Welcome to Sherpa, Daniel Reichelt on ip3-cpu5.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Tue Apr 16 04:04:01 2024. Run_Parameter::Init(): Setting memory limit to 503.276 GB. Random::SetSeed(): Seed set to 1043 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 1.77797e+10 pb +- ( 2.94929e+08 pb = 1.6588 % )  exp. eff: 2.70518e-05 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 2.70518e-07 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 16s elapsed / 46d 12h 39m 43s left ) -> ETA: Sat Jun 01 16:44 XS = 0.000567476 pb +- ( 0.000567476 pb = 100 % ) Event 2 ( 16s elapsed / 23d 11h 53m 3s left ) -> ETA: Thu May 09 15:57 XS = 10024.3 pb +- ( 10024.3 pb = 99 % ) Event 3 ( 16s elapsed / 15d 17h 46m 23s left ) -> ETA: Wed May 01 21:50 XS = 19952 pb +- ( 12603.6 pb = 63 % ) Event 4 ( 16s elapsed / 11d 19h 40m 33s left ) -> ETA: Sat Apr 27 23:44 XS = 3.9952e+07 pb +- ( 3.99354e+07 pb = 99 % ) Event 5 ( 16s elapsed / 9d 16h 13m 3s left ) -> ETA: Thu Apr 25 20:17 XS = 3.51545e+07 pb +- ( 3.49162e+07 pb = 99 % ) Event 6 ( 16s elapsed / 8d 1h 58m 36s left ) -> ETA: Wed Apr 24 06:02 XS = 3.18414e+07 pb +- ( 3.0971e+07 pb = 97 % ) Event 7 ( 16s elapsed / 6d 22h 45m 40s left ) -> ETA: Tue Apr 23 02:50 XS = 5.6446e+08 pb +- ( 5.33338e+08 pb = 94 % ) Event 8 ( 16s elapsed / 6d 2h 10m 33s left ) -> ETA: Mon Apr 22 06:14 XS = 6.61329e+09 pb +- ( 6.06804e+09 pb = 91 % ) Event 9 ( 17s elapsed / 5d 11h 10m 5s left ) -> ETA: Sun Apr 21 15:14 XS = 5.19616e+09 pb +- ( 4.77713e+09 pb = 91 % ) Event 10 ( 17s elapsed / 4d 22h 44m 42s left ) -> ETA: Sun Apr 21 02:49 XS = 4.27919e+09 pb +- ( 3.93893e+09 pb = 92 % ) Event 20 ( 20s elapsed / 2d 23h 39m 39s left ) -> ETA: Fri Apr 19 03:44  Memory usage increased by 99 MB, now 349 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 8.6531e+09 pb +- ( 7.04191e+09 pb = 81 % ) Event 30 ( 21s elapsed / 2d 2h 10m 44s left ) -> ETA: Thu Apr 18 06:15 XS = 5.82219e+09 pb +- ( 4.70345e+09 pb = 80 % ) Event 40 ( 22s elapsed / 1d 14h 41m 30s left ) -> ETA: Wed Apr 17 18:45 XS = 1.43931e+10 pb +- ( 9.27167e+09 pb = 64 % ) Event 50 ( 26s elapsed / 1d 12h 57m 53s left ) -> ETA: Wed Apr 17 17:02 XS = 1.57294e+10 pb +- ( 8.38455e+09 pb = 53 % ) Event 60 ( 29s elapsed / 1d 9h 51m 27s left ) -> ETA: Wed Apr 17 13:56 XS = 1.58909e+10 pb +- ( 7.55178e+09 pb = 47 % ) Event 70 ( 30s elapsed / 1d 6h 14m 58s left ) -> ETA: Wed Apr 17 10:19 XS = 1.38217e+10 pb +- ( 6.57902e+09 pb = 47 % ) Event 80 ( 32s elapsed / 1d 4h 5m 23s left ) -> ETA: Wed Apr 17 08:10 XS = 1.86771e+10 pb +- ( 7.26965e+09 pb = 38 % ) Event 90 ( 33s elapsed / 1d 1h 34m 10s left ) -> ETA: Wed Apr 17 05:38 XS = 1.67872e+10 pb +- ( 6.54636e+09 pb = 38 % ) Event 100 ( 36s elapsed / 1d 1h 9m 23s left ) -> ETA: Wed Apr 17 05:14 XS = 1.50415e+10 pb +- ( 5.82924e+09 pb = 38 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 9 elements [I] 1 G 6 ( -> 2) [( 1.9396e+03,-0.0000e+00,-0.0000e+00, 1.9396e+03), p^2= 0.0000e+00, m= 0.0000e+00] (637,661) 0 [I] 1 G 100 ( -> 4) [( 3.8344e+02,-0.0000e+00,-0.0000e+00, 3.8344e+02), p^2= 0.0000e+00, m= 0.0000e+00] (701,637) 0 [I] 1 G 133 ( -> 6) [( 1.2163e+03,-0.0000e+00,-0.0000e+00, 1.2163e+03), p^2= 0.0000e+00, m= 0.0000e+00] (661,721) 0 [I] 1 db 161 ( -> 8) [( 2.8544e+02,-0.0000e+00,-0.0000e+00, 2.8544e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,701) 0 [I] 1 db 180 ( -> 10) [( 5.5010e+02,-0.0000e+00,-0.0000e+00, 5.5010e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,741) 0 [I] 1 G 199 ( -> 12) [( 1.5698e+03,-0.0000e+00,-0.0000e+00, 1.5698e+03), p^2= 0.0000e+00, m= 0.0000e+00] (721,774) 0 [I] 1 ub 226 ( -> 14) [( 1.7596e+02,-0.0000e+00,-0.0000e+00, 1.7596e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,778) 0 [I] 1 G 242 ( -> 16) [( 9.5741e+01,-0.0000e+00,-0.0000e+00, 9.5741e+01), p^2= 0.0000e+00, m= 0.0000e+00] (778,791) 0 [I] 1 G 257 ( -> 18) [( 5.4375e+01,-0.0000e+00,-0.0000e+00, 5.4375e+01), p^2= 0.0000e+00, m= 0.0000e+00] (791,796) 0 and Particle List with 9 elements [I] 1 G 5 ( -> 2) [( 4.3078e+03,-0.0000e+00,-0.0000e+00,-4.3078e+03), p^2= 0.0000e+00, m= 0.0000e+00] (625,652) 1 [I] 1 G 101 ( -> 4) [( 5.2949e+02,-0.0000e+00,-0.0000e+00,-5.2949e+02), p^2= 0.0000e+00, m= 0.0000e+00] (652,697) 1 [I] 1 G 134 ( -> 6) [( 4.1344e+02,-0.0000e+00,-0.0000e+00,-4.1344e+02), p^2= 0.0000e+00, m= 0.0000e+00] (697,727) 1 [I] 1 G 162 ( -> 8) [( 3.3753e+02,-0.0000e+00,-0.0000e+00,-3.3753e+02), p^2= 0.0000e+00, m= 0.0000e+00] (727,736) 1 [I] 1 d 181 ( -> 10) [( 6.7466e+02,-0.0000e+00,-0.0000e+00,-6.7466e+02), p^2= 0.0000e+00, m= 3.0000e-01] (736, 0) 1 [I] 1 G 200 ( -> 12) [( 1.2066e+02,-0.0000e+00,-0.0000e+00,-1.2066e+02), p^2= 0.0000e+00, m= 0.0000e+00] (760,625) 1 [I] 1 G 227 ( -> 14) [( 8.3533e+01,-0.0000e+00,-0.0000e+00,-8.3533e+01), p^2= 0.0000e+00, m= 0.0000e+00] (784,760) 1 [I] 1 s 243 ( -> 16) [( 4.1645e+00,-0.0000e+00,-0.0000e+00,-4.1645e+00), p^2= 0.0000e+00, m= 4.0000e-01] (786, 0) 1 [I] 1 G 258 ( -> 18) [( 2.7652e+01,-0.0000e+00,-0.0000e+00,-2.7652e+01), p^2= 0.0000e+00, m= 0.0000e+00] (801,786) 1 and the corresponding remnants are Particle List with 5 elements [B] 1 uu_1 273 ( -> ) [( 1.5383e+02, 0.0000e+00, 0.0000e+00, 1.5383e+02), p^2= 1.3982e-02, m= 7.7133e-01] ( 0,753) 0 [B] 1 u 237 ( -> ) [( 7.2524e-01, 0.0000e+00, 0.0000e+00, 7.2524e-01), p^2= 3.1077e-07, m= 0.0000e+00] (774, 0) 0 [B] 1 d 194 ( -> ) [( 6.3018e-01, 0.0000e+00, 0.0000e+00, 6.3018e-01), p^2= 2.3464e-07, m= 0.0000e+00] (753, 0) 0 [B] 