7 ( 11s elapsed / 3d 20h 8m 22s left ) -> ETA: Sun Apr 21 17:24  XS = 1.08163e+10 pb +- ( 1.0816e+10 pb = 99 % )  
  Event 8 ( 11s elapsed / 3d 9h 18m 58s left ) -> ETA: Sun Apr 21 06:35  XS = 1.00439e+10 pb +- ( 1.00434e+10 pb = 99 % )  
  Event 9 ( 11s elapsed / 3d 46m 28s left ) -> ETA: Sat Apr 20 22:02  XS = 8.78838e+09 pb +- ( 8.78802e+09 pb = 99 % )  
  Event 10 ( 11s elapsed / 2d 17h 49m 48s left ) -> ETA: Sat Apr 20 15:06  XS = 1.94829e+10 pb +- ( 1.35099e+10 pb = 69 % )  
  Event 20 ( 12s elapsed / 1d 11h 13m 7s left ) -> ETA: Fri Apr 19 08:29  XS = 1.76484e+10 pb +- ( 8.54162e+09 pb = 48 % )  
  Event 30 ( 13s elapsed / 1d 1h 37m 32s left ) -> ETA: Thu Apr 18 22:54  XS = 1.33467e+10 pb +- ( 6.01117e+09 pb = 45 % )  
  Event 40 ( 14s elapsed / 19h 53m 5s left ) -> ETA: Thu Apr 18 17:09  XS = 1.16746e+10 pb +- ( 4.88245e+09 pb = 41 % )  
  Event 50 ( 14s elapsed / 16h 34m 25s left ) -> ETA: Thu Apr 18 13:50  XS = 9.35422e+09 pb +- ( 3.93137e+09 pb = 42 % )  
  Event 60 ( 15s elapsed / 14h 13m 4s left ) -> ETA: Thu Apr 18 11:29  XS = 8.55565e+09 pb +- ( 3.41873e+09 pb = 39 % )  
  Event 70 ( 16s elapsed / 13h 2m 6s left ) -> ETA: Thu Apr 18 10:18  
    Memory usage increased by 17 MB, now 241 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 7.25185e+09 pb +- ( 2.90169e+09 pb = 40 % )  
  Event 80 ( 17s elapsed / 11h 49m 42s left ) -> ETA: Thu Apr 18 09:06  XS = 1.23595e+10 pb +- ( 6.35997e+09 pb = 51 % )  
  Event 90 ( 17s elapsed / 11h 1m 33s left ) -> ETA: Thu Apr 18 08:18  XS = 1.25541e+10 pb +- ( 5.77243e+09 pb = 45 % )  
  Event 100 ( 19s elapsed / 10h 41m left ) -> ETA: Thu Apr 18 07:57  XS = 1.2301e+10 pb +- ( 5.41133e+09 pb = 43 % )  
  Event 200 ( 35s elapsed / 9h 48m 24s left ) -> ETA: Thu Apr 18 07:05  
    Memory usage increased by 20 MB, now 261 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 2.06365e+10 pb +- ( 8.29178e+09 pb = 40 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 6.4977e+03,-0.0000e+00,-0.0000e+00, 6.4977e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 0
[I] 1 db                   39 (     ->    4) [( 8.1318e-01,-0.0000e+00,-0.0000e+00, 8.1318e-01), p^2= 0.0000e+00, m= 3.0000e-01] (  0,603) 0
 and Particle List with 2 elements
[I] 1 G                     6 (     ->    2) [( 1.9737e+02,-0.0000e+00,-0.0000e+00,-1.9737e+02), p^2= 0.0000e+00, m= 0.0000e+00] (613,623) 1
[I] 1 d                    40 (     ->    4) [( 1.7881e+03,-0.0000e+00,-0.0000e+00,-1.7881e+03), p^2= 0.0000e+00, m= 3.0000e-01] (623,  0) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 uu_1                 50 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,634) 0
[B] 1 d                    46 (     ->     ) [( 8.8290e-01, 0.0000e+00, 0.0000e+00, 8.8286e-01), p^2= 7.1976e-05, m= 0.0000e+00] (634,  0) 0
[B] 1 d                    49 (     ->     ) [( 5.8390e-01, 0.0000e+00, 0.0000e+00, 5.8387e-01), p^2= 3.1481e-05, m= 0.0000e+00] (601,  0) 0
 and Particle List with 1 elements
