
Introductory Field Theory — Problem Set 1

Rodrigo Alonso Autumn 2023

1. Lagrangian and Hamiltonian mechanics

Consider the following Lagrangian for two real degrees of freedom q1(t), q2(t) given in terms
of Q ≡ q1 + iq2

L =
1

2
Q̇∗Q̇+

m2

2
Q∗Q− λ

4
(Q∗Q)2

where λ,m are positive constants and Q∗ the complex conjugate of Q.

i) Perform a Legendre transform to obtain the Hamiltonian; you can use either q̇1, q̇2 or
Q̇, Q̇∗ as your variables.

ii) Write the quantity O = q1q̇2 − q2q̇1 in terms of Q, Q̇,Q∗, Q̇∗.
iii) Show that the quantity O is conserved by writing it in terms of position and momentum

and taking its Poisson bracket with the Hamiltonian.
iv) Find the solution to the equations of motion with

Q(0) =
m√
λ
eiπ/3 , Q̇(0) = 0 .

2. Legendre transformation(LP)

Consider the function

F (v) =
βv4

4

a) Obtain the Legendre transform G(w) with w = F ′(v).
b) Evaluate G′(F ′(x)) to determine the relation between G′ and F ′.
c) Perform another Legendre transform now on G(w) to obtain K(z) with z = G′(w).
d) Compare K(z) and F (v) and use your result to determine how to go from the Hamil-

tonian to the Lagrangian.

3. Lagrangian and Hamiltonian field mechanics

Study the dynamics of the following systems

a) Klein Gordon: Starting from the Hamiltonian density

H =
1

2

(
Π2 + (cϕ∇ϕ)2 + αϕ2

)
derive Hamilton’s equations and show that they lead to Euler-Lagrange’s equations (as
derived in class).

b) Electromagnetism: Derive Maxwell’s equations from the Lagrangian density [you
can use or derive yourself that (∇ ∧ V⃗ ) · (W⃗ ) = V⃗ · (∇ ∧ W⃗ ) + (boundary term) or
∇∧∇ ∧ V⃗ = ∇⃗(∇ · V )−∇2V⃗ ]

L =
ε0
2

(
(∇⃗Φ+ ∂tA⃗)2 − c2(∇∧ A⃗)2

)
− Φρ+ A⃗ · J⃗

Obtain the Hamiltonian density, then set ρ = J⃗ = 0 and check if it can be given in
terms of E = −∇Φ− ∂tA and B = ∇∧A only. Using the constraint that follows from
ΠΦ = 0 on Π̇Φ’s equation and integration by parts try again to obtain H (E,B).
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c) Complex, constrained field:(LP) When the Hamiltonian depends on ∇Π we retain
the two terms in Hamilton’s equation for ϕ̇:

ϕ̇ =
∂H

∂Π
−∇ ∂H

∂∇Π

Derive Hamilton’s equations for

H =
−iℏ∇Π∇φ

2m

and show that they lead to Euler Lagrange’s equation

iℏ∂tφ = −ℏ2∇2φ

2m

given Π = iℏφ∗.

d) Acoustic phonon:(LP) Find Euler-Lagrange’s equation with the variational principle
substituting D → D + δD inside all derivatives and neglecting boundary terms for the
Lagrangian

L =
1

2

[
mḊ2 −K (ℓ∇D)2 +

K

4

(
ℓ2∇2D

)2]
4. Complex Klein-Gordon Quantisation

Consider the Lagrangian density for a complex KG field

L = ϕ̇∗ϕ̇− c2∇ϕ∗∇ϕ− m2c4

ℏ2
ϕ∗ϕ

i) Compute the Hamiltonian treating ϕ and ϕ∗ as independent variables.

ii) Check that the ansatz

ϕ(x⃗) = ℏ
∫
[dk⃗]

√
Nk

2Ek

(
ake

ik⃗·x⃗ + b†ke
−ik⃗·x⃗

)

Π(x⃗) = i

∫
[dk⃗′]

√
Nk′

2Ek′

(
Ek′a

†
k′e

−ik⃗′·x⃗′ − Ek′bk′e
ik⃗′·x⃗

)
with

[ak, a
†
k′ ] = [bk, b

†
k′ ] = (2π)3Nkδ

3(k⃗ − k⃗′) [dk⃗] =
d3k

(2π)3Nk

provides a canonical commutation relation for ϕ and its canonical conjugate momentum.

iii) Put the ansatz in the Hamiltonian and in order to write it as a harmonic oscillator
Hamiltonian (i.e. cancelling ab and b†a† terms), deduce the relation E2

k = E2
k(m, ℏk⃗, c).
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