1 d 175 ( -> ) [( 4.0857e-01, 0.0000e+00, 0.0000e+00, 4.0857e-01), p^2= 9.8627e-08, m= 0.0000e+00] (741, 0) 0 [B] 1 d 272 ( -> ) [( 7.3634e+01, 0.0000e+00, 0.0000e+00, 7.3634e+01), p^2= 3.2035e-03, m= 0.0000e+00] (796, 0) 0 and Particle List with 2 elements [B] 1 uu_1 274 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,801) 1 [B] 1 sb 252 ( -> ) [( 1.0480e+00, 0.0000e+00, 0.0000e+00,-1.0479e+00), p^2= 1.4193e-04, m= 0.0000e+00] ( 0,784) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 200 ( 45s elapsed / 15h 41m 32s left ) -> ETA: Tue Apr 16 19:46 XS = 1.12008e+10 pb +- ( 3.33819e+09 pb = 29 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 sb 6 ( -> 2) [( 6.4941e+03,-0.0000e+00,-0.0000e+00, 6.4941e+03), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,601) 0 [I] 1 ub 76 ( -> 4) [( 3.9319e+00,-0.0000e+00,-0.0000e+00, 3.9319e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,659) 0 [I] 1 G 93 ( -> 6) [( 1.8143e-01,-0.0000e+00,-0.0000e+00, 1.8143e-01), p^2= 0.0000e+00, m= 0.0000e+00] (601,691) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 4.4354e+03,-0.0000e+00,-0.0000e+00,-4.4354e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 1 [I] 1 db 77 ( -> 4) [( 2.5580e+02,-0.0000e+00,-0.0000e+00,-2.5580e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,601) 1 [I] 1 G 94 ( -> 6) [( 1.1409e+03,-0.0000e+00,-0.0000e+00,-1.1409e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,683) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 109 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,675) 0 [B] 1 u 87 ( -> ) [( 7.7939e-01, 0.0000e+00, 0.0000e+00, 7.7936e-01), p^2= 4.5480e-05, m= 0.0000e+00] (675, 0) 0 [B] 1 s 71 ( -> ) [( 5.5146e-01, 0.0000e+00, 0.0000e+00, 5.5144e-01), p^2= 2.2769e-05, m= 0.0000e+00] (659, 0) 0 [B] 1 d 108 ( -> ) [( 4.7808e-01, 0.0000e+00, 0.0000e+00, 4.7807e-01), p^2= 1.7113e-05, m= 0.0000e+00] (691, 0) 0 and Particle List with 3 elements [B] 1 uu_1 111 ( -> ) [( 6.5712e+02, 0.0000e+00, 0.0000e+00,-6.5712e+02), p^2= 8.7563e-02, m= 7.7133e-01] ( 0,676) 1 [B] 1 d 88 ( -> ) [( 3.2143e-01, 0.0000e+00, 0.0000e+00,-3.2143e-01), p^2= 2.0950e-08, m= 0.0000e+00] (676, 0) 1 [B] 1 d 110 ( -> ) [( 1.0468e+01, 0.0000e+00, 0.0000e+00,-1.0468e+01), p^2= 2.2220e-05, m= 0.0000e+00] (683, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 300 ( 55s elapsed / 12h 53m 5s left ) -> ETA: Tue Apr 16 16:58 XS = 1.10638e+10 pb +- ( 2.976e+09 pb = 26 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 u 6 ( -> 2) [( 6.4904e+03,-0.0000e+00,-0.0000e+00, 6.4904e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 47 ( -> 4) [( 4.9274e+00,-0.0000e+00,-0.0000e+00, 4.9274e+00), p^2= 0.0000e+00, m= 0.0000e+00] (648,601) 0 [I] 1 s 66 ( -> 6) [( 3.9246e+00,-0.0000e+00,-0.0000e+00, 3.9246e+00), p^2= 0.0000e+00, m= 4.0000e-01] (651, 0) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 4.3878e+03,-0.0000e+00,-0.0000e+00,-4.3878e+03), p^2= 0.0000e+00, m= 0.0000e+00] (619,615) 1 [I] 1 d 48 ( -> 4) [( 1.7836e+03,-0.0000e+00,-0.0000e+00,-1.7836e+03), p^2= 0.0000e+00, m= 3.0000e-01] (615, 0) 1 [I] 1 G 67 ( -> 6) [( 2.7569e+02,-0.0000e+00,-0.0000e+00,-2.7569e+02), p^2= 0.0000e+00, m= 0.0000e+00] (650,655) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 77 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,651) 0 [B] 1 sb 74 ( -> ) [( 7.2185e-01, 0.0000e+00, 0.0000e+00, 7.2179e-01), p^2= 9.7763e-05, m= 0.0000e+00] ( 0,648) 0 and Particle List with 2 elements [B] 1 uu_1 79 ( -> ) [( 4.9121e+01, 0.0000e+00, 0.0000e+00,-4.9121e+01), p^2= 6.1690e-03, m= 7.7133e-01] ( 0,619) 1 [B] 1 G 80 ( -> ) [( 3.8524e+00, 0.0000e+00, 0.0000e+00,-3.8524e+00), p^2= 3.7945e-05, m= 0.0000e+00] (655,650) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 400 ( 1m 5s elapsed / 11h 18m 29s left ) -> ETA: Tue Apr 16 15:23 XS = 9.77098e+09 pb +- ( 2.50134e+09 pb = 25 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 4.0352e+03,-0.0000e+00,-0.0000e+00, 4.0352e+03), p^2= 0.0000e+00, m= 0.0000e+00] (610,612) 0 [I] 1 G 33 ( -> 4) [( 1.9848e+02,-0.0000e+00,-0.0000e+00, 1.9848e+02), p^2= 0.0000e+00, m= 0.0000e+00] (630,610) 0 [I] 1 G 50 ( -> 6) [( 1.8349e+02,-0.0000e+00,-0.0000e+00, 1.8349e+02), p^2= 0.0000e+00, m= 0.0000e+00] (612,649) 0 [I] 1 G 62 ( -> 8) [( 6.9959e+02,-0.0000e+00,-0.0000e+00, 6.9959e+02), p^2= 0.0000e+00, m= 0.0000e+00] (649,652) 0 and Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 6.4875e+03,-0.0000e+00,-0.0000e+00,-6.4875e+03), p^2= 0.0000e+00, m= 0.0000e+00] (602,603) 1 [I] 1 G 34 ( -> 4) [( 8.4744e+00,-0.0000e+00,-0.0000e+00,-8.4744e+00), p^2= 0.0000e+00, m= 0.0000e+00] (637,602) 1 [I] 1 G 51 ( -> 6) [( 2.3629e+00,-0.0000e+00,-0.0000e+00,-2.3629e+00), p^2= 0.0000e+00, m= 0.0000e+00] (645,637) 1 [I] 1 G 63 ( -> 8) [( 4.0294e-01,-0.0000e+00,-0.0000e+00,-4.0294e-01), p^2= 0.0000e+00, m= 0.0000e+00] (603,655) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 76 ( -> ) [( 7.1855e+02, 0.0000e+00, 0.0000e+00, 7.1855e+02), p^2= 5.0556e-02, m= 5.7933e-01] ( 0,630) 0 [B] 1 u 75 ( -> ) [( 6.6466e+02, 0.0000e+00, 0.0000e+00, 6.6466e+02), p^2= 4.3257e-02, m= 0.0000e+00] (652, 0) 0 and Particle List with 2 elements [B] 1 uu_1 78 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,645) 1 [B] 1 d 77 ( -> ) [( 1.2111e+00, 0.0000e+00, 0.0000e+00,-1.2111e+00), p^2= 1.6403e-04, m= 0.0000e+00] (655, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Pythia8 hadronisation failed. Event 500 ( 1m 14s elapsed / 10h 21m 45s left ) -> ETA: Tue Apr 16 14:27 XS = 1.19981e+10 pb +- ( 2.68621e+09 pb = 22 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 6.4600e+03,-0.0000e+00,-0.0000e+00, 6.4600e+03), p^2= 0.0000e+00, m= 0.0000e+00] (611,613) 0 [I] 1 G 100 ( -> 4) [( 5.3510e+00,-0.0000e+00,-0.0000e+00, 5.3510e+00), p^2= 0.0000e+00, m= 0.0000e+00] (693,611) 0 [I] 1 u 115 ( -> 6) [( 3.0087e+01,-0.0000e+00,-0.0000e+00, 3.0087e+01), p^2= 0.0000e+00, m= 3.0000e-01] (613, 0) 0 [I] 1 db 132 ( -> 8) [( 2.3404e+00,-0.0000e+00,-0.0000e+00, 2.3404e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,721) 0 and Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 6.1600e+03,-0.0000e+00,-0.0000e+00,-6.1600e+03), p^2= 0.0000e+00, m= 0.0000e+00] (614,612) 1 [I] 1 G 101 ( -> 4) [( 8.3121e+01,-0.0000e+00,-0.0000e+00,-8.3121e+01), p^2= 0.0000e+00, m= 0.0000e+00] (697,614) 1 [I] 1 G 116 ( -> 6) [( 7.4687e+01,-0.0000e+00,-0.0000e+00,-7.4687e+01), p^2= 0.0000e+00, m= 0.0000e+00] (612,710) 1 [I] 1 sb 133 ( -> 8) [( 1.5057e+02,-0.0000e+00,-0.0000e+00,-1.5057e+02), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,724) 1 and the corresponding remnants are Particle List with 4 elements [B] 1 uu_1 145 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,693) 0 [B] 1 d 140 ( -> ) [( 1.2121e+00, 0.0000e+00, 0.0000e+00, 1.2121e+00), p^2= 9.1320e-05, m= 0.0000e+00] (717, 0) 0 [B] 1 ub 127 ( -> ) [( 3.9294e-01, 0.0000e+00, 0.0000e+00, 3.9293e-01), p^2= 9.5974e-06, m= 0.0000e+00] ( 0,717) 0 [B] 1 d 144 ( -> ) [( 5.7390e-01, 0.0000e+00, 0.0000e+00, 5.7388e-01), p^2= 2.0472e-05, m= 0.0000e+00] (721, 0) 0 and Particle List with 3 elements [B] 1 uu_1 147 ( -> ) [( 1.9018e+01, 0.0000e+00, 0.0000e+00,-1.9018e+01), p^2= 1.5489e-03, m= 7.7133e-01] ( 0,697) 1 [B] 1 s 141 ( -> ) [( 2.0419e+00, 0.0000e+00, 0.0000e+00,-2.0419e+00), p^2= 1.7856e-05, m= 0.0000e+00] (710, 0) 1 [B] 1 d 146 ( -> ) [( 1.0566e+01, 0.0000e+00, 0.0000e+00,-1.0566e+01), p^2= 4.7810e-04, m= 0.0000e+00] (724, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 600 ( 1m 30s elapsed / 10h 28m 25s left ) -> ETA: Tue Apr 16 14:34 XS = 1.758e+10 pb +- ( 6.46158e+09 pb = 36 % ) Event 700 ( 1m 41s elapsed / 10h 2m 3s left ) -> ETA: Tue Apr 16 14:07 XS = 2.20221e+10 pb +- ( 6.04965e+09 pb = 27 % ) Event 800 ( 1m 51s elapsed / 9h 36m 47s left ) -> ETA: Tue Apr 16 13:42  Memory usage increased by 23 MB, now 373 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 1.96292e+10 pb +- ( 5.22248e+09 pb = 26 % ) Event 900 ( 2m 2s elapsed / 9h 25m 27s left ) -> ETA: Tue Apr 16 13:31 XS = 1.90575e+10 pb +- ( 4.70033e+09 pb = 24 % ) Event 1000 ( 2m 14s elapsed / 9h 17m 40s left ) -> ETA: Tue Apr 16 13:23 XS = 1.86888e+10 pb +- ( 4.24809e+09 pb = 22 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 2000 ( 4m 9s elapsed / 8h 35m 2s left ) -> ETA: Tue Apr 16 12:43 XS = 1.6289e+10 pb +- ( 2.62283e+09 pb = 16 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.01 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 6m 3s elapsed / 8h 18m 17s left ) -> ETA: Tue Apr 16 12:28 XS = 1.66463e+10 pb +- ( 2.15836e+09 pb = 12 % ) Event 4000 ( 8m 14s elapsed / 8h 26m 57s left ) -> ETA: Tue Apr 16 12:39  Memory usage increased by 25 MB, now 399 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 1.56538e+10 pb +- ( 1.82194e+09 pb = 11 % ) Event 5000 ( 10m 6s elapsed / 8h 15m 15s left ) -> ETA: Tue Apr 16 12:29 XS = 1.56902e+10 pb +- ( 1.56208e+09 pb = 9 % ) Event 6000 ( 12m 2s elapsed / 8h 9m 29s left ) -> ETA: Tue Apr 16 12:25 XS = 1.75198e+10 pb +- ( 1.65615e+09 pb = 9 % ) Event 7000 ( 14m 26s elapsed / 8h 21m 19s left ) -> ETA: Tue Apr 16 12:39 XS = 1.71639e+10 pb +- ( 1.54298e+09 pb = 8 % ) Event 8000 ( 16m 35s elapsed / 8h 21m 45s left ) -> ETA: Tue Apr 16 12:42 XS = 1.66509e+10 pb +- ( 1.38012e+09 pb = 8 % ) Event 9000 ( 19m 25s elapsed / 8h 40m 6s left ) -> ETA: Tue Apr 16 13:03 XS = 1.67715e+10 pb +- ( 1.26272e+09 pb = 7 % ) Event 10000 ( 21m 33s elapsed / 8h 37m 12s left ) -> ETA: Tue Apr 16 13:02 XS = 1.62608e+10 pb +- ( 1.17443e+09 pb = 7 % ) Pythia8 hadronisation failed. Event 20000 ( 42m 5s elapsed / 8h 4m 1s left ) -> ETA: Tue Apr 16 12:50 XS = 1.66922e+10 pb +- ( 8.69813e+08 pb = 5 % ) Pythia8 hadronisation failed. Event 30000 ( 1h 1m 6s elapsed / 7h 28m 7s left ) -> ETA: Tue Apr 16 12:33 XS = 1.66747e+10 pb +- ( 7.17217e+08 pb = 4 % ) Pythia8 hadronisation failed. Event 40000 ( 1h 19m 38s elapsed / 6h 58m 8s left ) -> ETA: Tue Apr 16 12:21  Memory usage increased by 45 MB, now 445 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 1.73731e+10 pb +- ( 6.24887e+08 pb = 3 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 50000 ( 1h 38m 47s elapsed / 6h 35m 11s left ) -> ETA: Tue Apr 16 12:18 XS = 1.73864e+10 pb +- ( 5.54561e+08 pb = 3 % ) Pythia8 hadronisation failed. Event 60000 ( 1h 57m 46s elapsed / 6h 12m 55s left ) -> ETA: Tue Apr 16 12:14 XS = 1.74789e+10 pb +- ( 5.23623e+08 pb = 2 % ) Pythia8 hadronisation failed. Event 70000 ( 2h 16m 42s elapsed / 5h 51m 31s left ) -> ETA: Tue Apr 16 12:12 XS = 1.72204e+10 pb +- ( 4.84691e+08 pb = 2 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 80000 ( 2h 34m 39s elapsed / 5h 28m 38s left ) -> ETA: Tue Apr 16 12:07 XS = 1.71505e+10 pb +- ( 4.47431e+08 pb = 2 % ) Event 90000 ( 2h 53m 54s elapsed / 5h 9m 11s left ) -> ETA: Tue Apr 16 12:07 XS = 1.7281e+10 pb +- ( 4.21714e+08 pb = 2 % ) Event 100000 ( 3h 12m 20s elapsed / 4h 48m 30s left ) -> ETA: Tue Apr 16 12:04 XS = 1.71703e+10 pb +- ( 3.97413e+08 