[B] 1 uu_1                 51 (     ->     ) [( 4.5145e+03, 0.0000e+00, 0.0000e+00,-4.5145e+03), p^2= 6.1144e-01, m= 7.7133e-01] (  0,613) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 300 ( 52s elapsed / 9h 37m 47s left ) -> ETA: Thu Apr 18 06:54  
    Memory usage increased by 23 MB, now 285 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 1.57392e+10 pb +- ( 5.67556e+09 pb = 36 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 400 ( 59s elapsed / 8h 12m 10s left ) -> ETA: Thu Apr 18 05:29  XS = 2.09883e+10 pb +- ( 6.7494e+09 pb = 32 % )  
  Event 500 ( 1m 9s elapsed / 7h 45m 14s left ) -> ETA: Thu Apr 18 05:02  XS = 1.78397e+10 pb +- ( 5.47655e+09 pb = 30 % )  
  Event 600 ( 1m 19s elapsed / 7h 22m 43s left ) -> ETA: Thu Apr 18 04:40  
    Memory usage increased by 22 MB, now 307 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 1.67639e+10 pb +- ( 4.62928e+09 pb = 27 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements
[I] 1 G                     6 (     ->    2) [( 6.3972e+03,-0.0000e+00,-0.0000e+00, 6.3972e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 0
[I] 1 G                    62 (     ->    4) [( 8.5852e+01,-0.0000e+00,-0.0000e+00, 8.5852e+01), p^2= 0.0000e+00, m= 0.0000e+00] (602,657) 0
[I] 1 s                    81 (     ->    6) [( 1.4479e+01,-0.0000e+00,-0.0000e+00, 1.4479e+01), p^2= 0.0000e+00, m= 4.0000e-01] (657,  0) 0
[I] 1 G                   102 (     ->    8) [( 8.3847e-01,-0.0000e+00,-0.0000e+00, 8.3847e-01), p^2= 0.0000e+00, m= 0.0000e+00] (684,603) 0
 and Particle List with 4 elements
[I] 1 G                     5 (     ->    2) [( 2.8285e+03,-0.0000e+00,-0.0000e+00,-2.8285e+03), p^2= 0.0000e+00, m= 0.0000e+00] (629,620) 1
[I] 1 u                    63 (     ->    4) [( 1.0879e+03,-0.0000e+00,-0.0000e+00,-1.0879e+03), p^2= 0.0000e+00, m= 3.0000e-01] (620,  0) 1
[I] 1 u                    82 (     ->    6) [( 1.4421e+03,-0.0000e+00,-0.0000e+00,-1.4421e+03), p^2= 0.0000e+00, m= 3.0000e-01] (669,  0) 1
[I] 1 u                   103 (     ->    8) [( 6.0338e+02,-0.0000e+00,-0.0000e+00,-6.0338e+02), p^2= 0.0000e+00, m= 3.0000e-01] (680,  0) 1
 and the corresponding remnants are Particle List with 3 elements
[B] 1 uu_1                113 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,684) 0
[B] 1 sb                   96 (     ->     ) [( 7.5395e-01, 0.0000e+00, 0.0000e+00, 7.5392e-01), p^2= 4.7231e-05, m= 0.0000e+00] (  0,672) 0
[B] 1 d                   112 (     ->     ) [( 8.7608e-01, 0.0000e+00, 0.0000e+00, 8.7604e-01), p^2= 6.3771e-05, m= 0.0000e+00] (672,  0) 0
 and Particle List with 3 elements
[B] 1 ud_0                114 (     ->     ) [( 5.0983e+02, 0.0000e+00, 0.0000e+00,-5.0983e+02), p^2= 6.5421e-02, m= 5.7933e-01] (  0,680) 1
[B] 1 ub                  109 (     ->     ) [( 5.1646e+00, 0.0000e+00, 0.0000e+00,-5.1646e+00), p^2= 6.7134e-06, m= 0.0000e+00] (  0,669) 1
[B] 1 ub                   97 (     ->     ) [( 2.3125e+01, 0.0000e+00, 0.0000e+00,-2.3125e+01), p^2= 1.3460e-04, m= 0.0000e+00] (  0,629) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
  Event 700 ( 1m 29s elapsed / 7h 4m 47s left ) -> ETA: Thu Apr 18 04:22  XS = 1.60152e+10 pb +- ( 4.05693e+09 pb = 25 % )  
