Welcome to Sherpa, Daniel Reichelt on ip3-cpu4.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Apr 16 05:23:39 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1141 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 1.77797e+10 pb +- ( 2.94929e+08 pb = 1.6588 % )  exp. eff: 2.70518e-05 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 2.70518e-07 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 11s elapsed / 33d 5h 13m 8s left ) -> ETA: Sun May 19 10:37 XS = 1.68027e+07 pb +- ( 1.68027e+07 pb = 100 % ) Event 2 ( 11s elapsed / 16d 18h 25m 38s left ) -> ETA: Thu May 02 23:49 XS = 1.26034e+07 pb +- ( 1.26016e+07 pb = 99 % ) Event 3 ( 11s elapsed / 11d 5h 12m 35s left ) -> ETA: Sat Apr 27 10:36 XS = 7.28637e+07 pb +- ( 6.10458e+07 pb = 83 % ) Event 4 ( 11s elapsed / 8d 11h 28m 8s left ) -> ETA: Wed Apr 24 16:52 XS = 6.07232e+07 pb +- ( 5.1301e+07 pb = 84 % ) Event 5 ( 11s elapsed / 6d 19h 44m 48s left ) -> ETA: Tue Apr 23 01:08 XS = 4.5682e+07 pb +- ( 3.88183e+07 pb = 84 % ) Event 6 ( 11s elapsed / 5d 16h 41m 11s left ) -> ETA: Sun Apr 21 22:05 XS = 2.59652e+11 pb +- ( 2.59607e+11 pb = 99 % ) Event 7 ( 11s elapsed / 4d 21h 39m 19s left ) -> ETA: Sun Apr 21 03:03 XS = 1.66919e+11 pb +- ( 1.66891e+11 pb = 99 % ) Event 8 ( 11s elapsed / 4d 7h 59m 23s left ) -> ETA: Sat Apr 20 13:23 XS = 1.46055e+11 pb +- ( 1.4603e+11 pb = 99 % ) Event 9 ( 13s elapsed / 4d 6h 32m 33s left ) -> ETA: Sat Apr 20 11:56  Memory usage increased by 82 MB, now 304 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 1.37463e+11 pb +- ( 1.3744e+11 pb = 99 % ) Event 10 ( 13s elapsed / 3d 22h 9m 46s left ) -> ETA: Sat Apr 20 03:33 XS = 1.30671e+11 pb +- ( 1.29758e+11 pb = 99 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 20 ( 14s elapsed / 2d 2h 24m 45s left ) -> ETA: Thu Apr 18 07:48 XS = 7.16777e+10 pb +- ( 7.07783e+10 pb = 98 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 d 6 ( -> 2) [( 6.4915e+03,-0.0000e+00,-0.0000e+00, 6.4915e+03), p^2= 0.0000e+00, m= 3.0000e-01] (605, 0) 0 [I] 1 u 36 ( -> 4) [( 5.3372e+00,-0.0000e+00,-0.0000e+00, 5.3372e+00), p^2= 0.0000e+00, m= 3.0000e-01] (629, 0) 0 [I] 1 d 50 ( -> 6) [( 1.2415e+00,-0.0000e+00,-0.0000e+00, 1.2415e+00), p^2= 0.0000e+00, m= 3.0000e-01] (655, 0) 0 [I] 1 G 65 ( -> 8) [( 7.6228e-01,-0.0000e+00,-0.0000e+00, 7.6228e-01), p^2= 0.0000e+00, m= 0.0000e+00] (670,655) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 4.1627e+03,-0.0000e+00,-0.0000e+00,-4.1627e+03), p^2= 0.0000e+00, m= 0.0000e+00] (607,605) 1 [I] 1 G 37 ( -> 4) [( 8.8220e+01,-0.0000e+00,-0.0000e+00,-8.8220e+01), p^2= 0.0000e+00, m= 0.0000e+00] (605,643) 1 [I] 1 u 51 ( -> 6) [( 3.0837e+02,-0.0000e+00,-0.0000e+00,-3.0837e+02), p^2= 0.0000e+00, m= 