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These lecture notes, prepared for the 2022 QUC summer school at KIAS,
provide an introduction to Higgs Effective Field Theory and the use of field
geometry in Quantum Field Theory. While not sounding the depths of any
of these topics, we will cover and give a sense of the inner workings of: the
action for Goldstone bosons, scattering amplitude’s independence of field
transformations, linear vs non-linear realization –it’s ‘geography’ and exper-
imental prospects to tell them apart–, ultra-violet completions and the LSZ
formula for fields in curved space.
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1 Introduction

The foundation for our description of elementary particle physics is Quantum Field
Theory; within this framework, one is offered two paths to describe Nature: Models and
Effective field theory (EFT). In broad strokes and contrast with one another one can
say of each that

� Models are –when compared to the alternative– predictive, complete and have
some raison d’être; i.e. a motivation or question they try to address.

� EFTs are –when compared to the alternative– general, applicable in a limited
regime and unbiased.

Typically Models are formulated in answer to open questions in physics and offer some
deeper knowledge about Nature; examples in particle physics include supersymmetry,
extra-dimensional and composite Higgs models to address the hierarchy problem, Frog-
gatt Nielsen or discreet symmetries to shed light on the flavour puzzle, axions for the
strong CP problem, countless dark matter candidates to account for the missing matter
component of the universe etc etc. However, when faced with a vast literature on models
trying to answer a given question, one might wonder which one to choose given all of
them but one –or perhaps all of them– are wrong. The alternative of EFT does not offer
answers to deep questions but it does help with decision fatigue: it uses the minimal
set of assumptions while encompassing many possibilities at once. All EFTs require for
their formulation is

1. The particle (field) content

2. The symmetries

3. An expansion parameter

In fact when spelled like that, one might argue that these are the minimum requirements
for doing physics in any situation.

It is this short list of demands of EFTs that implies the generality in their description
of Nature; any dynamics compatible with the items in this list is included in the EFT.
This generality on the other hand might come with a large theory space, cumbersome
to deal with as a whole, but typically much reduced when one is interested in a given
experimental process. The finite regime of validity mentioned in the comparison with
models is related to the expansion parameter that organizes theory predictions; this
parameter is a function of the variables characterising a physical process –typically a
ratio of scales– and when it ceases to be small we have found the ‘breaking point’
of the EFT. It is at this point that some other more complete description of Nature
takes over. One last structural remark is that, within its validity regime, there is no
obstacle to precise quantum-level computations in an EFT and, in the jargon of QFT,
non-renormalisable theories are renormalisable to any finite order in the expansion.
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In these lecture notes the physics under inspection is the electroweak interaction which
is currently being probed experimentally at the Large Hadron Collider (LHC). The ex-
ploration of this frontier –and much of it remains in the dark– will be one of the main
legacies of the LHC. To learn from and interpret the experimental data the theory frame-
work should be sufficiently developed and general to cover the most possibilities. EFT,
in view of the properties we outlined above, is well suited for the job; the development
of the most general EFT for electroweak physics lead to what is now known as Higgs
Effective Field Theory (HEFT). Provided the mass of new particles is well separated
from the electroweak scale, v = 246GeV, HEFT is the most general possible description
of physics. The exploration and construction of this encompassing EFT has brought
new theory insights into UV completion, amplitudes, and geometry; these notes aim at
giving a starting point to understand this progress and push it forward.

The organisation of these notes is as follows: sec. 2 sets out the procedure to describe
a Goldstone action and applies it to the electro-weak theory. Sec. 3 introduces the Higgs
particle and HEFT together with the limit that produces the Standard Model. Sec. 4
discusses the expansion parameter, while sec. 5 introduces geometry for field space, sec. 6
presents the linear non-linear dichotomy and sec. 7 discusses the phenomenology.

Finally let me say that the list of references, as ever, is incomplete and in particular
in the year that elapsed between the writing of this notes and their placement on the
arXiv there has been progress in the field, a sample being [1–6].

2 Longitudinal degrees of freedom

One of the uses of EFT is a bottom-up approach to unknown physics. In our present
case of study the bottom is low energy and the up is high energy, but in other instances
this bottom-up arrow might be pointing in other directions. In this spirit we will follow
the {1},{2},{3} steps enumerated in the introduction to specify an EFT; so we start
with the particle content and symmetries.

The gauge symmetry at the heart of the known interactions, gravity excluded, is

G = SU(3)c × SU(2)L × U(1)Y , (1)

and hence comes with 8 + 3 + 1 spin one massless particles; let us call them Gµ, Wµ and
Bµ. In addition the matter content is specified by the representation under the group
in eq. (1),

qL qR `L `R
SU(3)c 3 3 − −
SU(2)L 2 − 2 −

U(1)Y
1

6

1

6
+
σ3

2
− 1

2
− 1

2
+
σ3

2
(2)

where N is the fundamental representation of (SU(N)) for 3,2, R & L stand for right
and left handed fermions respectively, σ3 is the third Pauli matrix (σ3 =Diag(1,−1))
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and we find it useful to group right-handed fields in doublets qR = (uR, dR), `R = (0, eR)
– feel free to add a RH neutrino if you would prefer that.

This table gives the transformation properties of each field, so if we describe such
transformation with an element of the group G (G†G = 1) the transformed quark doublet
(qL)G is

(qL)G ≡ GqL = (1 + iε · T )qL +O(ε2) , δGqL ≡ iε · TqL , (3)

(∂µqL)G = (∂µG)qL +G∂µqL , (4)

where T are the generators of the gauge symmetry in eq. (1) and ε parametrizes the
transformation (G = eiε·T ) and has an index that runs over the generators ε ·T = εαTα –
we use the repeated index summation convention but note these are not Lorentz indexes.
One has that the field transforms covariantly but its derivative does not, to solve it one
introduces Dµ = ∂µ + igAµto maintain

(Dµq)G = GDµq , with (igAµ)G =G∂µG
† +GigAµG

† . (5)

Explicitly for our quark doublet

DµqL =

(
∂µ + igs

λa
2
Gaµ + ig

σI
2
W I
µ +

ig′

6
Bµ

)
qL , (6)

where λa are the Gellmann matrices, σI the Pauli matrices and G, W and B are the
gauge bosons of SU(3)c, SU(2)L and U(1)Y respectively with couplings gs, g and g′.

We have lastly to mention that not all this symmetry is explicit at low energy, of the
electroweak group only U(1)em survives. This breaking allows for the masses of fermions
and requires masses for gauge bosons. A massive vector boson requires a longitudinal
component not present in the gauge theory, so one introduces Goldstone bosons which
therefore ‘live’ in

Goldstone space SU(2)L × U(1)Y /U(1)em .

How does one go about describing fields living in such a space?

2.1 Goldstone Bosons

The procedure we use to describe Goldstone bosons here is known as CCWZ after the
authors of the seminal papers [7, 8]. The essential tool for the formulation of this pro-
cedure is group theory, as applied to the breaking of a group G down to an unbroken
subgroup H, denoted schematically as G → H. The derivation as here presented applies
to any compact group and is general; it will in turn require some abstraction, more than
is needed for HEFT, so any student eager to get there can skip this section and move
to 2.2.

Let us discuss the Lie algebra by denoting generators as follows

space G H G/H
Generators Tα ta XA
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so {T} = {X, t}, and we use Greek indexes to the encompassing T -generators, Latin
upper case and lower case for the broken and unbroken respectively. The generator
normalization chosen and Lie algebra are ( here T † = T and fαβ

γ are the structure
constants, [Tα, Tβ] = ifαβ

γTγ)

[ta, tb] = ifab
ctc Tr (taXA) = 0 (7)

[ta, XB] = ifaB
CXC Tr (XAXB) = δAB (8)

[XA, XB] = ifAB
ctc + fAB

CXC Tr (tatb) = δab (9)

The absence of X on the RHS of the first commutator equation follows from H being
closed (otherwise it wouldn’t define a group) whereas the absence of t on the second
follows from the above statement and the fully anti-symmetric structure constants of a
compact group. The form of this two commutators will be useful later.

Next we point out that any element of the group GT can be factorized into an element
of the broken and unbroken groups as

GT =GXGt , Gt ∈ H , GX ∈ G/H , (10)

and one can parametrize an element of the broken group, ξ(x), with an exponential
representation; we write it in terms of dim(G/H) fields πA(x) as

ξ ∈ G/H , ξ =eiπ̄ = eiπX/v , (11)

where v is the decay constant needed for the right mass dimension of our scalar fields πA.
The transformation of ξ follows from the composition rule of the group; if we apply two
transformations G1, G2 subsequently, we obtain a transformation G2G1 hence, regarding
ξ as our first transformation and G as the second,

ξ → Gξ ≡ ξGGt , ξG = GξG†t(ξ) ≡ ξ + iε · T ξ − iξ ε · β(ξ) · t+O(ε2) , (12)

where ε parametrises the transformation as in eq. (3), we have defined β which has two
indexes βαa, and to find the transformed ξ, ξG, we have used again the factorization of
eq. (10).