  Event 800 ( 1m 40s elapsed / 6h 57m 39s left ) -> ETA: Thu Apr 18 04:15  XS = 1.68702e+10 pb +- ( 4.25308e+09 pb = 25 % )  
  Event 900 ( 1m 56s elapsed / 7h 9m 41s left ) -> ETA: Thu Apr 18 04:27  
    Memory usage increased by 28 MB, now 336 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 1.77142e+10 pb +- ( 3.95344e+09 pb = 22 % )  
  Event 1000 ( 2m 5s elapsed / 6h 57m 38s left ) -> ETA: Thu Apr 18 04:16  XS = 1.71498e+10 pb +- ( 3.6315e+09 pb = 21 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 u                     6 (     ->    2) [( 6.4964e+03,-0.0000e+00,-0.0000e+00, 6.4964e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601,  0) 0
[I] 1 u                    53 (     ->    4) [( 2.6543e+00,-0.0000e+00,-0.0000e+00, 2.6543e+00), p^2= 0.0000e+00, m= 3.0000e-01] (652,  0) 0
 and Particle List with 2 elements
[I] 1 u                     5 (     ->    2) [( 1.6675e+03,-0.0000e+00,-0.0000e+00,-1.6675e+03), p^2= 0.0000e+00, m= 3.0000e-01] (619,  0) 1
[I] 1 db                   54 (     ->    4) [( 1.9439e+02,-0.0000e+00,-0.0000e+00,-1.9439e+02), p^2= 0.0000e+00, m= 3.0000e-01] (  0,619) 1
 and the corresponding remnants are Particle List with 2 elements
[B] 1 ud_0                 66 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,652) 0
[B] 1 ub                   62 (     ->     ) [( 9.8625e-01, 0.0000e+00, 0.0000e+00, 9.8618e-01), p^2= 1.3357e-04, m= 0.0000e+00] (  0,601) 0
 and Particle List with 2 elements
[B] 1 ud_0                 67 (     ->     ) [( 1.8769e+03, 0.0000e+00, 0.0000e+00,-1.8769e+03), p^2= 1.0287e-01, m= 5.7933e-01] (  0,655) 1
[B] 1 d                    63 (     ->     ) [( 2.7612e+03, 0.0000e+00, 0.0000e+00,-2.7612e+03), p^2= 2.2264e-01, m= 0.0000e+00] (655,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements
[I] 1 G                     5 (     ->    2) [( 6.0536e+03,-0.0000e+00,-0.0000e+00, 6.0536e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 0
[I] 1 G                    36 (     ->    4) [( 3.6151e+02,-0.0000e+00,-0.0000e+00, 3.6151e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,626) 0
[I] 1 G                    56 (     ->    6) [( 7.5393e+01,-0.0000e+00,-0.0000e+00, 7.5393e+01), p^2= 0.0000e+00, m= 0.0000e+00] (647,603) 0
[I] 1 sb                   78 (     ->    8) [( 6.9219e-01,-0.0000e+00,-0.0000e+00, 6.9219e-01), p^2= 0.0000e+00, m= 4.0000e-01] (  0,659) 0
[I] 1 G                    96 (     ->   10) [( 3.8375e+00,-0.0000e+00,-0.0000e+00, 3.8375e+00), p^2= 0.0000e+00, m= 0.0000e+00] (678,647) 0
[I] 1 G                   111 (     ->   12) [( 9.9970e-01,-0.0000e+00,-0.0000e+00, 9.9970e-01), p^2= 0.0000e+00, m= 0.0000e+00] (689,678) 0
[I] 1 ub                  122 (     ->   14) [( 1.8148e+00,-0.0000e+00,-0.0000e+00, 1.8148e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,689) 0
 and Particle List with 7 elements
[I] 1 G                     6 (     ->    2) [( 1.8711e+02,-0.0000e+00,-0.0000e+00,-1.8711e+02), p^2= 0.0000e+00, m= 0.0000e+00] (622,612) 1
[I] 1 u                    37 (     ->    4) [( 2.1438e+03,-0.0000e+00,-0.0000e+00,-2.1438e+03), p^2= 0.0000e+00, m= 3.0000e-01] (612,  0) 1