3.0000e-01] (643, 0) 1 [I] 1 G 66 ( -> 8) [( 1.6202e+03,-0.0000e+00,-0.0000e+00,-1.6202e+03), p^2= 0.0000e+00, m= 0.0000e+00] (663,607) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 77 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,670) 0 [B] 1 db 60 ( -> ) [( 3.8695e-01, 0.0000e+00, 0.0000e+00, 3.8692e-01), p^2= 1.8114e-05, m= 0.0000e+00] ( 0,605) 0 [B] 1 db 31 ( -> ) [( 7.3253e-01, 0.0000e+00, 0.0000e+00, 7.3249e-01), p^2= 6.4919e-05, m= 0.0000e+00] ( 0,629) 0 and Particle List with 1 elements [B] 1 ud_0 78 ( -> ) [( 3.2052e+02, 0.0000e+00, 0.0000e+00,-3.2052e+02), p^2= 4.3412e-02, m= 5.7933e-01] ( 0,663) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 30 ( 32s elapsed / 3d 3h 59m 10s left ) -> ETA: Fri Apr 19 09:23 XS = 4.39071e+10 pb +- ( 4.32581e+10 pb = 98 % ) Event 40 ( 34s elapsed / 2d 11h 6m 18s left ) -> ETA: Thu Apr 18 16:30 XS = 4.82775e+10 pb +- ( 3.46611e+10 pb = 71 % ) Event 50 ( 35s elapsed / 2d 37m 44s left ) -> ETA: Thu Apr 18 06:02 XS = 5.8728e+10 pb +- ( 3.283e+10 pb = 55 % ) Event 60 ( 35s elapsed / 1d 17h 22m 44s left ) -> ETA: Wed Apr 17 22:47 XS = 4.84581e+10 pb +- ( 2.61255e+10 pb = 53 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 70 ( 36s elapsed / 1d 12h 33m 25s left ) -> ETA: Wed Apr 17 17:57 XS = 5.02682e+10 pb +- ( 2.40259e+10 pb = 47 % ) Event 80 ( 38s elapsed / 1d 9h 15m 42s left ) -> ETA: Wed Apr 17 14:40 XS = 5.62533e+10 pb +- ( 2.41359e+10 pb = 42 % ) Event 90 ( 39s elapsed / 1d 6h 4m 54s left ) -> ETA: Wed Apr 17 11:29 XS = 5.03173e+10 pb +- ( 2.11974e+10 pb = 42 % ) Event 100 ( 40s elapsed / 1d 4h 3m 4s left ) -> ETA: Wed Apr 17 09:27 XS = 4.62233e+10 pb +- ( 1.89267e+10 pb = 40 % ) Event 200 ( 53s elapsed / 18h 23m 17s left ) -> ETA: Tue Apr 16 23:47 XS = 3.05654e+10 pb +- ( 1.0227e+10 pb = 33 % ) Event 300 ( 1m 7s elapsed / 15h 33m 44s left ) -> ETA: Tue Apr 16 20:58 XS = 2.91613e+10 pb +- ( 8.39896e+09 pb = 28 % ) Event 400 ( 1m 18s elapsed / 13h 32m 33s left ) -> ETA: Tue Apr 16 18:57  Memory usage increased by 20 MB, now 325 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 2.31586e+10 pb +- ( 6.36382e+09 pb = 27 % ) Event 500 ( 1m 29s elapsed / 12h 25m left ) -> ETA: Tue Apr 16 17:50 XS = 2.20236e+10 pb +- ( 5.28802e+09 pb = 24 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 5 elements [I] 1 G 6 ( -> 2) [( 6.1248e+03,-0.0000e+00,-0.0000e+00, 6.1248e+03), p^2= 0.0000e+00, m= 0.0000e+00] (604,602) 0 [I] 1 ub 45 ( -> 4) [( 3.6017e+02,-0.0000e+00,-0.0000e+00, 3.6017e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,604) 0 [I] 1 G 69 ( -> 6) [( 7.3292e+00,-0.0000e+00,-0.0000e+00, 7.3292e+00), p^2= 0.0000e+00, m= 0.0000e+00] (653,652) 0 [I] 1 G 82 ( -> 8) [( 5.7528e+00,-0.0000e+00,-0.0000e+00, 