The Goldstone-dependent unbroken group element Gt(ξ) is defined implicitly so that

GξG†t is an broken group element. Given it is not something you might be used to, it is
good to be more explicit and write, with (π̄)G = π̄ + δGπ̄ +O(ε2)

ξ†δGξ = e−iπ̄δGπ̂
∂

∂π̄
eiπ̄ =e−iπ̄iε · Teiπ̄ − iε · β(π̄) · t , (13)∑ 1

n!
[−iπ̄ , [−iπ̄ . . . [−iπ̄︸ ︷︷ ︸

n−1 times

, iδGπ̄]...]] =
∑ 1

n!
[−iπ̄ , [−iπ̄ . . . [−iπ̄︸ ︷︷ ︸

n times

, iε · T ]...]]− iεβt (14)

where terms with an underbrace in the last line mean nested commutators and we
have taken ξ† times the first variation, ξ†δGξ, since this construction belongs in the Lie
algebra – if this is not evident you can use the second line above to derive this result–
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and simplifies the expression. The above equation can be cast, to the second order level
in π̄, as

Do it yourself #1: Finding the transformation rule for π to O(π2). Expand eq. (14)
to O(π2) on both sides including β(π̄), then multiply on the left by a matrix 1 + aLπ̄
and on the right by 1 + aRπ̄ with aL,R such that only the first term, iδGπ̄, is left on the
LHS; then simplify the RHS to find eq. (15). Finally solve for β(0), ∂β(0) such that the
RHS projects only on the broken Lie algebra and use the commutation relations of (7)
to find eq. (16).

iδGπ̄ = iε · T − iε · β(0) · t+
1

2
[π̄, ε · T ] +

1

2
[π̄, ε · β(0) · t]− iε · π̄ ∂β

∂π̄
· t , (15)

The LHS belongs in the Lie algebra of the broken group (i.e. there’s only X’s); it is
the defining job of β, ∂β to ensure the RHS does too, so solving for the equation above
gives the explicit β. Once this form is found and put back into eq. (15) we obtain the
transformation rule for our Goldstones to first order in π as

δGπ
A = vεAX + fBa

AπBεat +
1

2
fBC

AπBεCX +O(π2) , (16)

where we have split ε in broken (εX) and unbroken (εt) group components ε · T =
εX ·X+ εt · t. One can see that a broken group transformation shifts the fields by vεX as
is the case for axions, but if the group is non-abelian there will also be higher orders in
π given by the structure constants. On the other hand a unbroken group transformation
εt does not shift the fields but starts at the linear level.

This gives us a sense of the group action on the Goldstones but it is expanded on π̄
and we want our action invariant under the full non-linear transformation. No invariant
operator can be built with ξ alone and hence no potential is present. One turns to
derivatives next to encounter that the transformation here is x-dependent on two fronts,
ε and Gt(ξ), as opposed to qL, so

(ξ†∂µξ)G =Gtξ
†(∂µξ)G

†
t +Gtξ

†G†(∂µG)ξG†t +G†t(ξ)∂µG
†
t(ξ) (17)

=Gtξ
†(∂µξ)G

†
t +Gtξ

†
(
G†∂µε

∂

∂ε
G

)
ξG†t +Gt(ξ)

(
∂µε

∂

∂ε
+ ∂µξ

∂

∂ξ

)
G†t(ξ) .

The last two terms keep this construction from having covariant transformation prop-
erties. Dealing with the second term, G†∂µG, is not anything new and we can do as in

eq. (4), yet the last one, Gt(ξ)∂µG
†
t(ξ), is of a different kind. This new term, we first

note, affects only the projection on the unbroken Lie algebra since

Tr
(
XAGt(ξ)∂µG

†
t(ξ)

)
= 0 , (18)

as follows from (7). It seems convenient then to separate ξ†Dµξ in the two sectors of
our Lie algebra and reassess:

JA ≡ Tr
(
XAξ

†Dµξ
)

= Tr
(
Xaξ

† (∂µ + igA · T ) ξ
)
, Va ≡ Tr

(
taξ
†Dµξ

)
, (19)
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in terms of which the transformation properties are

(JA)G = Tr
(
XAGt

(
JBXB + V ata

)
G†t

)
= Tr

(
XAGt

(
JBXB

)
G†t

)
, (20)

since, again using the exponential commutator formula and eq. (7), one can see that

GtXG
†
t maps back to X and GttG

†
t to t. The analogous treatment for V shows that

(J ·X)G = Gt(J ·X)G†t , (V · t)G = Gt(V · t)G†t +Gt(ξ)∂µG
†
t(ξ) . (21)

We have encountered in fact a different kind of gauge transformation, via the gauge-boson
structure V that transforms with a shift. Building covariant transforming combinations
out of V then mimics a pure gauge theory; one can define a field strength and its
derivatives, see e.g. [9].

We are interested nonetheless on the lowest derivative term in the Lagrangian, since
this will be leading in the EFT expansion –a point to be expanded on in sec. 4. This
operator is the kinetic term for the Goldstones, and reads

Lp2 = −v
2

2
Tr (Jµ ·XJµ ·X) = −v

2

2
Tr
(
Xaξ

†Dµξ
)

Tr
(
Xaξ

†Dµξ
)
. (22)

Let us apply next this procedure to the electro-weak theory; we will find that a short-
cut allows reaching the Lagrangian faster.

2.2 Electro-weak Goldstone Bosons

It is generally a useful option to exploit all symmetries of our system, even if they are
only approximate. The scalar sector of the electroweak theory has a global symmetry
that comprises the gauge, SO(4) ∼ SU(2)L × SU(2)R and the breaking pattern can be
embedded as

SU(2)L × SU(2)R/SU(2)V ,

where SU(2)L is the same as in eq. (1), SU(2)R acts on qR, `R and in the scalar sector
contains U(1)Y whereas SU(2)V contains U(1)em –for the fermion sector U(1)Y is a
combination of SU(2)R and B − L as can be seen in eq. (2). The generators for the
broken group are 4× 4 matrices as

XI =
1

2

(
σI

−σI
)
, (23)

with σ the Pauli matrices. When exponentiated the form of ξ will still be block diagonal,
explicitly

ξ ≡
(
UL

UR

)
, U †LUL = U †RUR , = 1 , det(UL) = det(UR) = 1 , (24)

and our group transformation reads, c.f. (12),

(ξ)G =GξGt =

(
L

R

)(
UL

UR

)(
V†(ξ)

V†(ξ)

)
, (25)
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The complication in the description arises from the ξ-dependent transformation V on
the right, not sure if you can spot it from here, but the shortcut is to get rid of V by
the following construction

U(x) ≡ UL(x)U †R(x) , (U)G = LUR† , (26)

where crucially since L and R do not depend on the fields ξ, U transforms as an ordinary
(linear) representation. This attains the same goal as the current J since one can obtain
a covariant derivative acting on U in terms of gauge bosons Aµ as

DµU =
(
∂µ + ig

σI
2
W I
µ

)
U − ig′U σ3

2
Bµ , (27)

which transforms as (DµU)G = L(DµU)e−iσ3εY /2. Well then, let’s put this together with
the kinetic terms for the fermions and gauge bosons and a Goldstone-fermion coupling
to find

L =
v2

4
Tr
(
DµUD

µU †
)

+ i
∑
ψ

(
ψ̄L /DψL + iψ̄R /DψR

)
− 1

4

∑
G

FµνF
µν

−
∑
ψ

v√
2
ψ̄LUYψψR + h.c. , (28)

where Yq =Diag(Yu, Yd), Y` =Diag(0, Ye) each Yi a 3 × 3 matrix in flavor space. While
the invariance of the first line terms might be easier to spot, it is a good exercise to check
the invariance of the Yukawa terms on the second line for both quarks and leptons –in
particular for hypercharge we have eiQY εY with charge QY given in eq. (2).

The Lagrangian in eq. (28) gives a good description of physics below 100 GeV; when
expanded around the vacuum, conventionally 〈U〉 = 1, we obtain masses as

mψ =
vYi√

2
, MW = gv/2 , MZ =

gv

2cθW
. (29)

with tan(θW ) = g′/g, Z = cθWW
3 − sθWB and the photon field being the orthogonal

combination. This theory in fact is as much as we knew for certain about nature before
2012, as I remember learning when sitting in a physics school in 2011 as you are now
sitting on one too.