pb = 2 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. Event 200000 ( 6h 28m 35s elapsed / 1h 37m 8s left ) -> ETA: Tue Apr 16 12:09 XS = 1.73509e+10 pb +- ( 2.86466e+08 pb = 1 % ) Pythia8 hadronisation failed. Pythia8 hadronisation failed. Pythia8 hadronisation failed. WARNING: last allowed error message from 'Hadronize' Pythia8 hadronisation failed. Event 250000 ( 29365 s total ) = 735560 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Alaric/1043){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1.71346e+10 0 % 2.52591e+08 1.47 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 250000 Errors { From "Hadronization:Pythia8": 22 (250022) -> 0 % } New events { From "Beam_Remnants:Parametrised": 1755 (251777) -> 0.6 % } } Blob_List: Momentum Fail Statistics { } Error messages from 'Hadronize' exceeded frequency limit: 22/20 Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 1755 fails in creating good beam breakups. Remnant Kinematics: 1755 errors (no kinematics found) and 522 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 8h 9m 31s on Tue Apr 16 12:13:33 2024 (User: 8h 5m 39s, System: 1m 24s, Children User: 0s, Children System: 0s) Welcome to Sherpa, Daniel Reichelt on ip3-ws3.phyip3.dur.ac.uk. Initialization of framework underway. The local time is Wed Apr 17 09:20:29 2024. Run_Parameter::Init(): Setting memory limit to 187.131 GB. Random::SetSeed(): Seed set to 1043 Initialization_Handler::LoadLibraries(): Library libSherpaPythia.so loaded. ----------------------------------------------------------------------------- ----------- Event generation run with SHERPA started ....... ----------- ----------------------------------------------------------------------------- ................................................ | + ................................................ || | + + ................................... .... | | / + ................. ................ _,_ | .... || +| + + ............................... __.' ,\| ... || / +| + .............................. ( \ \ ... | | | + + \ + ............................. ( \ -/ .... || + | + ........ ................... (~~~~~~~~~## + + + ............................. ~~(! '~~~~~~~ \ + + + + ............................... `~~~QQQQQDb // | + + + + ........................ .......... IDDDDP|| \ + + + + + + .................................... IDDDI|| \ + .................................... IHD HD|| \ + + + + + + + + ................................... IHD ##| :-) + +\ + ......... ............... ......... IHI ## / / + + + + +\ + ................................... IHI/ / / + + + + + ................................... ## | | / / + + + + / + ....................... /TT\ ..... ##/ /// / + + + + + + +/ + ......................./TTT/T\ ... /TT\/\\\ / + + + + + + +/ \ + ....................../TTT/TTTT\...|TT/T\\\/ + ++ + / ----------------------------------------------------------------------------- SHERPA version 3.0.0beta1 (Dhaulagiri) Authors: Enrico Bothmann, Stefan Hoeche, Frank Krauss, Silvan Kuttimalai, Marek Schoenherr, Holger Schulz, Steffen Schumann, Frank Siegert, Korinna Zapp Former Authors: Timo Fischer, Tanju Gleisberg, Hendrik Hoeth, Ralf Kuhn, Thomas Laubrich, Andreas Schaelicke, Jan Winter This program uses a lot of genuine and original research work by other people. Users are encouraged to refer to the various original publications. Users are kindly asked to refer to the documentation published under JHEP 02(2009)007 Please visit also our homepage http://sherpa.hepforge.org for news, bugreports, updates and new releases. ----------------------------------------------------------------------------- WARNING: You are using an unsupported development branch. Git branch unknownurl, revision unknownrevision. Hadron_Init::Init(): Initializing kf table for hadrons. Beam_Spectra_Handler: type = Collider Setup for P+ (on = 0, p = (6500,0,0,6500)) and P+ (on = 0, p = (6500,0,0,-6500)). ISR handling: PDFs for hard scattering: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas PDFs for multiple parton interactions: PDF4LHC21_40_pdfas + PDF4LHC21_40_pdfas Remnant_Handlers: hard process: P+: Hadron + P+: Hadron Standard_Model::FixEWParameters() { Input scheme: Gmu Gmu scheme, input: GF, m_W, m_Z, m_h, widths Ren. scheme: Gmu Parameters: sin^2(\theta_W) = 0.223043 - 0.00110541 i vev = 246.218 } Running_AlphaQED::PrintSummary() { Setting \alpha according to EW scheme 1/\alpha(0) = 137.036 1/\alpha(def) = 132.119 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } One_Running_AlphaS::PrintSummary() { Setting \alpha_s according to PDF perturbative order 2 \alpha_s(M_Z) = 0.118 } List of Particle Data IDName kfc Mass Width Stable Massive Active Yukawa d 1 0.01 0 1 0 1 0 u 2 0.005 0 1 0 1 0 s 3 0.2 0 1 0 1 0 c 4 1.42 0 1 0 1 0 b 5 4.92 0 1 0 1 0 t 6 172.5 1.32 0 1 1 172.5 e- 11 0.000511 0 1 0 1 0 ve 12 0 0 1 0 1 0 mu- 13 0.105 0 1 0 1 0 vmu 14 0 0 1 0 1 0 tau- 15 1.777 2.26735e-12 0 0 1 0 vtau 16 0 0 1 0 1 0 G 21 0 0 1 0 1 0 P 22 0 0 1 0 1 0 Z 23 91.1876 2.4952 0 1 1 91.1876 W+ 24 80.379 2.085 0 1 1 80.379 h0 25 125.09 0.0041 0 1 1 125.09 Instanton 999 0 0 0 0 1 0 List of Particle Containers IDName kfc Constituents l 90 {e-,e+,mu-,mu+,tau-,tau+} v 91 {ve,veb,vmu,vmub,vtau,vtaub} f 92 {d,db,u,ub,s,sb,c,cb,b,bb,e-,e+,mu-,mu+,tau-,tau+,ve,veb,vmu,vmub,vtau,vtaub} j 93 {d,db,u,ub,s,sb,c,cb,b,bb,G} Q 94 {d,db,u,ub,s,sb,c,cb,b,bb} ewj 98 {d,db,u,ub,s,sb,c,cb,b,bb,G,P} Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefII Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF Alaric_KFrame_TdefFF ####### Permutations for 2 partons ############## found 2 entries: 1th permutation = { 0 1 } 2th permutation = { 1 0 } FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. II: collinear F->VF, G -> (db,d): increase cutoff to 0.02, now t0 = 0.02^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 0.01, now t0 = 0.01^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 0.4, now t0 = 0.4^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 2.84, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 9.84, now t0 = 9.84^2. FF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FF: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. FI: collinear V->FF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. IF: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: Soft, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, d -> (d,G): increase cutoff to 1, now t0 = 1^2. II: Soft, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, db -> (db,G): increase cutoff to 1, now t0 = 1^2. II: Soft, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, u -> (u,G): increase cutoff to 1, now t0 = 1^2. II: Soft, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, ub -> (ub,G): increase cutoff to 1, now t0 = 1^2. II: Soft, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, s -> (s,G): increase cutoff to 1, now t0 = 1^2. II: Soft, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, sb -> (sb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, c -> (c,G): increase cutoff to 1, now t0 = 1^2. II: Soft, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, cb -> (cb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, b -> (b,G): increase cutoff to 1, now t0 = 1^2. II: Soft, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, bb -> (bb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, t -> (t,G): increase cutoff to 1, now t0 = 1^2. II: Soft, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->FV, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->FF, tb -> (tb,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: Soft, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear V->VV, G -> (G,G): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (db,d): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (ub,u): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (sb,s): increase cutoff to 1, now t0 = 1^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (cb,c): increase cutoff to 1, now t0 = 2.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. II: collinear F->VF, G -> (bb,b): increase cutoff to 1, now t0 = 9.84^2. Shower_Handler initialised. +-----------------------------------------+ | X X X XXXX XXX XXX XXX | | X X XX XX X X X X X X | | X X X X X XXX X XXX X X XXX XXX | | XXXXX X X X X X X X X X | | X X X X XXXX XXX XXX XXX | +-----------------------------------------+ | please cite: JHEP 0202:044,2002 | +-----------------------------------------+ Matrix_Element_Handler::Matrix_Element_Handler(): Set pilot run mode to 0. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Comix: (none) +----------------------------------+ | | | CCC OOO M M I X X | | C O O MM MM I X X | | C O O M M M I X | | C O O M M I X X | | CCC OOO M M I X X | | | +==================================+ | Color dressed Matrix Elements | | http://comix.freacafe.de | | please cite JHEP12(2008)039 | +----------------------------------+ ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amegic: (none) ME_Generator_Base::SetPSMasses(): Massive PS flavours for Internal: (none) Matrix_Element_Handler::BuildProcesses(): 3 ME generators, 1 process blocks. Matrix_Element_Handler::BuildProcesses(): Setting up processes ............ done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Performing tests ............ done ( 51 MB, 0s / 0s ). Matrix_Element_Handler::InitializeProcesses(): Initializing scales done ( 51 MB, 0s / 0s ). Initialized the Matrix_Element_Handler for the hard processes. Initialized the Beam_Remnant_Handler. ME_Generator_Base::SetPSMasses(): Massive PS flavours for Amisic::Processes: (none) MI_Handler::MI_Handler(id = 2, name = Amisic, type = 1) Underlying event/multiple interactions handler: MI[2]: on = 1 (type = 1, Amisic) Soft-collision handlers: Type[2]: None Hadron_Init::Init(): Initializing kf table for hadrons. Pythia8_Hadronisation::Pythia8_Hadronisation:("Initialising Pythia8 hadronisation interface") Pythia8_Hadronisation::ApplyPythiaSettings:("Applying Pythia8 settings") Pythia8_Hadronisation::HarmonizeMasses:("Harmonizing particle masses and widths!") Pythia8_Hadronisation::ModifyPythiaValues:("Changing Pythia Values") Initialized the Fragmentation_Handler. Initialized the Hadron_Decay_Handler, Decay model = HADRONS++ Initialized the Soft_Photon_Handler. Initialized the Reweighting. ISR_Channels::CheckForStructuresFromME for 0: (none) Read in channels from directory: Results/Comix/MC_2_2__j__j__j__j Process_Group::CalculateTotalXSec(): Calculate xs for '2_2__j__j__j__j' (Comix) 2_2__j__j__j__j : 1.77797e+10 pb +- ( 2.94929e+08 pb = 1.6588 % )  exp. eff: 2.70518e-05 % reduce max for 2_2__j__j__j__j to 1 ( eps = 0.001 -> exp. eff 2.70518e-07 ) ---------------------------------------------------------- -- SHERPA generates events with the following structure -- ---------------------------------------------------------- Event