#include "DIM/Shower/Lorentz_FI.H" #include "MODEL/Main/Single_Vertex.H" #include "DIM/Shower/Shower.H" #include "ATOOLS/Math/Random.H" using namespace ATOOLS; namespace DIM { class VVV_FI: public Lorentz_FI { private: int m_mode; public: inline VVV_FI(const Kernel_Key &key,const int mode): Lorentz_FI(key), m_mode(mode) {} double Value(const Splitting &s) const { double z(s.m_z); double A1=2.0*(1.0-z)/(sqr(1.0-z)+s.m_t/(s.m_Q2/s.m_y)); double B1=-2.0+z*(1.0-z); return A1*(1.0+p_sk->GF()->K(s)+p_sk->GF()->RenCT(s))+B1; } double AsymmetryFactor(const Splitting &s) const { double z(s.m_z); double A11=2.0*(1.0-z)/(sqr(1.0-z)+s.m_t/(s.m_Q2/s.m_y)); double A12=2.0*(1.0-z)/(z*(1.0-z)+s.m_t/(s.m_Q2/s.m_y)); double B11=-2.0+z*(1.0-z), B12=B11; return (A11*(1.0+p_sk->GF()->K(s)+p_sk->GF()->RenCT(s))+B11)/ ((A11+A12)*(1.0+p_sk->GF()->K(s)+p_sk->GF()->RenCT(s))+(B11+B12)); } double Integral(const Splitting &s) const { double I=log(1.0+s.m_Q2/s.m_t0); return I*(1.0+p_sk->GF()->KMax(s)); } double Estimate(const Splitting &s) const { double z(s.m_z); double E=2.0*(1.0-z)/(sqr(1.0-z)+s.m_t0/s.m_Q2); return E*(1.0+p_sk->GF()->KMax(s)); } bool GeneratePoint(Splitting &s) const { s.m_z=1.0-sqrt(s.m_t0/s.m_Q2*(pow(1.0+s.m_Q2/s.m_t0,ran->Get())-1.0)); s.m_phi=2.0*M_PI*ran->Get(); return true; } };// end of class VVV_FI }// end of namespace DIM using namespace DIM; DECLARE_GETTER(VVV_FI,"FI_VVV",Lorentz,Kernel_Key); Lorentz *ATOOLS::Getter<Lorentz,Kernel_Key,VVV_FI>:: operator()(const Parameter_Type &args) const { if (args.m_type!=2) return NULL; if (args.p_v->in[0].IntSpin()==2 && args.p_v->in[1].IntSpin()==2 && args.p_v->in[2].IntSpin()==2) { return new VVV_FI(args,args.m_mode); } return NULL; } void ATOOLS::Getter<Lorentz,Kernel_Key,VVV_FI>:: PrintInfo(std::ostream &str,const size_t width) const { str<<"VVV Lorentz Function"; }