What if we do not assume custodial symmetry in the scalar sector? One need not
preserve SU(2)R but only U(1)Y whose generator in scalar space corresponds to the
third Pauli matrix in SU(2)R. This means, since now we have an abelian group, that
insertions of the hypercharge generator are allowed; this has historically been done with
T = Uσ3U

† ((T)G = LTL†) rather than σ3 alone and we follow this convention here.
In this case one more operator can be built alongside the kinetic term

L/C =
v2εC

8
Tr
(
TUDµU

†
)

Tr
(
T(DµU)U †

)
. (30)

Do it yourself #2: Custodial violation of L/C . The argument for custodial to be a
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good symmetry on the bosonic sector comes from the ρ parameter which is defined and
measured [10] as

ρ =
M2
W

c2
θw
M2
Z

= 1.00038± 0.00040 [2σ]

Translate this into a bound on εC by finding the W and Z masses (L = 1/2M2
ZZ

2 +
M2
WW

+W−) that follow from (28) and (30) where

Z = cθwW
3 − sθwB , W+ = (W 1 − iW 2)/

√
2 .

The theory above, extended to comprise other operators and with an expansion on
energy over v so as to turn it into a proper EFT was outlined in [11–13] where you can
go for further reading. This theory, with or without custodial, and for all its success
at low energy, has a finite range of applicability and it stops at ∼ TeV energies. Let’s
see why, for simplicity neglecting L/C which has a coefficient bound –perhaps by yourself
even– to be small experimentally, compatible with zero.

To see this let us use the equivalence theorem [14–16] which tells us that, at high
energy, the amplitudes for longitudinal boson scattering W±L , ZL are the same as those
computed with the Goldstone Lagrangian to first order in a M/E expansion with M the
mass of the massive gauge bosons and E the energy of the scattering.

In fact we outline here how to do this not once but twice, with two different La-
grangians. These look different yet they yield the same physics.

π Lagrangian. Take the CCWZ procedure and eqs. (19,22,23), the kinetic term
that follows from this group structure is

−v
2

2
(JJ) =

v2

2
Tr

(∑
n

(
[
−iπ̄)n−1, ∂µπ̄

]
n!

XA

)
Tr

(∑
m

(
[
−iπ̄)m−1, ∂µπ̄

]
m!

XA

)
+O(Aµ)

(31)

where by ([−iπ̄)n−1, ∂µπ̄] we mean n− 1 nested commutators and we can neglect
the gauge couplings since they are subleading in M/E.

ω Lagrangian. Our second Lagrangian can be built using U parametrized à la
Weinberg (a.k.a. the square root parametrization)

U(ω) = iσI
ωI

v
+

√
1− ω2

v2
, (32)

we find

v2

4
(DµUD

µU †) =
1

2

(
(∂ω) · (∂ω) +

(ω · ∂ω)2

v2 − ω2

)
+O(Aµ) . (33)
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As for the explicit amplitude to compute, let’s focus on W+
LW

+
L scattering to leading

order in our energy expansion for which purpose we define

ω+ =
1√
2

(ω1 − iω2) , π+ =
1√
2

(π1 − iπ2) , (34)

and after substitution in the Lagrangian the computation

Do it yourself #3: Compute the amplitude by expanding the Lagrangians to second
order to find, for π

−v
2

2
Tr(JJ) =

1

2
∂π · ∂π +

1

6v2

(
(∂µπ · π)2 − π2(∂π)2

)
+O(π6, A π2) , (35)

where π · ∂µπ = πA∂µπ
A and for ω

v2

4
(DµUD

µU †) =
1

2
(∂ω) · (∂ω) +

(ω · ∂ω)2

2v2
+O(ω6, Aω2) , (36)

then substituting in eqs. (34) for the charged Goldstones. From there write down the
Feynman rule for the 4 point vertex with external particles π+(p)π+(k)→ π+(p′)π+(k′)
and evaluate it on shell neglecting masses, s = (p + k)2 = 2pk = 2p′k′, t = −2pp′ =
−2kk′, u = −2pk′ = −2kp′ (you can take ∂µ → −ipµ for an incoming particle and
∂µ → ip′µ for an outgoing particle recalling a π− field produces an outgoing π+ particle)
to find eq. (37).

W+
L , pµ

W+
L , kµ

W+
L , p

′
µ

W+
L , k

′
µ

returns the amplitude, our convention for the S-matrix being S = 1− iA(2π)4δ4(p) and
s the center of mass energy,

AW+
LW

+
L→W

+
LW

+
L

=
s

v2
+O(M/E) . (37)

How does this amplitude tell us about the finite range of validity of our theory? A
fundamental property of any theory is unitarity, which guarantees probabilities less than
one, and for the S matrix translates into SS† = 1. For ordinary matrices this would tell
us we can find S as an unitary matrix with say Euler’s parametrization from which it
follows that no single entry can be larger than one. The S matrix space is not as simple
as that but an analogous constraint can be derived and goes by the name of perturbative
unitarity.
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Do it yourself #4: Derive the unitarity constraint, which can be cast as

0 = (2π)4δ(p+ k − p′ − k′)2 Im(A) (38)

+ (2π)4δ(p+ k − q1 − q2)A1

2

d3q1d
3q2

(2π)6(2Eq1)(2Eq2)
A†(2π)4δ(q1 + q2 − p′ − k′) , (39)

by performing the integral in the centre of mass frame and using A’s independence of
angles in our case to arrive at

1

16π
|A(s)|2 + 2Im(A(s)) = 0 .

For our amplitude perturbative unitarity demands

1

2
Re

[∫ 1

−1
d(cos(θ))A(s, θ)

]
≤ 16π , (40)

with θ the scattering angle, which does not appear on eq. (37) but we have used the
formula for generic amplitudes. Well, this is not compatible with eq. (37) if E =

√
s

goes above
√

16π 246GeV∼TeV. Unitarity, which ensures probability conservation, is not
something you can give up and expect to obtain a theory that we can make sense of; it
is our strongest theory argument for new physics and this theory is pointing us to TeV
energies.

3 The Higgs particle

LHC announced the discovery of the Higgs boson in 2012 to great elation and procla-
mations such as the last piece of the Standard Model is here. To the theory community
the discovery of the Higgs, while welcomed, was almost a given because, by the power-
ful unitarity arguments of the last section, we had to find something by TeV energies.
The Standard Model offered the Higgs boson as that something while being in good
agreement with experimental data sensitive to loop effects; the opposition, in the form
of technicolour, was not so favoured by experimental data.

The assurance that unitarity gave us about the existence of a new particle –which, it
shall be noted, is fundamentally different from arguments deriving from the hierarchy
and other fine-tuning problems– and how the Higgs singlet can be just the right particle
for the job is what we turn to next. We know that the Higgs particle, here denoted h,
is a spin 0, parity + particle, which covers point {1} of our EFT list of demands, but
for point {2} its transformation under the symmetry must be specified, (let (h)G be the
Higgs field under a G transformation in keeping with our notation)

(h)G = h .
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That is pretty simple, and in turns means gauge symmetry imposes no constraints on
the way one can insert powers of the Higgs field anywhere. In particular if we revisit the
Lagrangian of eq. (28) with a Higgs we find

L =
(∂h)2

2
+
v2F (h)2

4
Tr
[
DµUD

µU †
]
− PG(h)

4
FµνF

µν − V (h)− v√
2
ψ̄LUYψ(h)ψR + h.c.

(41)

Here we define F (0) = 1,PG(0) = 1 to preserve v = 246GeV and gauge couplings gs, g, g
′

as usual whereas the only thing we assume about these functions is a Taylor series in h
around the vacuum which is 〈h〉 = 0 in our convention.