generation : Weighted Perturbative : Signal_Processes Perturbative : Minimum_Bias: None Perturbative : Hard_Decays Perturbative : Jet_Evolution:CFP Perturbative : Lepton_FS_QED_Corrections:None Perturbative : Multiple_Interactions: Amisic Hadronization : Beam_Remnants:Parametrised Hadronization : Hadronization:Pythia8 Hadronization : Hadron_Decays Userhook : Analysis : Rivet --------------------------------------------------------- #-------------------------------------------------------------------------- # FastJet release 3.3.2 [fjcore] # M. Cacciari, G.P. Salam and G. Soyez # A software package for jet finding and analysis at colliders # http://fastjet.fr # # Please cite EPJC72(2012)1896 [arXiv:1111.6097] if you use this package # for scientific work and optionally PLB641(2006)57 [hep-ph/0512210]. # # FastJet is provided without warranty under the terms of the GNU GPLv2. # It uses T. Chan's closest pair algorithm, S. Fortune's Voronoi code # and 3rd party plugin jet algorithms. See COPYING file for details. #-------------------------------------------------------------------------- Event 1 ( 27s elapsed / 3d 3h 27m 52s left ) -> ETA: Sat Apr 20 12:49 XS = 0.000567476 pb +- ( 0.000567476 pb = 100 % ) Event 2 ( 27s elapsed / 1d 14h 16m 12s left ) -> ETA: Thu Apr 18 23:37 XS = 105120 pb +- ( 105120 pb = 99 % ) Event 3 ( 27s elapsed / 1d 1h 39m 32s left ) -> ETA: Thu Apr 18 11:00 XS = 3.26426e+06 pb +- ( 3.16019e+06 pb = 96 % ) Event 4 ( 27s elapsed / 19h 16m 37s left ) -> ETA: Thu Apr 18 04:37 XS = 4.31494e+08 pb +- ( 4.28238e+08 pb = 99 % ) Event 5 ( 27s elapsed / 15h 28m 52s left ) -> ETA: Thu Apr 18 00:50 XS = 2.87734e+08 pb +- ( 2.85619e+08 pb = 99 % ) Event 6 ( 27s elapsed / 12h 55m 55s left ) -> ETA: Wed Apr 17 22:17 XS = 2.75266e+10 pb +- ( 2.72401e+10 pb = 98 % ) Event 7 ( 28s elapsed / 11h 9m 46s left ) -> ETA: Wed Apr 17 20:30 XS = 2.50242e+10 pb +- ( 2.47663e+10 pb = 98 % ) Event 8 ( 28s elapsed / 9h 52m 26s left ) -> ETA: Wed Apr 17 19:13 XS = 1.83511e+10 pb +- ( 1.81669e+10 pb = 98 % ) Event 9 ( 28s elapsed / 8h 48m 2s left ) -> ETA: Wed Apr 17 18:09 XS = 1.72049e+10 pb +- ( 1.70322e+10 pb = 98 % ) Event 10 ( 28s elapsed / 7h 56m 11s left ) -> ETA: Wed Apr 17 17:17 XS = 1.74024e+10 pb +- ( 1.60002e+10 pb = 91 % ) Event 20 ( 31s elapsed / 4h 21m 18s left ) -> ETA: Wed Apr 17 13:42 XS = 1.0597e+10 pb +- ( 8.81545e+09 pb = 83 % ) Event 30 ( 33s elapsed / 3h 3m 46s left ) -> ETA: Wed Apr 17 12:25 XS = 6.54924e+09 pb +- ( 5.27031e+09 pb = 80 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 6 elements [I] 1 G 6 ( -> 2) [( 6.4725e+03,-0.0000e+00,-0.0000e+00, 6.4725e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,602) 0 [I] 1 G 46 ( -> 4) [( 1.4573e+01,-0.0000e+00,-0.0000e+00, 1.4573e+01), p^2= 0.0000e+00, m= 0.0000e+00] (637,603) 0 [I] 1 G 61 ( -> 6) [( 4.0751e+00,-0.0000e+00,-0.0000e+00, 4.0751e+00), p^2= 0.0000e+00, m= 0.0000e+00] (602,644) 0 [I] 1 u 76 ( -> 8) [( 1.6510e+00,-0.0000e+00,-0.0000e+00, 1.6510e+00), p^2= 0.0000e+00, m= 3.0000e-01] (644, 0) 0 [I] 1 d 86 ( -> 10) [( 5.2659e+00,-0.0000e+00,-0.0000e+00, 5.2659e+00), p^2= 0.0000e+00, m= 3.0000e-01] (666, 0) 0 [I] 1 G 103 ( -> 12) [( 9.4547e-01,-0.0000e+00,-0.0000e+00, 9.4547e-01), p^2= 0.0000e+00, m= 0.0000e+00] (680,666) 0 and Particle List with 6 elements [I] 1 G 5 ( -> 2) [( 4.4130e+02,-0.0000e+00,-0.0000e+00,-4.4130e+02), p^2= 0.0000e+00, m= 0.0000e+00] (619,633) 1 [I] 1 u 47 ( -> 4) [( 2.9472e+02,-0.0000e+00,-0.0000e+00,-2.9472e+02), p^2= 0.0000e+00, m= 3.0000e-01] (633, 0) 1 [I] 1 G 62 ( -> 6) [( 1.0837e+02,-0.0000e+00,-0.0000e+00,-1.0837e+02), p^2= 0.0000e+00, m= 0.0000e+00] (650,619) 1 [I] 1 G 77 ( -> 8) [( 1.4106e+02,-0.0000e+00,-0.0000e+00,-1.4106e+02), p^2= 0.0000e+00, m= 0.0000e+00] (654,650) 1 [I] 1 G 87 ( -> 10) [( 6.5825e+01,-0.0000e+00,-0.0000e+00,-6.5825e+01), p^2= 0.0000e+00, m= 0.0000e+00] (671,654) 1 [I] 1 G 104 ( -> 12) [( 1.1112e+02,-0.0000e+00,-0.0000e+00,-1.1112e+02), p^2= 0.0000e+00, m= 0.0000e+00] (679,671) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 ud_0 111 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 5.7933e-01] ( 0,680) 0 [B] 1 db 98 ( -> ) [( 9.9954e-01, 0.0000e+00, 0.0000e+00, 9.9948e-01), p^2= 1.3537e-04, m= 0.0000e+00] ( 0,637) 0 and Particle List with 1 elements [B] 1 ud_0 112 ( -> ) [( 5.3376e+03, 0.0000e+00, 0.0000e+00,-5.3376e+03), p^2= 7.2292e-01, m= 5.7933e-01] ( 0,679) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 40 ( 38s elapsed / 2h 41m 26s left ) -> ETA: Wed Apr 17 12:02  Memory usage increased by 17 MB, now 320 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 5.24085e+09 pb +- ( 4.2207e+09 pb = 80 % ) Event 50 ( 40s elapsed / 2h 14m 1s left ) -> ETA: Wed Apr 17 11:35 XS = 4.6716e+10 pb +- ( 3.59727e+10 pb = 77 % ) Event 60 ( 42s elapsed / 1h 56m 37s left ) -> ETA: Wed Apr 17 11:18 XS = 4.51845e+10 pb +- ( 2.98037e+10 pb = 65 % ) Event 70 ( 43s elapsed / 1h 43m 6s left ) -> ETA: Wed Apr 17 11:04 XS = 3.74902e+10 pb +- ( 2.29029e+10 pb = 61 % ) Event 80 ( 46s elapsed / 1h 35m 8s left ) -> ETA: Wed Apr 17 10:56 XS = 3.21117e+10 pb +- ( 1.9606e+10 pb = 61 % ) Event 90 ( 47s elapsed / 1h 27m 2s left ) -> ETA: Wed Apr 17 10:48 XS = 2.88798e+10 pb +- ( 1.74381e+10 pb = 60 % ) Event 100 ( 48s elapsed / 1h 20m 44s left ) -> ETA: Wed Apr 17 10:42 XS = 2.64852e+10 pb +- ( 1.59525e+10 pb = 60 % ) Event 200 ( 1m 15s elapsed / 1h 1m 33s left ) -> ETA: Wed Apr 17 10:23  Memory usage increased by 