5.7528e+00), p^2= 0.0000e+00, m= 0.0000e+00] (669,653) 0 [I] 1 db 97 ( -> 10) [( 3.3491e-01,-0.0000e+00,-0.0000e+00, 3.3491e-01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,669) 0 and Particle List with 5 elements [I] 1 d 5 ( -> 2) [( 1.9733e+03,-0.0000e+00,-0.0000e+00,-1.9733e+03), p^2= 0.0000e+00, m= 3.0000e-01] (620, 0) 1 [I] 1 G 46 ( -> 4) [( 5.5999e+02,-0.0000e+00,-0.0000e+00,-5.5999e+02), p^2= 0.0000e+00, m= 0.0000e+00] (644,620) 1 [I] 1 G 70 ( -> 6) [( 2.4138e+03,-0.0000e+00,-0.0000e+00,-2.4138e+03), p^2= 0.0000e+00, m= 0.0000e+00] (657,644) 1 [I] 1 ub 83 ( -> 8) [( 3.6027e+02,-0.0000e+00,-0.0000e+00,-3.6027e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,657) 1 [I] 1 G 98 ( -> 10) [( 6.4767e+02,-0.0000e+00,-0.0000e+00,-6.4767e+02), p^2= 0.0000e+00, m= 0.0000e+00] (675,671) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 ud_0 109 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,679) 0 [B] 1 d 105 ( -> ) [( 3.2626e-01, 0.0000e+00, 0.0000e+00, 3.2625e-01), p^2= 8.8058e-06, m= 0.0000e+00] (679, 0) 0 [B] 1 u 64 ( -> ) [( 9.6779e-01, 0.0000e+00, 0.0000e+00, 9.6775e-01), p^2= 7.7481e-05, m= 0.0000e+00] (652, 0) 0 [B] 1 u 108 ( -> ) [( 3.4315e-01, 0.0000e+00, 0.0000e+00, 3.4313e-01), p^2= 9.7407e-06, m= 0.0000e+00] (602, 0) 0 and Particle List with 2 elements [B] 1 uu_1 110 ( -> ) [( 5.0778e+02, 0.0000e+00, 0.0000e+00,-5.0778e+02), p^2= 6.4079e-02, m= 7.7133e-01] ( 0,675) 1 [B] 1 u 92 ( -> ) [( 3.7190e+01, 0.0000e+00, 0.0000e+00,-3.7190e+01), p^2= 3.4373e-04, m= 0.0000e+00] (671, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 600 ( 1m 49s elapsed / 12h 38m 43s left ) -> ETA: Tue Apr 16 18:04 XS = 1.96927e+10 pb +- ( 4.41229e+09 pb = 22 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 u 6 ( -> 2) [( 5.9118e+03,-0.0000e+00,-0.0000e+00, 5.9118e+03), p^2= 0.0000e+00, m= 3.0000e-01] (614, 0) 0 [I] 1 G 48 ( -> 4) [( 5.6807e+02,-0.0000e+00,-0.0000e+00, 5.6807e+02), p^2= 0.0000e+00, m= 0.0000e+00] (645,614) 0 [I] 1 ub 67 ( -> 6) [( 1.5061e+00,-0.0000e+00,-0.0000e+00, 1.5061e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,645) 0 [I] 1 db 79 ( -> 8) [( 1.7560e+01,-0.0000e+00,-0.0000e+00, 1.7560e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,660) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 5.2675e+03,-0.0000e+00,-0.0000e+00,-5.2675e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,601) 1 [I] 1 G 49 ( -> 4) [( 7.2268e+02,-0.0000e+00,-0.0000e+00,-7.2268e+02), p^2= 0.0000e+00, m= 0.0000e+00] (643,603) 1 [I] 1 G 68 ( -> 6) [( 3.0976e+02,-0.0000e+00,-0.0000e+00,-3.0976e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,657) 1 [I] 1 u 80 ( -> 8) [( 1.7826e+02,-0.0000e+00,-0.0000e+00,-1.7826e+02), p^2= 0.0000e+00, m= 