3.1 Standard Model

Before making more explicit what the electroweak EFT is, let us show why the Higgs
can solve unitarity violation. Again making use of the equivalence theorem and now
expanding F 2(h) we have, for each ω and π parametrization

Lhπ2 =
1

2
2F ′(0)h ∂π · ∂π Lhω2 =

1

2
2F ′(0)h ∂ω · ∂ω (42)

where we used F (0) = 1. This adds two diagrams to W+
LW

+
L scattering, the sum of

these two with the contact term

Do it yourself #5: Higgs contribution to longitudinal scattering. Derive the Feynman
rule from eq. (42) after subbing in (34), don’t forget the factors of i and neglect the
Higgs mass (including in the propagator) to add the diagrams

and find the amplitude in eq. (43).

gives the amplitude, again with our approximations,

A =
( s
v2
− (F ′(0))2s

)
≡ s

f2
, (43)

where we have defined

(F ′(0))2 =
1

v2
− 1

f2
. (44)

With our definitions we appear to be back in the same theory situation as before with the
scale f in place of v and expecting physics at ∼

√
16πf . Yet this is a rather different case;

12



before the Higgs discovery physicists knew v = 246GeV, since it could be derived from
v = 2MW /g, but what do we know about f now? Instead of a number we can only put
a lower bound on it which allows for a very large f , and in the limit f →∞, a vanishing
amplitude (to this order) and with no amplitude, no the unitarity problem. That is the
fundamental difference with our theory pre-Higgs discovery, the theory obtained in the
limit f → ∞ is perfectly self-sufficient to arbitrary energies and experimental data is
compatible with this limit. This theory is none other than the Standard Model and we
can define it as

FSM = 1 + h/v , PG,SM = 1 , VSM (h) = −
m2
H(v + h)2

2
+
λ(v + h)4

8
, (45)

vYq(h) =

(
Yu

Yd

)
(v + h) , vY`(h) =

(
0

Ye

)
(v + h) . (46)

From this point of view the SM does not seem such a special theory, in particular
the fact that is self-sufficient, in the shape of being renormalizable, is not evident. To
illustrate this property there is a re-writing in terms of a linear representation of the
gauge group H defined as

H =

(
H+

v+H0+iη√
2

)
=
v + h√

2
U

(
0
1

)
, (47)

with η a pseudo scalar field, H+ a complex scalar field. When written in terms of H the
kinetic term goes from an infinite tower of terms to

1

2
(∂h)2 +

v2

4
FSM (h)2Tr

[
DµUD

µU †
]

= DµH
†DµH , (48)

and Yukawa and potential read (H̃ = εH∗ with ε the antisymmetric 2-tensor)

v√
2
q̄LUYq(h)qR = q̄L ,

(
H̃Yu, HYd

)
qR , V = −m2

HH
†H +

λ

2
(H†H)2 . (49)

Do it yourself #6: Show that relation (48) holds. You might want to use relations
like Dµ(U †U) = 0, DµU

†DµU = −U †DµUU
†DµU with U †DµU projecting only on Pauli

matrices and (0, 1)TM(0, 1) =Tr(M(1−σ3)/2). But feel free to use your intuition, there
is more than one way to go about it.

It is now that we see that all the operators on this theory can be built out of linear
representations with no constraints on them and have mass dimension ≤ 4, they are
marginal and relevant or renormalisable. This means that the theory is closed under
quantum corrections, no counter-terms in the form of new operators will appear at any
level in the theory and once we have measured all the parameters in the Lagrangian of
eq. (41) with the substitutions in eq. (45) our theory is fully predictive.

13



3.2 HEFT building blocks

It is not the SM that these notes are about so let’s conclude our sightseeing trip and
come back to EFT. We can summarise the two first points of the EFT list, {1} field and
{2} symmetries as

qL qR `L `R U h

SU(3)c 3 3 − − − −
SU(2)L 2 − 2 − 2 −

U(1)Y
1

6

1

6
+
σ3

2
− 1

2
− 1

2
+
σ3

2
− σ3

2
−

where SU(2)L (U(1)Y ) acts to the left (right) of U . If custodial is not respected we also
add

SU(2)L U(1)Y
T = Uσ3U

† 3 −

where now 3 is the adjoint of SU(2)L, and we note that T is not independent but an
object built out of U , σ3.

This completes the list of elements we need to build the theory which you can see in
its inception on [17, 18]. The point that we would like to stress is that in general h and
U are completely independent but in specific cases like the Standard Model they come
together to form a linear representation. This is one of the main questions that these
notes try to address

when and how does HEFT admit a linear representation H ?

When HEFT does admit a linear representation we recover the Standard Model Effective
Field Theory where one can write our Lagrangian in terms of

H =
v? + h√

2
U

(
0
1

)
(50)

where v? and h are related but not the same as our field h and constant v (e.g. h
might not be canonically normalized). This distinction of SMEFT and HEFT that is
not SMEFT, i.e. HEFT/SMEFT, is referred to linear vs non-linear and we will call
theories in HEFT/SMEFT quotient theories to avoid the overuse of HEFT.

The last point in our list, {3}, is left to discuss, and this pertains to the selection of
operators we have put in our Lagrangian thus far. Indeed in addition to the operators
in eq. (41) many others can be added, e.g. their square, or any positive power, as well
as new combinations of our building blocks. In fact there are infinitely many operators
and one needs to identify an EFT expansion to sort them out.
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4 The expansion

Take our HEFT to be valid up to a scale Λ where new particles show up to complete
the picture. This variable gives us the expansion parameter since we expect our EFT to
be valid at E � Λ and it is a good idea to expand on powers of E/Λ. This discussion,
simple as it is, is enough to pin down the organizing rule for the operators in SMEFT.
It is as simple as counting mass dimensions di of operators, and the SM is defined to be
the linear theory with all di ≤ 4 operators.

In HEFT the expansion is less evident and makes a simple counting rule like the
one for SMEFT less straight forward. Some of the difficulty is overcome by looking at
amplitudes, so let’s write the W+W+ amplitude with a sub-leading term in the EFT
expansion,

AW+W+ =
s

f2

(
1 + cNLO

s

Λ2

)
. (51)

This equation might spark the question in the minimalist mind, given [f ] = 1 why not
identify f = Λ? The two scales are different just like v and mh were different in our
pre-2012 theory of eq. (28). Perturbative unitarity arguments give us and upper bound
on Λ, Λ ≤

√
16πf which is saturated for strong dynamics, but this bound leaves a lot of

room for the relation between the two scales. Let us be more explicit and take Λ to be
the mass and g∗ to be the coupling of the particle that produces A at high energies

AUV =
g2
∗s

Λ2 − s
' g2

∗s

Λ2

(
1 +

s

Λ2

)
(52)

so we can identify Λ = g∗f and conclude that weakly coupled theories have states with
particle’s mass Λ well below f and strong dynamics means heavier states, with masses
possibly above f .
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Turning now to the Lagrangian one shall be aware that the redundancies removed by
amplitudes might obscure the view. For example, F ′ in eq. (44) depends on two scales
but the amplitude only on one. For this reason we keep the expansion implicit in h within
unspecified functions such as F or PG in the following. Similarly but now to preserve
manifest gauge invariance, we do not expand U on its Goldstone boson components.

As a first go at organizing our operators let’s mimic the SMEFT formula and write,
with the scalar boson considerations above

Li = Λ4

[
ψ

Λ3/2

]Nψi [D
Λ

]Npi
[U ]NUiPi(h) ,

where field strengths are captured as [Dµ, Dν ] ∼ igFµν , and just as in SMEFT we can
expect higher inverse powers of Λ to give ever less relevant corrections. This formula
implies operators with higher powers of fields are suppressed as intuitively expected;
however upon the closer inspection of writing some of the first few terms this formula
gives, we find

Λ4FV (h) + PF (h)Λ2(DUDU) + ΛY(h)ψ2U + P4(h)(DU)4 + · · · ,

which suggests the potential is much more relevant than the kinetic term of the Goldstone
and this more so than the Yukawa term, itself less important that kinetic terms of
fermions and gauge bosons, the latter on the same footing as the last operator above.
The last operator above, (DU)4, however gives the sub-leading correction in eq. (51)
which would require P4(0) ∼ v4/(f2Λ2) and hence a dependence on Λ that the SMEFT
formula failed to predict.

A more appropriate counting formula to organise our EFT can be obtained from Naive
Dimensional Analysis (NDA) [19], to which we turn next. NDA gives a normalization
of operators such that the dimensionless coefficients that accompany them in the La-
grangian should be smaller than one for the loop expansion to converge.

Do it yourself #7: Understanding naive dimensional analysis.
To implement the NDA normalization based on the loop expansion one can proceed as

follows: we first divide field insertions by a scale, let’s call it Λφ for scalars and impose
that in the propagation of our field an inverse loop factor arises together with a common
scale Λ

〈0|φ(x)φ(y)

Λ2
φ

|0〉 =

∫
d4p

(2π)4

ieip(x−y)

p2 −m2

1

Λ2
φ

∼ (4π)2

∫
eip(x−y)d4p

(2π)4(p2 −m2)Λ2
, (53)

so Λφ = Λ/(4π), you can do the same for fermions to find Λ3
f = Λ3/(4π)2. Powers of

momenta are inserted over this scale Λ.
Next consider an operator in the Lagrangian with the normalisation above –and an

overall Λ4/(4π)2– and Eφ scalars –we leave other fields out for simplicity– and K deriva-
tives with a coefficient C at tree level. At the quantum level this operator will receive a
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contribution δC from a diagram with V vertexes, each contributing Eφi external fields,
Ni powers of momenta and a total of I internal lines, in momentum representation,

δC
Λ4

(4π)2

[
4πφ

Λ

]Eφ ( p
Λ

)K
(2π)4δ4(p) (54)

=

V∏
i

(
Λ4

(4π)2

[
4πφ

Λ

]Eφi ( p
Λ

)Ni
(2π)4δ4(p)

)
I∏
j

(
dp4

j (4π)2

(2π)4p2Λ2

)
.