27 MB, now 348 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 1.77523e+10 pb +- ( 8.92152e+09 pb = 50 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 300 ( 1m 58s elapsed / 1h 3m 40s left ) -> ETA: Wed Apr 17 10:26 XS = 2.14919e+10 pb +- ( 8.36648e+09 pb = 38 % ) Event 400 ( 2m 20s elapsed / 56m 6s left ) -> ETA: Wed Apr 17 10:19 XS = 1.89118e+10 pb +- ( 6.52211e+09 pb = 34 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 d 6 ( -> 2) [( 1.1807e+03,-0.0000e+00,-0.0000e+00, 1.1807e+03), p^2= 0.0000e+00, m= 3.0000e-01] (626, 0) 0 [I] 1 G 45 ( -> 4) [( 6.3473e+02,-0.0000e+00,-0.0000e+00, 6.3473e+02), p^2= 0.0000e+00, m= 0.0000e+00] (646,626) 0 [I] 1 ub 60 ( -> 6) [( 6.2881e+02,-0.0000e+00,-0.0000e+00, 6.2881e+02), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,646) 0 and Particle List with 3 elements [I] 1 G 5 ( -> 2) [( 6.4694e+03,-0.0000e+00,-0.0000e+00,-6.4694e+03), p^2= 0.0000e+00, m= 0.0000e+00] (607,605) 1 [I] 1 sb 46 ( -> 4) [( 2.5421e+01,-0.0000e+00,-0.0000e+00,-2.5421e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,607) 1 [I] 1 ub 61 ( -> 6) [( 3.1415e+00,-0.0000e+00,-0.0000e+00,-3.1415e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,671) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 74 ( -> ) [( 3.6209e+03, 0.0000e+00, 0.0000e+00, 3.6209e+03), p^2= 4.3783e-01, m= 7.7133e-01] ( 0,674) 0 [B] 1 u 70 ( -> ) [( 4.3484e+02, 0.0000e+00, 0.0000e+00, 4.3484e+02), p^2= 6.3145e-03, m= 0.0000e+00] (674, 0) 0 and Particle List with 4 elements [B] 1 uu_1 76 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,651) 1 [B] 1 u 71 ( -> ) [( 3.0299e-01, 0.0000e+00, 0.0000e+00,-3.0298e-01), p^2= 6.2397e-06, m= 0.0000e+00] (605, 0) 1 [B] 1 s 55 ( -> ) [( 4.0472e-01, 0.0000e+00, 0.0000e+00,-4.0471e-01), p^2= 1.1133e-05, m= 0.0000e+00] (651, 0) 1 [B] 1 d 75 ( -> ) [( 1.2850e+00, 0.0000e+00, 0.0000e+00,-1.2849e+00), p^2= 1.1223e-04, m= 0.0000e+00] (671, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 500 ( 2m 34s elapsed / 49m left ) -> ETA: Wed Apr 17 10:12 XS = 2.01196e+10 pb +- ( 5.51428e+09 pb = 27 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 600 ( 2m 51s elapsed / 44m 47s left ) -> ETA: Wed Apr 17 10:08 XS = 2.0582e+10 pb +- ( 4.83082e+09 pb = 23 % ) Pythia8 hadronisation failed. Event 700 ( 3m 16s elapsed / 43m 27s left ) -> ETA: Wed Apr 17 10:07 XS = 1.90266e+10 pb +- ( 4.20082e+09 pb = 22 % ) Event 800 ( 3m 43s elapsed / 42m 49s left ) -> ETA: Wed Apr 17 10:07 XS = 1.78947e+10 pb +- ( 3.77163e+09 pb = 21 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 3 elements [I] 1 d 5 ( -> 2) [( 1.4600e+03,-0.0000e+00,-0.0000e+00, 1.4600e+03), p^2= 0.0000e+00, m= 3.0000e-01] (629, 0) 0 [I] 1 G 50 ( -> 4) [( 3.8132e+02,-0.0000e+00,-0.0000e+00, 3.8132e+02), p^2= 0.0000e+00, m= 0.0000e+00] (601,629) 0 [I] 1 d 59 ( -> 6) [( 1.3052e+03,-0.0000e+00,-0.0000e+00, 1.3052e+03), p^2= 0.0000e+00, m= 3.0000e-01] (652, 0) 0 and Particle List with 3 elements [I] 1 d 6 ( -> 2) [( 6.4960e+03,-0.0000e+00,-0.0000e+00,-6.4960e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 1 [I] 1 G 51 ( -> 4) [( 2.3613e-01,-0.0000e+00,-0.0000e+00,-2.3613e-01), p^2= 0.0000e+00, m= 0.0000e+00] (646,601) 1 [I] 1 ub 60 ( -> 6) [( 2.3120e+00,-0.0000e+00,-0.0000e+00,-2.3120e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,646) 1 and the corresponding remnants are Particle List with 2 elements [B] 1 uu_1 73 ( -> ) [( 1.9278e+03, 0.0000e+00, 0.0000e+00, 1.9278e+03), p^2= 1.5009e-01, m= 7.7133e-01] ( 0,652) 0 [B] 1 db 69 ( -> ) [( 1.4257e+03, 0.0000e+00, 0.0000e+00, 1.4257e+03), p^2= 8.2094e-02, m= 0.0000e+00] ( 0,601) 0 and Particle List with 2 elements [B] 1 uu_1 75 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,657) 1 [B] 1 u 70 ( -> ) [( 1.4781e+00, 0.0000e+00, 0.0000e+00,-1.4780e+00), p^2= 2.0019e-04, m= 0.0000e+00] (657, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 900 ( 4m 9s elapsed / 42m 4s left ) -> ETA: Wed Apr 17 10:06 XS = 1.70125e+10 pb +- ( 3.39882e+09 pb = 19 % ) Event 1000 ( 4m 40s elapsed / 42m 1s left ) -> ETA: Wed Apr 17 10:07 XS = 1.73387e+10 pb +- ( 3.16639e+09 pb = 18 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 7 elements [I] 1 d 5 ( -> 2) [( 3.4841e+03,-0.0000e+00,-0.0000e+00, 3.4841e+03), p^2= 0.0000e+00, m= 3.0000e-01] (601, 0) 0 [I] 1 G 77 ( -> 4) [( 1.7712e+02,-0.0000e+00,-0.0000e+00, 1.7712e+02), p^2= 0.0000e+00, m= 0.0000e+00] (692,601) 0 [I] 1 d 102 ( -> 6) [( 6.8290e+02,-0.0000e+00,-0.0000e+00, 6.8290e+02), p^2= 0.0000e+00, m= 3.0000e-01] (686, 0) 0 [I] 1 db 118 ( -> 8) [( 7.3657e+01,-0.0000e+00,-0.0000e+00, 7.3657e+01), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,686) 0 [I] 1 G 129 ( -> 10) [( 1.1187e+02,-0.0000e+00,-0.0000e+00, 1.1187e+02), p^2= 0.0000e+00, m= 0.0000e+00] (697,692) 0 [I] 1 G 146 ( -> 12) [( 1.0714e+03,-0.0000e+00,-0.0000e+00, 1.0714e+03), p^2= 0.0000e+00, m= 0.0000e+00] (712,697) 0 [I] 1 G 168 ( -> 14) [( 8.7729e+02,-0.0000e+00,-0.0000e+00, 8.7729e+02), p^2= 0.0000e+00, m= 0.0000e+00] (724,712) 0 and Particle List with 7 elements [I] 1 G 6 ( -> 2) [( 4.2781e+03,-0.0000e+00,-0.0000e+00,-4.2781e+03), p^2= 0.0000e+00, m= 0.0000e+00] (603,643) 1 [I] 1 d 78 ( -> 4) [( 1.3123e+03,-0.0000e+00,-0.0000e+00,-1.3123e+03), p^2= 0.0000e+00, m= 3.0000e-01] (643, 0) 1 [I] 1 sb 103 ( -> 6) [( 1.8390e+00,-0.0000e+00,-0.0000e+00,-1.8390e+00), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,603) 1 [I] 1 sb 119 ( -> 8) [( 1.2473e+01,-0.0000e+00,-0.0000e+00,-1.2473e+01), p^2= 