[I] 1 G                    57 (     ->    6) [( 4.5157e+02,-0.0000e+00,-0.0000e+00,-4.5157e+02), p^2= 0.0000e+00, m= 0.0000e+00] (649,622) 1
[I] 1 d                    79 (     ->    8) [( 1.4847e+03,-0.0000e+00,-0.0000e+00,-1.4847e+03), p^2= 0.0000e+00, m= 3.0000e-01] (662,  0) 1
[I] 1 G                    97 (     ->   10) [( 1.0958e+03,-0.0000e+00,-0.0000e+00,-1.0958e+03), p^2= 0.0000e+00, m= 0.0000e+00] (680,662) 1
[I] 1 G                   112 (     ->   12) [( 1.6340e+02,-0.0000e+00,-0.0000e+00,-1.6340e+02), p^2= 0.0000e+00, m= 0.0000e+00] (688,680) 1
[I] 1 sb                  123 (     ->   14) [( 6.1982e+00,-0.0000e+00,-0.0000e+00,-6.1982e+00), p^2= 0.0000e+00, m= 4.0000e-01] (  0,688) 1
 and the corresponding remnants are Particle List with 4 elements
[B] 1 uu_1                133 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] (  0,694) 0
[B] 1 u                   128 (     ->     ) [( 4.9362e-01, 0.0000e+00, 0.0000e+00, 4.9360e-01), p^2= 1.5515e-05, m= 0.0000e+00] (694,  0) 0
[B] 1 s                    90 (     ->     ) [( 6.7639e-01, 0.0000e+00, 0.0000e+00, 6.7637e-01), p^2= 2.9131e-05, m= 0.0000e+00] (626,  0) 0
[B] 1 d                   132 (     ->     ) [( 9.5701e-01, 0.0000e+00, 0.0000e+00, 9.5698e-01), p^2= 5.8317e-05, m= 0.0000e+00] (659,  0) 0
 and Particle List with 3 elements
[B] 1 ud_0                134 (     ->     ) [( 9.5077e+02, 0.0000e+00, 0.0000e+00,-9.5077e+02), p^2= 1.2655e-01, m= 5.7933e-01] (  0,695) 1
[B] 1 s                   129 (     ->     ) [( 5.6234e-01, 0.0000e+00, 0.0000e+00,-5.6234e-01), p^2= 4.4269e-08, m= 0.0000e+00] (695,  0) 1
[B] 1 db                   91 (     ->     ) [( 1.6140e+01, 0.0000e+00, 0.0000e+00,-1.6140e+01), p^2= 3.6469e-05, m= 0.0000e+00] (  0,649) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 2 elements
[I] 1 u                     6 (     ->    2) [( 4.3454e+03,-0.0000e+00,-0.0000e+00, 4.3454e+03), p^2= 0.0000e+00, m= 3.0000e-01] (689,  0) 0
[I] 1 G                   110 (     ->    4) [( 1.3337e+02,-0.0000e+00,-0.0000e+00, 1.3337e+02), p^2= 0.0000e+00, m= 0.0000e+00] (697,689) 0
 and Particle List with 2 elements
[I] 1 G                     5 (     ->    2) [( 6.4929e+03,-0.0000e+00,-0.0000e+00,-6.4929e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1
[I] 1 ub                  111 (     ->    4) [( 5.7437e+00,-0.0000e+00,-0.0000e+00,-5.7437e+00), p^2= 0.0000e+00, m= 3.0000e-01] (  0,695) 1
 and the corresponding remnants are Particle List with 1 elements
[B] 1 ud_0                120 (     ->     ) [( 2.0212e+03, 0.0000e+00, 0.0000e+00, 2.0212e+03), p^2= 2.7375e-01, m= 5.7933e-01] (  0,697) 0
 and Particle List with 3 elements
[B] 1 ud_0                122 (     ->     ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] (  0,601) 1
[B] 1 u                   117 (     ->     ) [( 3.9404e-01, 0.0000e+00, 0.0000e+00,-3.9402e-01), p^2= 1.6073e-05, m= 0.0000e+00] (603,  0) 1
[B] 1 u                   121 (     ->     ) [( 9.1430e-01, 0.0000e+00, 0.0000e+00,-9.1425e-01), p^2= 8.6535e-05, m= 0.0000e+00] (695,  0) 1