If we use the Dirac delta’s to cancel out internal momenta we are left with L = I−(V −1)
integrals over momenta (if you’re not familiar with it, I encourage you to test the relation
L = I − (V − 1) on the most complicated loop diagram you can scribble) to simplify the
contribution to C as

δC ∼(
∏

Ci)

(
Λ4

(4π)2

)V−1(
`

Λ

)N−K [ d4`

(2π)4

]L [
(4π)2

`2Λ2

]I
(55)

∼(
∏

Ci)(Λ
4)V−1+L−I(4π)I−L−V+1 = (

∏
Ci) , (56)

which means the contribution to C is the product of all coefficients with no π-factor
suppression and Ci ∼ 1 is the limit of convergence of our loop expansion, anything
larger than that makes computations unviable.

Given our reasons not to expand on the Higgs singlet and Goldstones, the NDA
adaptation reads [20]

Li =
Λ4

(4π)2
Pi(h)

[
4πψ

Λ3/2

]Nψi [D
Λ

]Npi
UNUi , (57)

now with this formula the four derivative operator

P4(h)

(4π)2
(DU)4 , (58)

is subleading and we are closer to natural coefficients with P4(0) ∼ v4(4π)2/f2Λ2 to
reproduce eq. (51). NDA offers chiral counting Nχ = Npi +Nψi/2 to organize our series
in a manner more informed than simple dimensional analysis [20]. It does also signal
the following operator potentially as important as gauge bosons couplings to fermions

Pψ2D(h)ψ̄LγµσIψL Tr
(
σI(DµU)U †

)
. (59)

What the NDA-adapted formula does not however make explicit is how the limit Λ→∞
returns the SM. Take the operators in eq. (58), and (59); their coefficients Pψ2D(0) and
P4(0) have zero mass dimension so one takes them as coupling constants independent of
each other and Λ –the NDA formula does not know about eq. (51); however, we know
they should vanish in the limit Λ → ∞. There is therefore further implicit dependence
on the dimensionless coefficients P(0) that NDA cannot determine.
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Another approach to the expansion that makes the decoupling more evident is to define
your leading order Lagrangian and then deduce your next-to-leading by identifying the
terms required by renormalization at one loop. In essence it uses the loop expansion
as NDA does but there is the somewhat arbitrary definition of leading order (LO).
Following [21] in this ordering the LO Lagrangian is defined as

LLO =
1

2
(∂h)2 +

v2

4
F (h)2Tr

[
DµUD

µU †
]
− 1

4
FµνF

µν − V (h)− ψ̄LUY(h)ψR + h.c.

(60)

where we note the Higgs function P has been dropped in the gauge kinetic term. The
NLO terms can be derived from induced UV divergences as, again schematically,

ψ2DU , ψLψRU [D,D] , D4U, h , ψ4 . (61)

More than estimating has been done nonetheless, the UV divergences and RGE equations
have been computed in [22,23].

Once the expansion has been determined, the operators have to be made explicit
and redundancies removed –unless you are okay with working with more parameters
than physically observable which is sometimes handy. In these notes we do not aim at
presenting the complete lists of subleading operators in each framework but refer the
reader to the literature [6, 20,24–26].

Before moving on, a word of encouragement if you’re put off by the expansion ambi-
guity; we have experiment to tells us what the coefficients are!

5 Geometry

Amplitudes remove redundancies from the Lagrangian description and make our expan-
sions clearer. We have seen an example of each in (i) the same amplitude following from
Lagrangians (35) and (36), and (ii) how eq. (51) helps us identify the EFT expansion.
Point (i) can indeed be presented by saying that the physics does not care about the way
we choose to parametrize field-space. This same statement applies in an analogue that
might come to mind; the physics are the same no matter how we parametrize (choose
coordinates of) space-time. This parallel between field reparametrisation in QFT and
coordinate changes in general relativity goes further than a sketch; correlation functions
are built out of tensors in field-space and we will present a ‘geometrised’ relation be-
tween amplitudes and correlation functions. Last but not least in our list of reasons to
use geometry, is that it helps us visualize our theories. Further reading on the topic can
be found on references [27–31].

How does geometry come about? It starts with a metric, and we have been dealing
with a couple already, let us write eq. (33) explicitly:

L =
1

2
∂µω

A

[
δAB +

ωAωB
v2 − ω2

]
∂µωB ≡ 1

2
∂µω

AG
(ω)
AB∂

µωB . (62)
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One can regard G
(ω)
AB, a two index object, as a candidate but, for it to be a true metric,

it should transform covariantly. Assume we are given the mapping from π to ω, ω(π),
then we can write

1

2
∂µω

AG
(ω)
AB∂

µωB =
1

2
∂µπ

C ∂ω
A

∂πC
G

(ω)
AB

∂ωB

∂πD
∂µπD =

1

2
∂µπ

CG
(π)
CD∂µπ

D , (63)

G(φ) does transform covariantly and is indeed a metric. The matrices ∂ω/∂π are the
equivalent of the transformation G in our gauge theory and we have a relation between
the new and old metric which is of the covariant form.

This is telling us more explicitly that both theories are the same, and for this it is
useful to take a step back and realize that both parametrise differently 2 × 2 unitary
matrices, i.e.

U †U = UU † = 1 , det(U) = 1 ,

but these are none other than the equations for a 3-sphere, S3.
Having identified our metric let us turn to derivatives. In an analogy with gauge theory,

there is the need to modify derivatives to make them covariant, only now derivatives with
respect to the field. Consider V (φ) with φa our set of coordinates and a change to a new
set of coordinates φ̃, φ(φ̃)

∂V

∂φa
=
∂φ̃c

∂φa
∂V

∂φ̃c
,

∂2V

∂φb∂φa
=

∂2φ̃c

∂φb∂φa
∂V

∂φ̃c
+
∂φ̃d

∂φb
∂φ̃c

∂φa
∂2V

∂φ̃c∂φ̃d
. (64)

While the first terms gives a covariant relation between old and new derivatives with
respect to the fields, the second one has a piece that does not follow this rule. To remedy
this we introduce the Chistoffel symbols or connection

Γijk =
1

2
(G(φ))il

(
∂jG

(φ)
kl + ∂kG

(φ)
lj − ∂lG

(φ)
jk

)
, (65)

and introduce the covariant-field derivative D which acts as:

DaDbV =
∂2V

∂φa∂φa
− Γcab

∂V

∂φc
, (66)

with now D2V being a true tensor, i.e. transforming covariantly with a ∂φ/∂φ̃ matrix
on each index.

This analysis on HEFT gives us the metric,

(∂µh)2

2
+

(vF )2

4
Tr
(
DµU †DµU

)
=

1

2
Dµφ

iG
(φ)
ij (φ)Dµφj , G

(φ)
ij =

(
1 0
0 F 2(h)ĝab

)
,

(67)

where φ = (h, ϕa), Dµφ = (∂µh, ∂µϕ
a + gABµ ζ

a
B) with ζ killing vectors, ĝ is the metric

of a 3-sphere S3, ABµ =Tr(TBAµ), and i runs on the values i = h, 1, 2, 3. We need not
make explicit the inner metric that corresponds to the Goldstone space –S3 as we have
just seen above– but we do note that our convention around the vacuum is ĝ(0)ab = δab.
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The Killing vectors ζ give us the isometries of the manifold, i.e. displacements that
leave the metric the same, and form a representation of the group as

∂ζk

∂φi
G

(φ)
kj +G

(φ)
ik

∂ζk

∂φj
+ ζk

∂G
(φ)
ij

∂φk
= 0 ζkA

∂ζiB
∂φk

− ζkB
∂ζiA
∂φk

= fAB
CζiC , (68)

where B on ζiB runs over the generators of the gauge symmetry. Killing vectors offer the
answer to the question we posed in sec. 2, eq. (16); the infinitesimal transformation of
our fields is proportional to the Killing vectors

δGφ
i = εAζiA(φ) ,

whereas the derivative, making use of the second property in eq. (68)

δG(Dµφ
i) = (Dµφ

j)
∂ζiA
∂φj

εA , (69)

|| which you can derive yourself: use (5), (7) and (68) || and the first property of (68)
shows that the kinetic term in (67) is indeed invariant. One can hence regard the
Goldstone boson study of sec 2 as the application of geometry to the coset spaces that
appear in group theory.