3.0000e-01] (657, 0) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 ud_0 93 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,670) 0 [B] 1 d 90 ( -> ) [( 3.1716e-01, 0.0000e+00, 0.0000e+00, 3.1714e-01), p^2= 1.3234e-05, m= 0.0000e+00] (670, 0) 0 [B] 1 u 74 ( -> ) [( 7.1228e-01, 0.0000e+00, 0.0000e+00, 7.1223e-01), p^2= 6.6747e-05, m= 0.0000e+00] (660, 0) 0 and Particle List with 1 elements [B] 1 ud_0 94 ( -> ) [( 2.1841e+01, 0.0000e+00, 0.0000e+00,-2.1841e+01), p^2= 2.9581e-03, m= 5.7933e-01] ( 0,643) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 u 6 ( -> 2) [( 3.2825e+03,-0.0000e+00,-0.0000e+00, 3.2825e+03), p^2= 0.0000e+00, m= 3.0000e-01] (634, 0) 0 [I] 1 G 67 ( -> 4) [( 1.1237e+02,-0.0000e+00,-0.0000e+00, 1.1237e+02), p^2= 0.0000e+00, m= 0.0000e+00] (658,634) 0 [I] 1 G 88 ( -> 6) [( 7.6591e+02,-0.0000e+00,-0.0000e+00, 7.6591e+02), p^2= 0.0000e+00, m= 0.0000e+00] (673,658) 0 [I] 1 G 105 ( -> 8) [( 3.4042e+02,-0.0000e+00,-0.0000e+00, 3.4042e+02), p^2= 0.0000e+00, m= 0.0000e+00] (697,673) 0 and Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 6.1072e+03,-0.0000e+00,-0.0000e+00,-6.1072e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 G 68 ( -> 4) [( 3.8117e+02,-0.0000e+00,-0.0000e+00,-3.8117e+02), p^2= 0.0000e+00, m= 0.0000e+00] (656,601) 1 [I] 1 sb 89 ( -> 6) [( 9.3367e+00,-0.0000e+00,-0.0000e+00,-9.3367e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,670) 1 [I] 1 d 106 ( -> 8) [( 3.1495e-01,-0.0000e+00,-0.0000e+00,-3.1495e-01), p^2= 0.0000e+00, m= 3.0000e-01] (693, 0) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 ud_0 115 ( -> ) [( 1.9988e+03, 0.0000e+00, 0.0000e+00, 1.9988e+03), p^2= 2.7072e-01, m= 5.7933e-01] ( 0,697) 0 and Particle List with 4 elements [B] 1 ud_0 117 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,693) 1 [B] 1 db 112 ( -> ) [( 4.6223e-01, 0.0000e+00, 0.0000e+00,-4.6222e-01), p^2= 1.4569e-05, m= 0.0000e+00] ( 0,656) 1 [B] 1 s 100 ( -> ) [( 4.5864e-01, 0.0000e+00, 0.0000e+00,-4.5863e-01), p^2= 1.4343e-05, m= 0.0000e+00] (603, 0) 1 [B] 1 u 116 ( -> ) [( 1.0654e+00, 0.0000e+00, 0.0000e+00,-1.0654e+00), p^2= 7.7398e-05, m= 0.0000e+00] (670, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 4.3204e+03,-0.0000e+00,-0.0000e+00, 4.3204e+03), p^2= 0.0000e+00, m= 0.0000e+00] (618,619) 0 [I] 1 u 44 ( -> 4) [( 3.7348e+02,-0.0000e+00,-0.0000e+00, 3.7348e+02), p^2= 0.0000e+00, m= 3.0000e-01] (619, 0) 0 [I] 1 G 63 ( -> 6) [( 3.5740e+02,-0.0000e+00,-0.0000e+00, 3.5740e+02), p^2= 0.0000e+00, m= 0.0000e+00] (647,618) 0 [I] 1 G 83 ( -> 8) [( 9.4286e+02,-0.0000e+00,-0.0000e+00, 9.4286e+02), p^2= 0.0000e+00, m= 0.0000e+00] (670,634) 0 and Particle List with 4 elements [I] 1 c 6 ( -> 2) [( 6.3694e+03,-0.0000e+00,-0.0000e+00,-6.3694e+03), p^2= 