Remnant_Handler::MakeBeamBlobs failed. Will return new event
Pythia8 hadronisation failed.

  Event 2000 ( 4m 18s elapsed / 7h 5m 54s left ) -> ETA: Thu Apr 18 04:26  XS = 1.74072e+10 pb +- ( 2.31302e+09 pb = 13 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 3000 ( 6m 14s elapsed / 6h 49m 44s left ) -> ETA: Thu Apr 18 04:12  XS = 1.70475e+10 pb +- ( 1.93218e+09 pb = 11 % )  
Pythia8 hadronisation failed.

  Event 4000 ( 8m 11s elapsed / 6h 41m 40s left ) -> ETA: Thu Apr 18 04:06  XS = 1.72804e+10 pb +- ( 1.7377e+09 pb = 10 % )  
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1
  Event 5000 ( 10m 6s elapsed / 6h 34m 3s left ) -> ETA: Thu Apr 18 04:00  XS = 1.72853e+10 pb +- ( 1.55201e+09 pb = 8 % )  
  Event 6000 ( 12m 7s elapsed / 6h 31m 59s left ) -> ETA: Thu Apr 18 04:00  XS = 1.64944e+10 pb +- ( 1.3352e+09 pb = 8 % )  
  Event 7000 ( 14m 4s elapsed / 6h 28m 12s left ) -> ETA: Thu Apr 18 03:58  XS = 1.66655e+10 pb +- ( 1.31956e+09 pb = 7 % )  
  Event 8000 ( 15m 52s elapsed / 6h 20m 59s left ) -> ETA: Thu Apr 18 03:53  XS = 1.71375e+10 pb +- ( 1.28704e+09 pb = 7 % )  
Pythia8 hadronisation failed.