0.0000e+00, m= 4.0000e-01] ( 0,688) 1 [I] 1 d 130 ( -> 10) [( 5.0173e+02,-0.0000e+00,-0.0000e+00,-5.0173e+02), p^2= 0.0000e+00, m= 3.0000e-01] (701, 0) 1 [I] 1 G 147 ( -> 12) [( 2.6535e+02,-0.0000e+00,-0.0000e+00,-2.6535e+02), p^2= 0.0000e+00, m= 0.0000e+00] (715,701) 1 [I] 1 G 169 ( -> 14) [( 1.2610e+02,-0.0000e+00,-0.0000e+00,-1.2610e+02), p^2= 0.0000e+00, m= 0.0000e+00] (726,715) 1 and the corresponding remnants are Particle List with 1 elements [B] 1 uu_1 183 ( -> ) [( 2.1660e+01, 0.0000e+00, 0.0000e+00, 2.1660e+01), p^2= 2.9336e-03, m= 7.7133e-01] ( 0,724) 0 and Particle List with 4 elements [B] 1 uu_1 185 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00,-0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,726) 1 [B] 1 db 141 ( -> ) [( 4.3985e-01, 0.0000e+00, 0.0000e+00,-4.3984e-01), p^2= 1.2539e-05, m= 0.0000e+00] ( 0,693) 1 [B] 1 s 124 ( -> ) [( 4.0857e-01, 0.0000e+00, 0.0000e+00,-4.0856e-01), p^2= 1.0819e-05, m= 0.0000e+00] (693, 0) 1 [B] 1 s 113 ( -> ) [( 1.2413e+00, 0.0000e+00, 0.0000e+00,-1.2412e+00), p^2= 9.9858e-05, m= 0.0000e+00] (688, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Event 2000 ( 7m 49s elapsed / 31m 19s left ) -> ETA: Wed Apr 17 09:59 XS = 1.62975e+10 pb +- ( 2.0814e+09 pb = 12 % ) Warning: Kinematics_Generator::TransverseKinematicsHH: Not able to create the breakup kinematics for Particle List with 4 elements [I] 1 G 5 ( -> 2) [( 6.4441e+03,-0.0000e+00,-0.0000e+00, 6.4441e+03), p^2= 0.0000e+00, m= 0.0000e+00] (601,603) 0 [I] 1 G 37 ( -> 4) [( 4.3504e+01,-0.0000e+00,-0.0000e+00, 4.3504e+01), p^2= 0.0000e+00, m= 0.0000e+00] (635,601) 0 [I] 1 db 56 ( -> 6) [( 8.3226e+00,-0.0000e+00,-0.0000e+00, 8.3226e+00), p^2= 0.0000e+00, m= 3.0000e-01] ( 0,649) 0 [I] 1 G 75 ( -> 8) [( 2.6716e+00,-0.0000e+00,-0.0000e+00, 2.6716e+00), p^2= 0.0000e+00, m= 0.0000e+00] (657,635) 0 and Particle List with 4 elements [I] 1 G 6 ( -> 2) [( 2.1643e+02,-0.0000e+00,-0.0000e+00,-2.1643e+02), p^2= 0.0000e+00, m= 0.0000e+00] (620,617) 1 [I] 1 G 38 ( -> 4) [( 1.1898e+03,-0.0000e+00,-0.0000e+00,-1.1898e+03), p^2= 0.0000e+00, m= 0.0000e+00] (636,620) 1 [I] 1 G 57 ( -> 6) [( 6.0417e+02,-0.0000e+00,-0.0000e+00,-6.0417e+02), p^2= 0.0000e+00, m= 0.0000e+00] (617,651) 1 [I] 1 G 76 ( -> 8) [( 4.0663e+01,-0.0000e+00,-0.0000e+00,-4.0663e+01), p^2= 0.0000e+00, m= 0.0000e+00] (660,636) 1 and the corresponding remnants are Particle List with 3 elements [B] 1 uu_1 84 ( -> ) [( 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00), p^2= 0.0000e+00, m= 7.7133e-01] ( 0,657) 0 [B] 1 d 70 ( -> ) [( 1.0695e+00, 0.0000e+00, 0.0000e+00, 1.0694e+00), p^2= 1.1053e-04, m= 0.0000e+00] (603, 0) 0 [B] 1 d 83 ( -> ) [( 3.3206e-01, 0.0000e+00, 0.0000e+00, 3.3204e-01), p^2= 1.0655e-05, m= 0.0000e+00] (649, 0) 0 and Particle List with 2 elements [B] 1 ud_0 86 ( -> ) [( 3.2321e+03, 0.0000e+00, 0.0000e+00,-3.2321e+03), p^2= 3.1802e-01, m= 5.7933e-01] ( 0,660) 1 [B] 1 u 85 ( -> ) [( 1.2169e+03, 0.0000e+00, 0.0000e+00,-1.2169e+03), p^2= 4.5078e-02, m= 0.0000e+00] (651, 0) 1 Remnant_Handler::MakeBeamBlobs failed. Will return new event Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 3000 ( 11m 45s elapsed / 27m 25s left ) -> ETA: Wed Apr 17 09:59 XS = 1.68706e+10 pb +- ( 1.81513e+09 pb = 10 % ) Warning: Kinematics_Generator::TransverseKinematicsHH reduced overall prescale for kt to scale = 0.1 Event 4000 ( 16m 2s elapsed / 24m 3s left ) -> ETA: Wed Apr 17 10:00  Memory usage increased by 31 MB, now 379 MB.  This might indicate a memory leak! Please monitor this process closely. XS = 1.75115e+10 pb +- ( 1.67875e+09 pb = 9 % ) Event 5000 ( 20m 2s elapsed / 20m 2s left ) -> ETA: Wed Apr 17 10:00 XS = 1.74352e+10 pb +- ( 1.49364e+09 pb = 8 % ) Event 6000 ( 23m 24s elapsed / 15m 36s left ) -> ETA: Wed Apr 17 09:59 XS = 1.71669e+10 pb +- ( 1.32833e+09 pb = 7 % ) Event 7000 ( 26m 56s elapsed / 11m 32s left ) -> ETA: Wed Apr 17 09:59 XS = 1.7292e+10 pb +- ( 1.26795e+09 pb = 7 % ) Event 8000 ( 30m 52s elapsed / 7m 43s left ) -> ETA: Wed Apr 17 09:59 XS = 1.68215e+10 pb +- ( 1.14723e+09 pb = 6 % ) Event 9000 ( 34m 33s elapsed / 3m 50s left ) -> ETA: Wed Apr 17 09:59 XS = 1.6326e+10 pb +- ( 1.05208e+09 pb = 6 % ) Event 10000 ( 2288 s total ) = 377542 evts/day In Event_Handler::Finish : Summarizing the run may take some time. Rivet_Interface::Finish(Analysis_Eta024_Alaric/1043){ } -------------------------------------------------------------------------- Nominal or variation name XS [pb] RelDev AbsErr [pb] RelErr -------------------------------------------------------------------------- Nominal  1.639e+10 0 % 1.00863e+09 6.15 % -------------------------------------------------------------------------- Return_Value::PrintStatistics(): Statistics { Generated events: 10000 Errors { From "Hadronization:Pythia8": 1 (10001) -> 0 % } New events { From "Beam_Remnants:Parametrised": 30 (10031) -> 0.2 % } } Blob_List: Momentum Fail Statistics { } Decay_Channel: Kinematics max fail statistics { } WARNING: You are using an unsupported development branch. Remnant handling yields 30 fails in creating good beam breakups. Remnant Kinematics: 30 errors (no kinematics found) and 11 warnings (scale kt down by factor of 10). WARNING: Some settings that have been defined in the input files and/or the command line have not been used. For more details, see the Settings Report. Time: 38m 27s on Wed Apr 17 09:58:57 2024 (User: 38m 5s, System: 7s, Children User: 0s, Children System: 0s)