0.0000e+00, m= 1.8000e+00] (601, 0) 1 [I] 1 ub 45 ( -> 4) [( 1.2069e+02,-0.0000e+00,-0.0000e+00,-1.2069e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 1 [I] 1 G 64 ( -> 6) [( 6.3185e+00,-0.0000e+00,-0.0000e+00,-6.3185e+00), p^2= 0.0000e+00, m= 0.0000e+00] (650,646) 1 [I] 1 G 84 ( -> 8) [( 2.7474e-01,-0.0000e+00,-0.0000e+00,-2.7474e-01), p^2= 0.0000e+00, m= 0.0000e+00] (634,671) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 92 ( -> ) [( 3.9648e+02, 0.0000e+00, 0.0000e+00, 3.9648e+02), p^2= 4.2084e-02, m= 5.7933e-01] ( 0,647) 0 [B] 1 G 93 ( -> ) [( 1.0942e+02, 0.0000e+00, 0.0000e+00, 1.0942e+02), p^2= 3.2056e-03, m= 0.0000e+00] (634,670) 0 and Particle List with 4 elements [B] 1 uu_1 95 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,650) 1 [B] 1 u 58 ( -> ) [( 8.4582e-01, 0.0000e+00, 0.0000e+00,-8.4580e-01), p^2= 2.9164e-05, m= 0.0000e+00] (646, 0) 1 [B] 1 cb 39 ( -> ) [( 1.8243e+00, 0.0000e+00, 0.0000e+00,-1.8242e+00), p^2= 1.3566e-04, m= 0.0000e+00] ( 0,634) 1 [B] 1 d 94 ( -> ) [( 6.5233e-01, 0.0000e+00, 0.0000e+00,-6.5231e-01), p^2= 1.7347e-05, m= 0.0000e+00] (671, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 700 ( 2m elapsed / 11h 55m 33s left ) -> ETA: Tue Apr 16 17:21 XS = 1.83997e+10 pb +- ( 3.82158e+09 pb = 20 % ) Event 800 ( 2m 10s elapsed / 11h 19m 19s left ) -> ETA: Tue Apr 16 16:45 XS = 1.76553e+10 pb +- ( 3.43282e+09 pb = 19 % ) Event 900 ( 2m 31s elapsed / 11h 38m 21s left ) -> ETA: Tue Apr 16 17:04 XS = 2.06384e+10 pb +- ( 3.90966e+09 pb = 18 % ) Event 1000 ( 2m 40s elapsed / 11h 6m 56s left ) -> ETA: Tue Apr 16 16:33 XS = 2.22317e+10 pb +- ( 3.77323e+09 pb = 16 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 5m 4s elapsed / 10h 28m 49s left ) -> ETA: Tue Apr 16 15:57 XS = 1.92861e+10 pb +- ( 2.41124e+09 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 6m 49s elapsed / 9h 21m 20s left ) -> ETA: Tue Apr 16 14:51 XS = 1.89494e+10 pb +- ( 2.01593e+09 pb = 10 % ) Event 4000 ( 8m 41s elapsed / 8h 54m 59s left ) -> ETA: Tue Apr 16 14:27 XS = 1.91372e+10 pb +- ( 2.13958e+09 pb = 11 % ) Event 5000 ( 10m 38s elapsed / 8h 41m 23s left ) -> ETA: Tue Apr 16 14:15  Memory usage increased by 28 MB, now 354 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 1.78749e+10 pb +- ( 1.76014e+09 pb = 9 % ) Event 6000 ( 12m 40s elapsed / 8h 35m 7s left ) -> ETA: Tue Apr 16 14:11 XS = 1.72812e+10 pb +- ( 1.53273e+09 pb = 8 % ) Event 7000 ( 14m 44s elapsed / 8h 31m 45s left ) -> ETA: Tue Apr 16 14:10 XS = 1.64316e+10 pb +- ( 1.35866e+09 pb = 8 % ) Event 8000 ( 16m 50s elapsed / 8h 29m 41s left ) -> ETA: Tue Apr 16 14:10 XS = 1.62753e+10 pb +- ( 1.25881e+09 pb = 7 % ) Event 9000 ( 19m 35s elapsed / 8h 44m 27s