It might seem that we have introduced quite a few new concepts for a bit of a dry
section so far, so let’s pause here for a respite to pick some low hanging fruit in geometry.
Our scalar fields, Higgs+Goldstones, live in a 4-dimensional manifold M with metric
G(φ). What could this space be?

There is a lot of possibilities of course but if one surveys for simplicity only the most
symmetric spaces for the manifold M, they happen to have constant curvature R over
all the manifold and you might have already guessed a couple of them; here is the three
we have:

most symmetric M′s =


R = 0 IR4 Standard Model
R > 0 S4 Minimal Composite Higgs
R < 0 H4 ???

(70)

The last column is given without a proof, but a plausibility argument for the Mini-
mal Composite Higgs model is that it is based on the breaking SO(5)/SO(4) and this
space that yields the Higgs doublet is isomorphic to a 4-sphere, S4. The H4 case has
negative curvature and it might be described arising in SO(4, 1)/SO(4) breaking but its
formulation as a complete theory runs into ghosts [33,34].

Do it yourself #8: Derive the metric for the MCHM. The minimal composite Higgs
model is based on the breaking SO(5)/SO(4) which returns 4 GB that the Higgs doublet
arranges into. We can use the CCWZ formalism of sec. 2 with matrices

XA = −i 1√
2

(
0 δiA
−δiA 0

)
iπ̄ ·X =

1√
2f

(
0 ~π
−~π 0

)
(71)
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Figure 1: Examples of possible HEFTs based on geometry and reduced to 2d (rotations
around the vertical axis correspond to gauge transformations): (a) SM (green)
MCHM (orange) and negative curvature (blue), (b) Quotient theories which
don’t have fixed point (the manifold does not go through the origin), (c) Quo-
tient theories with a singularity at the fixed point (d) theories as in (b) but
resembling ever more the SM case around h = 0. See [32] for more details.

where we have substituted v → f and πA, A = 1, 2, 3, 4. An explicit form of ξ can be
found by realizing that the Taylor series satisfies (π̄)2n+1 ∝ (π̄) and (π̄)2n ∝ (π̄)2. For
this purpose it is useful to define ~π2 = h2 and u ≡ ~π/|π| so u(ϕ) is a unit-modulus 4d
vector and ∂µϕ

aĝab∂
µϕb = v2(∂µu) · (∂µu). Once the form of ξ is found, compute J as

in (19) and from there the Lagrangian from (22). The last step for the connection is to
write h = v? + h. You can find more such decompositions in [35]. For those willing to
go further, the relation between v, v? and f can be found and substituted back to find
F (h; v, f).

Let us keep the geometry options open nevertheless and now push ahead to relate
geometry and amplitudes. For this purpose we compute the Riemann tensor that follows
from the metric G(φ).

Do it yourself #9: Derive the connection from the metric in (67) using formula (65),
and from there the Riemann tensor given

Rijkl = ∂kΓ
i
jl + ΓikmΓmjl − (k ↔ l) (72)

The pure Goldstone elements are a bit involved, you can try and use an explicit inner
metric or relations like ĝab = v2(∂ui(ϕ)/∂ϕa)δij(∂u

j(ϕ)/∂ϕb) with u a 4d unit vector.
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The Cristoffel symbols read

Γhab = −F ′F ĝab Γahb =
F ′

F
δab Γabc = Γ̂abc (73)

where we need not specify the inner 3-sphere connection Γ̂. The Cristoffel symbols are
not covariant themselves so will not feature in amplitudes; note that they show up in
the Lagrangian though as evidence of redundancies. The curvature on the other hand is
covariant and reads

Rhabh = −F 2Rhĝab, (74)

Rabcd = F 4Rϕ(ĝacĝbd − ĝadĝbc), (75)

with

Rh ≡ −
F ′′

F
, Rϕ ≡

1

v2F 2
− (F ′)2

F 2
; Rijij = 6(Rϕ +Rh) (76)

you might notice, when evaluated at the vacuum where F (0) = 1, that the curvature Rϕ
features in the amplitude (43), what is more one can also find

AW+
LW

−
L→hh

= −Rhs (77)

Are these coincidences?

5.1 Geometric LSZ reduction formula

Let us revise the LSZ reduction formula

Sin→ out =

(
n∏
i

p2
i −m2

i√
Z

δ

iδJai

) ∫
[dφ]eiS[φ]+J ·φ∫

[dφ]eiS[φ]
=

(
n∏
i

p2
i −m2

i√
Z

)
〈φa1φa2 · · ·φan〉

〈 〉
(78)

where 〈φa1φa2 · · ·φan〉 is the n-point correlation function and the kinetic term is not
canonically normalized; it reads Z−1∂φ2/2 so that 〈φφ〉 = iZ/(p2 − m2). Try now to
compare this with our geometry.

First we expect the correlation function, given it has n-field-indexes to generalize to
a tensor. Coordinates φ are not themselves covariant; to fix this one can exchange
them for a parametrization with new variables η that follow geodesics (Riemann Normal
Coordinates) and yields the same S matrix elements since φ = η + O(η2) and η excite
the same particle as φ out of the vacuum giving the same scattering matrix S.

The other element is the normalization Z. If un-normalized, our kinetic terms in the
geometric picture read G(0)(∂φ)2/2 hence Z−1 = G and (Z)−1/2 =

√
G; well, what is

the square root of a metric? Recalling our GR modules

G
(φ)
ij ≡

∑
IJ

eIi (φ)eJj (φ)δIJ (79)
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eIi are the vierbeins which map between ‘flat space’ (I, J indexes) with a metric δIJ to
our curved space of metric G.

The geometric generalization of the LSZ formula is then –this formula was first pre-
sented in [36]–

Sin→ out =

(
n∏
i

(p2
i −m2

i )e
Ji
ai

)
〈φa1φa2 · · ·φan〉

〈 〉
≡

(
n∏
i

eJiai

)
T a1...an({pi}) , (80)

with T a tensor with n indexes that also has kinematic variable dependence.

Do it yourself #10: Well, don’t believe me, let’s try it! Suppose the vev of h is not
at 0 but some other point h?.

First we can find the LHS of LSZ computing the amplitude as we did in for (43), now
expanding around h?

v2F (h?)
2

4
Tr
(
DµU(ω/v?)D

µU †(ω/v?)
)

+
v2F (h?)F

′(h?)h

2
Tr
(
DµU(ω/v?)D

µU †(ω/v?)
)

where U(ω/v?) is the parametrisation of eq. (32) with v → v?; the first term here will
give us v? in terms of v and F (v?) when we canonically normalize ω, then we substitute
this in the ω2h and ω4 vertexes and the new coefficient with our old computation should
give us the new amplitude.

On the RHS of the equation we would have, for this scattering, given that ω+ is a
combination of ω1,2,

AW+
LW

+
L

= (e1
i (h?))(e

2
j (h?))(e

1
k(h?))(e

2
l (h?))R

ijkl(h?)s

We evaluate our equation at h = h? but still around the same point in the GB manifold,
in particular ĝ(0)ab = δab; use this and eqs. (67,79) to find the explicit form of eIi and
evaluate the equation above to check eq. (80).

One can check both sides of this equation with the amplitude at hand, if the Higgs
boson happens to take a vev at some other h? recycling our result with the RHS of the
geometrised LSZ formula, we would find

AW+
LW

+
L

= F (h?)
4R1212(h?)s = Rϕ(h?)s ,

as one can check explicitly computing the amplitude.

5.2 The metric for the linear realisation

Geometry offers therefore a good grasp on physical observables. Let’s put it to use
to come back to the question we posed in sec. 3, the distinction between linear (a.k.a.
SMEFT) and non-linear (a.k.a. quotient theories, HEFT/SMEFT).
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For a first look lets assume SMEFT with a good expansion so it suffices to consider the
leading corrections; with the extra assumption of custodial invariance, the two operators
in SMEFT that contribute to the metric are

Ld=6 =
cH�

2Λ2
(∂µ(H†H))2 +

cHDD
Λ2

H†HDµH
†DµH . (81)

These come with two parameters so one might expect physical observable predictions
that depend on two variables. This is not the case.