  Event 9000 ( 18m 1s elapsed / 6h 22m 23s left ) -> ETA: Thu Apr 18 03:56  XS = 1.7598e+10 pb +- ( 1.21571e+09 pb = 6 % )  
  Event 10000 ( 20m 8s elapsed / 6h 22m 41s left ) -> ETA: Thu Apr 18 03:59  
    Memory usage increased by 20 MB, now 357 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 1.72394e+10 pb +- ( 1.12016e+09 pb = 6 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 20000 ( 40m 30s elapsed / 6h 4m 32s left ) -> ETA: Thu Apr 18 04:01  XS = 1.74119e+10 pb +- ( 8.77146e+08 pb = 5 % )  
Pythia8 hadronisation failed.

  Event 30000 ( 1h 57s elapsed / 5h 45m 25s left ) -> ETA: Thu Apr 18 04:02  XS = 1.76149e+10 pb +- ( 7.33552e+08 pb = 4 % )  
Pythia8 hadronisation failed.

  Event 40000 ( 1h 21m 21s elapsed / 5h 25m 24s left ) -> ETA: Thu Apr 18 04:03  XS = 1.75857e+10 pb +- ( 6.43275e+08 pb = 3 % )  
  Event 50000 ( 1h 40m 25s elapsed / 5h 1m 17s left ) -> ETA: Thu Apr 18 03:58  XS = 1.72705e+10 pb +- ( 5.56043e+08 pb = 3 % )  
Pythia8 hadronisation failed.

  Event 60000 ( 1h 59m 7s elapsed / 4h 37m 57s left ) -> ETA: Thu Apr 18 03:53  XS = 1.74026e+10 pb +- ( 5.12788e+08 pb = 2 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

  Event 70000 ( 2h 18m 14s elapsed / 4h 16m 44s left ) -> ETA: Thu Apr 18 03:51  XS = 1.75181e+10 pb +- ( 4.76276e+08 pb = 2 % )  
  Event 80000 ( 2h 37m 1s elapsed / 3h 55m 32s left ) -> ETA: Thu Apr 18 03:48  XS = 1.74173e+10 pb +- ( 4.4166e+08 pb = 2 % )  
Pythia8 hadronisation failed.

  Event 90000 ( 2h 55m 12s elapsed / 3h 34m 8s left ) -> ETA: Thu Apr 18 03:45  
    Memory usage increased by 26 MB, now 384 MB.
    This might indicate a memory leak!
    Please monitor this process closely.
XS = 1.73588e+10 pb +- ( 4.13625e+08 pb = 2 % )  
  Event 100000 ( 3h 12m 46s elapsed / 3h 12m 46s left ) -> ETA: Thu Apr 18 03:41  XS = 1.74285e+10 pb +- ( 4.1205e+08 pb = 2 % )  
Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

Pythia8 hadronisation failed.

WARNING: last allowed error message from 'Hadronize'
Pythia8 hadronisation failed.

  Event 200000 ( 22513 s total ) = 767548 evts/day                    
In Event_Handler::Finish : Summarizing the run may take some time.
Rivet_Interface::Finish(Analysis_Eta024_Alaric/2162){
}
--------------------------------------------------------------------------
Nominal or variation name     XS [pb]      RelDev  AbsErr [pb]      RelErr
--------------------------------------------------------------------------
Nominal                    1.7701e+10         0 %  3.42961e+08      1.93 %
--------------------------------------------------------------------------
Return_Value::PrintStatistics(): Statistics {
  Generated events: 200000
  Errors {
    From "Hadronization:Pythia8": 20 (200020) -> 0 %
  }
  New events {
    From "Beam_Remnants:Parametrised": 684 (200704) -> 0.3 %
  }
}
Blob_List: Momentum Fail Statistics {
}
Decay_Channel: Kinematics max fail statistics {
}
WARNING: You are using an unsupported development branch.
Remnant handling yields 684 fails in creating good beam breakups.
Remnant Kinematics: 684 errors (no kinematics found) and
                    181 warnings (scale kt down by factor of 10).
WARNING: Some settings that have been defined in the input
files and/or the command line have not been used. For more
details, see the Settings Report.
Time: 6h 15m 18s on Thu Apr 18 03:31:32 2024
 (User: 6h 13m 26s, System: 49s, Children User: 0s, Children System: 0s)