left ) -> ETA: Tue Apr 16 14:27 XS = 1.65852e+10 pb +- ( 1.17457e+09 pb = 7 % ) Event 10000 ( 21m 44s elapsed / 8h 41m 48s left ) -> ETA: Tue Apr 16 14:27 XS = 1.66884e+10 pb +- ( 1.10938e+09 pb = 6 % ) Event 20000 ( 43m 38s elapsed / 8h 21m 52s left ) -> ETA: Tue Apr 16 14:29  Memory usage increased by 115 MB, now 469 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 1.775e+10 pb +- ( 1.03952e+09 pb = 5 % ) Event 30000 ( 1h 5m 31s elapsed / 8h 31s left ) -> ETA: Tue Apr 16 14:29 XS = 1.79722e+10 pb +- ( 8.10365e+08 pb = 4 % ) Pythia8 hadronisation failed. Event 40000 ( 1h 28m 49s elapsed / 7h 46m 19s left ) -> ETA: Tue Apr 16 14:38 XS = 1.79037e+10 pb +- ( 6.96427e+08 pb = 3 % ) Pythia8 hadronisation failed. Event 50000 ( 1h 54m 21s elapsed / 7h 37m 25s left ) -> ETA: Tue Apr 16 14:55 XS = 1.74233e+10 pb +- ( 5.99796e+08 pb = 3 % ) Pythia8 hadronisation failed. Event 60000 ( 2h 16m 42s elapsed / 7h 12m 54s left ) -> ETA: Tue Apr 16 14:53 XS = 1.73819e+10 pb +- ( 5.42865e+08 pb = 3 % ) Pythia8 hadronisation failed. Event 70000 ( 2h 38m 46s elapsed / 6h 48m 17s left ) -> ETA: Tue Apr 16 14:50 XS = 1.71576e+10 pb +- ( 4.88092e+08 pb = 2 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 80000 ( 3h 1m 46s elapsed / 6h 26m 15s left ) -> ETA: Tue Apr 16 14:51 XS = 1.69551e+10 pb +- ( 4.54809e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 90000 ( 3h 22m 8s elapsed / 5h 59m 21s left ) -> ETA: Tue Apr 16 14:45 XS = 1.67789e+10 pb +- ( 4.23575e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 100000 ( 3h 41m 20s elapsed / 5h 32m left ) -> ETA: Tue Apr 16 14:37 XS = 1.68085e+10 pb +- ( 4.06225e+08 pb = 2 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. WARNING: last allowed error message from 'Hadronize' Pythia8 hadronisation failed. Event 200000 ( 7h 21m 56s elapsed / 1h 50m 29s left ) -> ETA: Tue Apr 16 14:36 XS = 1.71123e+10 pb +- ( 2.81131e+08 pb = 1 % ) Event 250000 ( 32912 s total ) = 656291 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/1141){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1.71503e+10 0 % 2.52732e+08 1.47 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 250000 Errors { From "Hadronization:Pythia8": 31 (250031) -> 0 % } New events { From "Beam_Remnants:Parametrised": 1730 (251761) -> 0.6 % } } Blob_List: Momentum Fail Statistics { } Error messages from 'Hadronize' exceeded frequency limit: 31/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 1730 fails in creating good beam breakups. Remnant Kinematics: 1730 errors (no kinematics found) and 524 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 9h 8m 39s on Tue Apr 16 14:32:19 2024 (User: 8h 59m 6s, System: 3m 40s, Children User: 0s, Children System: 0s)