Do it yourself #11: Check that leading order SMEFT predicts correlated curvature.
There is a number of ways of checking this: computing the amplitudes that follow from
the Lagragian, using the equations of motion, and others; what we can try here is more
geometric. After substituting (50) in the operators (and Higgs doublet kinetic term) the
metric has a form

DµH
†DµH +

cH�

2Λ2
(∂µ(H†H))2 +

cHDD
Λ2

H†HDµH
†DµH ≡ K(h)(∂h)2

2
+
L2(h)

2
(dΩ2)

=
(∂h)2

2
+
v2F 2(h)

2
(dΩ2)

where dΩ2 =Tr(DµUD
µU †)/2. The second equality gives us the change of coordinates

from which you can derive the relations, using the chain rule and eq. (76),

dh

dh
=

1√
K
, Rϕ =

1

L2
− 1

KL2

(
dL

dh

)2

, Rh = − 1

KL

d2L

dh2 +
1

2LK2

dL

dh

dK

dh
. (82)

Whereas the first identity gives us K(h), L(h) in terms of the operators, which we can
substitute above and expand all terms to order Λ−2 to verify eq. (83).

as one can derive the result that

Rϕ = Rh =
cH� − cHDD

Λ2
(83)

This is a definite prediction that we can compare with data by looking for correlations
between WLWL → WLWL and WLWL → hh amplitudes (in practice however these
are hard observables to observe and we probe curvature through other means, see 7.
However, say we find experimentally –which we haven’t– Rh = Rϕ/3; this does not
agree with (83), can we rule out SMEFT?

The answer is no; if one does not stop at dimension 6 but adds further terms

1

2
(∂h)2 +

v2F 2

2
dΩ2 = A

(
H†H

)
(∂µ(H†H))2 +B

(
H†H

)
DµH

†DµH (84)

where dΩ2 =Tr(DµUD
µU †)/2, with A,B analytic functions of the argument, the cor-

relation is lost; it already is at dimension 8 actually. There has to be a better way of
telling SMEFT and HEFT/SMEFT apart.

24



6 The EFT Dichotomy

The way to tell linear and non-linear realisations was laid out by the CCWZ authors in
the same work [7] quoted in sec 2, and cast into HEFT in [28,29]. To present it we point
out first the implicit assumption in SMEFT that an expansion in H is well behaved,
i.e. analytic in at least a neighbourhood of H = 0. Yet this point is not the vacuum
state, since 〈H†H〉 = v2

?/2; in contrast for HEFT one expands on h where h excites the
physical Higgs and parametrises deviations of the field from the vacuum point.

What is special about H = 0, why would SMEFT expand around it rather than the
vacuum? Electroweak symmetry is restored, i.e. it is unbroken at the point H = 0. The
presence or not of such point in our manifold is the key to the lemma to tell SMEFT
and HEFT/SMEFT apart

Linearisation lemma

If there exists a fixed point in M under the G group action with a smooth
neighbourhood then the theory admits a linear representation i.e.

∃h? such that (i) F (h?) = 0 & (ii) (∇nR) ≤ ∞ ∀ n ⇒ Linear

A fixed point is defined to be left unchanged under the action of the group, fixed; for
the Higgs doublet

(H)G = GH = H? only solution H = 0 .

The second line of the lemma phrases it for our metric of (67); Goldstones are always
shifted by G, so the only way to avoid this is by ‘collapsing’ the angle coordinates to a
point by setting F (h?) = 0 just as it happens at the origin for polar coordinates. There
you have it then, if a smooth fixed point exits, i.e. conditions (i, ii) are met, we have
SMEFT.

It also tells us that breaking either of these conditions one can step out of SMEFT and
the linear realisation into quotient theories, which can therefore be put in two classes

A There does not exist a point h? left fixed by the group action (@h? , F (h?) = 0)

B There is a fixed point h? with F (h?) = 0 but is singular, i.e. ∇nR =∞ for some n

Before we see one of these quotient theories is good to review the familiar theories for
BSM, to see if any of them fits the mould. Supersymmetry, Grand Unified Theories, the
Seesaw model and even composite Higgs models, all fall in the SMEFT category. They
also have one thing in common, their typical scale can be much higher than the elec-
troweak scale and hence evade direct searches. This connects to an important theorem in
particle physics. The decoupling theorem [37] guarantees that if the new physics behind
our EFT is heavy enough, it would decouple to leave no effects and a consistent theory.
This is the case in SMEFT as taking Λ→∞ we obtain the Standard Model. However is
this the only way to decouple our theory? In other words, are HEFT/SMEFT quotient
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theories non-decoupling which would imply they have a finite cut-off –here meaning by
cut-off the mass of the extra heavy states? Recent study suggest this is the case, at least
for a large class of quotient theories [30,32,38]; the opposite would mean there is a ‘back
door’ to the SM via HEFT/SMEFT.

For pedagogical reasons, rather than reviewing the general arguments or proofs for
the properties of quotient theories, let us simply build a specific theory that interpolates
between SMEFT and HEFT/SMEFT and examine it.

To construct our theory first a quick review of integrating out a field when expanding
on derivatives [29]. If one implements this expansion in the action for a UV complete
model with heavy Φ and light φ fields

S [φ,Φ] =S(0) [φ,Φ] + S(p2) [φ,Φ] + . . . , (85)

and also expand the equation of motion for the heavy field which returns the effective
action,

δS

δΦ

(
φ,ΦEoM(φ)

)
=
δS(0)

δΦ

(
φ,ΦEoM(φ)

)
+ · · · = 0 ,

δS(0)

δΦ

(
φ,ΦEoM

(0) (φ)
)
≡ 0 . (86)

One obtains an effective action at low energies

Seff(φ) =S(0)
[
φ,ΦEoM

(0) (φ)
]

+ S(p2)
[
φ,ΦEoM

(0) (φ)
]

+ ΦEoM
(p2)

δS(0)

δΦ

[
φ,ΦEoM

(0) (φ)
]

+ . . . (87)

=S(0)
[
φ,ΦEoM

(0) (φ)
]

+ S(2)
[
φ,ΦEoM

(0) (φ)
]

+ . . . , (88)

where we used the second equation in (86) in the last line. It suffices then solve the
vanishing momenta equation of motion for the heavy field Φ and substitute in the order
p2 action to obtain the effective potential and kinetic terms at low energies and tree
level.

We can now specify our model, which we take as simple as we can find it [29]. Take
the Standard Model and add a singlet S, (S)G = S with a Z2 symmetry and a coupling
to a linear Higgs doublet H as

V (H,S) = −m2
1H
†H − m2

2

2
S2 − λ̃

4
H†HS2 +

λ

8
S4 +

λH
2

(H†H)2 , (89)

with all parameters positive which implies in particular both S and H get a vev.
To obtain our HEFT theory we integrate out S, which has a 0th order EoM

S
(
−m2

2 − λ̃H†H/2 + λS2/2
)

=0 , SEoM
(0) =

√
2

λ

(
m2

1 + λ̃H†H/2
)
, (90)
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where we take the potential so as to produce a vev for S. It is good to keep an eye on
the mass of the state we integrate out, we have with our approximations

m2
S =

∂2V

∂S2

∣∣∣∣
S=vS

= λv2
S = 2

(
λ̃
v2
?

4
+m2

2

)
. (91)

We obtain the effective action kinetic term subbing in (90)

Lp
2

eff =L
(
SEoM

(0) (H), H
)

=
1

2

2

λ

1

4

(λ̃∂µ(H†H)/2)2

m2
1 + λ̃H†H/2

+DµH
†DµH (92)

=
1

2

[
8m2

2 + λ̃(λ̃/λ+ 2)(v? + h)2

8m2
2 + 2λ̃(v? + h)2

]
(∂h)2 +

(v? + h)2

4
Tr
(
DµU

†DµU
)

(93)

≡ 1

2
K(h)(∂h)2 +

v2F (h)2

4
Tr
(
DµU

†DµU
)
, (94)

as follows from using eq. (50). In view of the kinetic term of the Goldstones we realise
that v? = v which simplifies the following discussion. From here the curvature follows
from a coordinate change and the chain rule, as you might have worked out yourself in
the DIY#11 (with L = vF = v + h) excercise, eq. (82), and they read,

Rϕ =
1

v2F 2
− (F ′)2

F 2
=

1

v2F (h)2

(
1− 1

K(h)

)
, Rh =− F ′′

F
=

K ′(h)

2vF (h)K2(h)
. (95)

So one obtains after some work || which you can do yourself: not much guidance needed,
take eq. (93) put in eq. (95) and compute ||

Rϕ =
λ̃2

8λm2
2 + λ̃(λ̃+ 2λ)(v + h)2

, Rh =
8λ̃2λm2

2(
8λm2

2 + λ̃(λ̃+ 2λ)(v + h)2
)2 . (96)

Here we can see that this model interpolates between SMEFT and HEFT/SMEFT. Take
the decoupling limit m2 � v and you can check that the correlation of SMEFT to first
order in 1/m2

2 is corroborated. However take m2 = 0 –which does not yield a massless
S since there is the extra contribution in (91)– and we step outside of SMEFT and into
HEFT/SMEFT; the curvature Rϕ presents a pole at h = −v where it does blow up!
The generalization of the LSZ formula tells us this curvature would be proportional to
the amplitude when expanding around that point, so it is a true singularity. You can
see what is the Rh, Rϕ correlation in this m2 = 0 in eq. (96) limit to see if it differs from
SMEFT. Finally one can push further into HEFT/SMEFT and take m2

2 < 0 – again
still compatible with massive S cf. (91)– this will also yield a pole, closer to h = 0 that
h = −v.

