/* This is an example setup for an analysis of photon multiplicities and radiative energy loss as well as an angular radiation pattern analysis. It has to include Main_FullDecay.C, and a decay with fixed configurations has to be started with the following specialities: - ./PhotonAnalysis EVENTS= ANALYSIS=1 */ #include "HADRONS++/Run/Main.H" #include "Shell_Tools.H" #include "PHOTONS++/Main/Photons.H" static Flavour mother_flav; static Blob* ref_blob; static SHERPA::Hadron_Decay_Handler* hadrons; static PHOTONS::Photons* photons; #ifdef USING__ROOT static TFile* rootfile; static TH1D * photonmultiplicity; static TH1D * decayframeenergy; static TH1D * multipoleframeangles; #endif void InitialiseGenerator(int argc, char *argv[]) { small_sherpa_init(argc, argv); if(argc<2) { cout<<"Usage: ./SingleDecay "<(argv[1])) ); mother_flav.SetStable(false); if(ToType(argv[1])<0) mother_flav=mother_flav.Bar(); rpa->gen.SetEcms(mother_flav.HadMass()); msg_Info()<<"Welcome. I am decaying a "<SetTime(); mother_part->SetFinalMass(mother_flav.HadMass()); ref_blob = new Blob(); ref_blob->SetType(btp::Hadron_Decay); ref_blob->SetStatus(blob_status::needs_hadrondecays); ref_blob->AddToInParticles(mother_part); try { hadrons->FillOnshellDecay(ref_blob, NULL); } catch (Return_Value::code ret) { msg_Error()<SetStatus(blob_status::needs_extraQED); blobs->push_back(blob); photons->AddRadiation(blob); return blobs; } void AnalyseEvent(Blob_List* blobs) { #ifdef USING__ROOT // int outgoing = 1; // int incoming = -1; // Particle_List outparts = blobs->ExtractParticles(part_status::active, outgoing); /////////////////////////////////////////////////////////////////////////////////// // analyse primary decay blob, ignore subsequent decays // /////////////////////////////////////////////////////////////////////////////////// Blob * primarydecayblob = blobs->FindFirst(btp::Hadron_Decay); // msg_Out()<<"primary decay blob:"<NOutP(); i++) { if ((primarydecayblob->OutParticle(i)->Flav().IsPhoton() == true) && (primarydecayblob->OutParticle(i)->Info() == 'S')) { photmult++; photener = photener + primarydecayblob->OutParticle(i)->Momentum()[0]; } } photonmultiplicity->Fill(photmult); if (photener != 0.) decayframeenergy->Fill(photener); // multipole rest frame angles Vec4D multipolesum = Vec4D(0.,0.,0.,0.); Vec4D axis = Vec4D(0.,0.,0.,1.); std::list multipole; std::list newphot; for (int i=0; iNOutP(); i++) { if (primarydecayblob->OutParticle(i)->Flav().Charge() != 0.) { multipolesum = multipolesum + primarydecayblob->OutParticle(i)->Momentum(); multipole.push_back(primarydecayblob->OutParticle(i)->Momentum()); } } if (primarydecayblob->InParticle(0)->Flav().Charge() != 0) { multipolesum = multipolesum + primarydecayblob->InParticle(0)->Momentum(); multipole.push_front(primarydecayblob->InParticle(0)->Momentum()); } Poincare boost(multipolesum); Poincare rotate; // charged initial state: rotate such that initial state at theta = 0 if (mother_flav.Charge() != 0.) { Vec4D inmom = *multipole.begin(); boost.Boost(inmom); rotate = Poincare(inmom,axis); } // neutral initial state: rotate such that heaviest charged final state at theta = 0 else { std::list::iterator heaviest = multipole.begin(); for (std::list::iterator iter=multipole.begin(); iter!=multipole.end(); iter++) { if (abs((iter->Abs2() - heaviest->Abs2())/(iter->Abs2() + heaviest->Abs2())) > 1E-6) { heaviest = iter; } } boost.Boost(*heaviest); rotate = Poincare(*heaviest,axis); } for (int i=0; iNOutP(); i++) { if (primarydecayblob->OutParticle(i)->Flav().IsPhoton() == true) { Vec4D mom = primarydecayblob->OutParticle(i)->Momentum(); boost.Boost(mom); rotate.Rotate(mom); double theta = acos((Vec3D(mom)*Vec3D(axis))/(Vec3D(mom).Abs()*Vec3D(axis).Abs())); multipoleframeangles->Fill(theta); } } /////////////////////////////////////////////////////////////////////////////////// // inclusive analysis of whole decay chain // /////////////////////////////////////////////////////////////////////////////////// // to be done .. #endif } void CleanUpEvent(Blob_List* blobs) { blobs->Clear(); Blob::Reset(); Particle::Reset(); Flow::ResetCounter(); delete blobs; } void FinishGenerator() { hadrons->CleanUp(); delete hadrons; } void FinishAnalysis() { #ifdef USING__ROOT photonmultiplicity->Write(); decayframeenergy->Write(); multipoleframeangles->Write(); #endif }