This simple model teaches us two important lessons.

� The first is that when we step into quotient theories, the mass of the particle we
integrated out is tied down to the electroweak scale, in our case mS ≤ (λ̃/2)1/2v,
which means through the perturbative unitarity bound on λ̃ ≤ 8π, an upper bound
on mS . Indeed this theory was fount not to decouple in [29] with a finite cut-off
∼ 4πv .
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� The second is that in our trip towards HEFT/SMEFT, we first encounter the
m2 = 0 theory which has a candidate fixed point but that same point has divergent
curvature; it is a type B theory. The m2

2 < 0 theory on the other hand has the
singularity before the would be fixed point but we can only trust our theory till
the singularity. There is then no fixed point and we have a type A theory.

The first point confirms the expectations of finite and v-related cut-off, i.e. non-
decoupling theories where there is an upper bound on the mass of new states. This has
been generalized for theories with a singularity making use of the Hadamar theorem to
derive a finite cut-off of ∼ 4πv [30]. The argument goes something like this; if there
is a singularity some distance v? away from the vacuum, the Hadamar theorem tells us
how fast the coefficients in the Taylor expansion on fields grow, these coefficients give
us scattering and are in turn each bound by unitarity. Individual channels with n+2
particles point at a cut-off –derived as we did for Higgsless theory on eq. (28) in the
end of sec. 2– of 4πv?

√
n, which we can expect to improve to 4πv? when summing over

possible scattering in the inelastic channel. Finally as in the case above, the examples
we know about have v? ∼ v and so we obtain a finite cut-off from unitarity. For a more
detailed and rigorous exposition see [30].

The second point tells us about the geography of quotient HEFT/SMEFT theories, if
we can extend our simple finding here, it seems type B theories lie in the boundary and
beyond we find type A theories. This is sketched in figure 2.

Let us end by noting that these results are good news for experiment, these type of
theories are –4πv ∼TeV– within reach!

Figure 2: Postulated geography of quotient HEFT/SMEFT theories as deduced from our
‘trajectory’ model in (89).
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7 Phenomenology and legacy

We have tried to show that HEFT is the most general EFT to describe the dynamics of
the known particle spectrum; it allows deviations from the SM in all theory directions
provided any new physics is heavier than a few hundred GeV. We are exploring this
electroweak theory space experimentally at LHC but there is still much we do not know
about the Higgs sector, the triple Higgs coupling being an example of a property hard
to probe. However we can make the best of what we know and compare with HEFT to
obtain information on the coefficients, something that has been done in multiple articles,
some are [39–41].

The procedure to compare with data is the same as in SMEFT; we expand around the
vacuum, find that the operators produce new vertexes, define our inputs and then make
predictions for observables. The full list of new physics effects deriving from HEFT is
extensive: electroweak physics at colliders, flavour physics for both quarks and leptons,
baryon and number violation, CP violation and even low energy observables as a possible
electric dipole moment of the neutron.

For space constraints we cannot, nor aim to, cover even one of these sectors here.
Instead let us note a couple of distinctive features of HEFT when compared to SMEFT.
First, as noted earlier, HEFT allows for large deviations from the SM and in particular
it can provide the theoretical background for the κ framework of simply rescaling SM re-
sults. Second, a generic feature of HEFT is de-correlation of observables, understandable
from the fact that it comprises SMEFT and exemplified by the curvature-correlation of
first-order SMEFT of eq. (83) which is lost in HEFT.

To put some numbers in our Lagrangian and get a sense of current precision, we
borrow results from [41], for a couple of coefficients

vF ′(0) = 1.01± 0.06 vP ′Gs(0) ≤ g2
s

(4π)2
(−0.01± 0.08) (97)

where P ′Gs controls the linear Higgs coupling to gluons and a prime denotes derivation
wrt h. These parameters are accessed through linear couplings of the Higgs, vector boson
or gluon fusion. Indeed while curvature is related to longitudinal scattering amplitudes,
these are not easy to access experimentally and the strongest experimental constraints
come from single Higgs production and –the absence of evidence for– double Higgs
production. This means in particular that the constraints on Rh are weaker than on Rϕ.
These constraints on curvature are shown on fig. 3.

Finally let us come to the prominent feature of (we suspect most if not all) quotient
theories, a finite cut-off and their position potentially within reach of collider experi-
ments. For this once more we turn to our example of eq. (89). I will let you do the work
and use fig. 3 and what we have learned to do the phenomenological analysis outlined
in the last DIY of these notes:

Do it yourself #12: Testing your model. Inspect the two limits for the curvature

� SMEFT, m2 � v. Identify the Rh vs Rϕ correlation in this limit; is there any
obstacle to taking R→ 0?
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Figure 3: Experimental bounds on curvature; the red region is excluded by present LHC
data, the LHC-HL would further explore/exclude the blue region and finally
projected FCC sensitivity would narrow the range down to exploring the green
region leaving only the organe inner rectangle in the unknown realm. Within
the dashed square the scaling is logarithmic and outside is linear

� HEFT/SMEFT m2
2 ≤ 0 Identify the Rh vs Rϕ correlation in the limit m2 = 0; is

there any obstacle to taking R → 0? To answer this you can compute the singlet
S mass subbing in S = vS + s and H†H = v2/2 in the potential of eq. (89) to
obtain eq. (91). How would the above results change for small negative m2

2?

Put your findings on the plot of fig. 3 which presents circa 2022 and future experimental
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bounds. Is the quotient theory ruled out? Will it be by future experiments? You can
take for numerics the requirement mS > 2mh for EFT to hold and from perturbative
unitarity λ, λ̃ ≤ 8π.

The LHC and future experiments will reveal the physics of the electroweak theory
addressing questions like the dynamics behind gauge symmetry breaking, the origin of
elementary particle masses, the hierarchy problem, and the dichotomy of the linear or
non-linear nature of the scalar sector. No definite answer is guaranteed for the first three
points, but there are encouraging theory results that make us think the last question
will be answered.
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[26] Gerhard Buchalla, Oscar Catà, and Claudius Krause. Complete Electroweak Chiral
Lagrangian with a Light Higgs at NLO. Nucl. Phys. B, 880:552–573, 2014. [Erratum:
Nucl.Phys.B 913, 475–478 (2016)].

32



[27] Rodrigo Alonso, Elizabeth E. Jenkins, and Aneesh V. Manohar. A Geometric
Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar
Field Space. Phys. Lett. B, 754:335–342, 2016.

[28] Rodrigo Alonso, Elizabeth E. Jenkins, and Aneesh V. Manohar. Geometry of the
Scalar Sector. JHEP, 08:101, 2016.

[29] Timothy Cohen, Nathaniel Craig, Xiaochuan Lu, and Dave Sutherland. Is SMEFT
Enough? JHEP, 03:237, 2021.

[30] Timothy Cohen, Nathaniel Craig, Xiaochuan Lu, and Dave Sutherland. Unitarity
violation and the geometry of Higgs EFTs. JHEP, 12:003, 2021.

[31] Rodrigo Alonso and Mia West. On the effective action for scalars in a general
manifold to any loop order. 7 2022.

[32] Rodrigo Alonso and Mia West. Roads to the Standard Model. Phys. Rev. D,
105(9):096028, 2022.

[33] Adam Falkowski, Slava Rychkov, and Alfredo Urbano. What if the Higgs couplings
to W and Z bosons are larger than in the Standard Model? JHEP, 04:073, 2012.

[34] Rodrigo Alonso, Elizabeth E. Jenkins, and Aneesh V. Manohar. Sigma Models with
Negative Curvature. Phys. Lett. B, 756:358–364, 2016.

[35] Rodrigo Alonso, Ilaria Brivio, Belen Gavela, Luca Merlo, and Stefano Rigolin. Sigma
Decomposition. JHEP, 12:034, 2014.

[36] Clifford Cheung, Andreas Helset, and Julio Parra-Martinez. Geometric soft theo-
rems. JHEP, 04:011, 2022.

[37] Thomas Appelquist and J. Carazzone. Infrared Singularities and Massive Fields.
Phys. Rev. D, 11:2856, 1975.

[38] Adam Falkowski and Riccardo Rattazzi. Which EFT. JHEP, 10:255, 2019.
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